

Exercise sheet 6

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Measurable sets and measure spaces

Exercise 1 Define a measure space / probability space to describe two unrelated fair coin tosses. What assumptions are you making in giving the description? Define a sigma-algebra suitable for studying the situation where one can only ask if the two coins have the same side up, or different sides up.

Exercise 2 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Prove that if A, B are measurable sets, then so is also $A \setminus B := \{a \in A, a \notin B\}$.

Exercise 3 Show that the Borel σ -algebra on \mathbb{R}^n also contains all products of half-lines $\Pi_{i=1}^n (-\infty, a_i]$, all open balls $B(x, r)$ and in fact all open sets of \mathbb{R}^n .

Measures

Exercise 4 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Prove that if $A_1 \subseteq A_2 \subseteq A_3 \dots$ are an increasing sequence of measurable sets, then $\mu(\bigcup_{i \geq 1} A_i) = \lim_{i \rightarrow \infty} \mu(A_i)$.

Prove also that if A_1, A_2, \dots are any measurable sets, then the so called union bound $\mu(\bigcup_{i \geq 1} A_i) \leq \sum_{i \geq 1} \mu(A_i)$ holds. Interpret it in the probabilistic context.

Exercise 5 Show that the Lebesgue measure of \mathbb{R}^n is infinite and that the Lebesgue measure of a line segment $[0, 1] \subseteq \mathbb{R}^n$ is zero.

Now consider the Lebesgue measure on \mathbb{R} . Prove that the measure of irrational numbers contained in $[0, R]$ is equal to R ; prove also that the Lebesgue measure of the Cantor set is zero.

Exercise 6 Show that there is no finite measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ that is translation-invariant, i.e. such that $\mu(A + n) = \mu(A)$ for all $n \in \mathbb{N}$ and $A \in \mathcal{P}(\mathbb{N})$.

For fun (non-examinable)

Exercise 7 (Borel σ -algebra) Let Ω and I be two non-empty sets. Suppose that for each $i \in I$, \mathcal{F}_i is a σ -algebra on Ω .

- Prove that $\mathcal{F} := \bigcap_{i \in I} \mathcal{F}_i$ is also a σ -algebra on Ω .
- Now, let \mathcal{G} be any subset of $\mathcal{P}(\Omega)$. Show that there exists a σ -algebra that contains \mathcal{G} and that is contained in any other σ -algebra containing \mathcal{G} . This is called the σ -algebra generated by \mathcal{G} .
- Conclude that the Borel σ -algebra is well-defined.

Exercise 8 (Non-existence of probability measures on the power set) There is no measure μ on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ that is translation invariant, i.e. such that for any $A \in \mathcal{P}(\mathbb{R})$, $\alpha \in \mathbb{R}$, $\mu(A + \alpha) = \mu(A)$, and locally finite, i.e. such that $\mu([0, 1]) < +\infty$.

Hint: Consider the equivalence relation $x \sim y$ if $x - y \in \mathbb{Q}$. Use the axiom of choice to construct a set of representatives of equivalence classes and prove by contradiction that this set cannot be measurable.

Remark 1 *Without the axiom of choice¹, one actually cannot prove–nor disprove!–the existence of a non-measurable set. But without the axiom of choice, one cannot disprove either that \mathbb{R} is not a countable union of countable sets...*

¹Recall that the Axiom of choice says the following: if you are giving any collection of non-empty sets $(X_i)_{i \in I}$, then their product is non-empty. In other words, you can define a function $f : I \rightarrow \bigcup_{i \in I} X_i$ such that for all $i \in I$, $f(i) \in X_i$.