

Exercise sheet 7

Disclaimer: the exercises are arranged by theme, not by order of difficulty. You may use the result of Exercise 2 for the other exercises.

Reminders

Exercise 1 (f^{-1} is very nice) Let $f : A \rightarrow B$, I_A, I_B some sets of indices, and $(B_i)_{i \in I_B}$ any collection of subsets of B . Recall that the preimage $f^{-1}(B_i)$ is defined as

$$f^{-1}(B_i) = \{x \in A : f(x) \in B_i\}.$$

Check that when f is bijective, f^{-1} is actually a function. What if f is not injective or not surjective?

Then prove the following identities:

- $f^{-1}(\bigcup_{i \in I_B} B_i) = \bigcup_{i \in I_B} f^{-1}(B_i)$;
- $f^{-1}(\bigcap_{i \in I_B} B_i) = \bigcap_{i \in I_B} f^{-1}(B_i)$.

Measurable functions

Exercise 2 (Other definitions of measurability) Prove that a function f is measurable if and only if for all $a < b \in \mathbb{R}$, $f^{-1}((a, b))$ is Borel-measurable. Also prove that the same works if one replaces (a, b) with $[a, b]$.¹

Exercise 3 Show that if f, g are measurable, then so are $f + g$ and fg .

Exercise 4 Show that continuous functions are measurable.

Exercise 5 Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function and $f_n : \mathbb{R} \rightarrow \mathbb{R}$ its dyadic approximations given by $f_n(x) = 2^{-n} \lfloor 2^n f(x) \rfloor$. For $m \geq n \geq 1$, show the bound

$$f(x) - 2^{-n} \leq f_n(x) \leq f_m(x) \leq f(x).$$

Exercise 6 Prove Lemma 2.14 from the class, by showing first that

$$f^{-1}([a, b)) = \bigcap_{j \geq 1} \bigcup_{k \geq 1} \bigcup_{n \geq 1} \bigcap_{m \geq n} f_n^{-1}([a - 1/j, b - 1/k))$$

¹Actually, replacing $(a, b), a, b \in \mathbb{R}$ by $(-\infty, b), b \in \mathbb{R}$, or $(a, +\infty), a \in \mathbb{R}$, or $(a, b], a < b \in \mathbb{R}$, etc... lead to all equivalent definitions.

For fun (non-examinable)

Exercise 7 Show that there is no collection of intervals $([a_i, b_i])_{i=1}^n$ covering $\mathbb{Q} \cap [0, 1]$, i.e. such that $\bigcup_{i=1}^n [a_i, b_i] \supseteq \mathbb{Q} \cap [0, 1]$, but having total length $\sum_{i=1}^n (b_i - a_i) < 1$. On the other hand, show that it is possible with countably many intervals, i.e. find $([a_i, b_i])_{i=1}^{+\infty}$ covering $\mathbb{Q} \cap [0, 1]$ of total length arbitrarily small.

Exercise 8 A general definition of a measurable function is that for (Ω, \mathcal{F}) a measure space, $f^{-1}([a, b]) \in \mathcal{F}$ for all $a < b \in \mathbb{R}$.²

- What are measurable functions relative to the measure space $(\mathbb{R}^n, \mathcal{P}(\mathbb{R}^n))$?
- Prove that

$$\mathcal{G} = \{E \subset \mathbb{R} : E \text{ is countable or } E^c \text{ is countable}\}$$

is a σ -algebra. Is it bigger or smaller than the Borel σ -algebra \mathcal{F}_B ?

- Intuitively, should there be more measurable functions from $(\mathbb{R}^n, \mathcal{G})$ than from $(\mathbb{R}^n, \mathcal{F}_B)$, or less? Then determine exactly which are the measurable functions from $(\mathbb{R}^n, \mathcal{G})$ to confirm your intuition.
- Show that \mathcal{G} is generated by singletons in \mathbb{R}^n , i.e. that it is the smallest σ -algebra containing all $\{x\}, x \in \mathbb{R}^n$.

²This definition is natural because it implies that preimages of Borel sets in \mathbb{R} belong to \mathcal{F} , i.e. preimages of measurable sets are measurable.