

Exercise sheet 5

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Continuous functions

Exercise 1 Find a sequence $(f_n)_{n \geq 1} \subset C^1([0, 1], \mathbb{R})$ that converge to some $f \in C(D, \mathbb{R})$ with respect to the uniform norm $\|\cdot\|_\infty$, but where f is not differentiable. Now show that if convergence holds w.r.t. the norm $\|f\|_\infty + \|f'\|_\infty$, then the limit is also continuously differentiable.

Riemann integral

Exercise 2 Show that the Riemann integral satisfies some desirable properties:

- All continuous functions on $[0, 1]$ are Riemann integrable
- Every piecewise constant function is Riemann integrable
- Linearity: If f, g are Riemann integrable on $[0, 1]$, then so is their sum and the integral is equal to the sums.

Fourier

Exercise 3 We aim to conclude the proof of Proposition 1.9 in the notes. Recall that the setup consisted of $f \in C^2([0, 1], \mathbb{R})$ twice continuously differentiable and satisfying $f(0) = f(1)$ and $f'(0) = f'(1)$, and that we argued in the first part of the proof that

$$f_N := \sum_{n=1}^N (s_n \sin(2\pi n x) + c_n \cos(2\pi n x)),$$

converges w.r.t. $\|\cdot\|_\infty$ as $N \rightarrow \infty$ to some function $g \in C([0, 1], \mathbb{R})$, where $(s_n)_{n \geq 1}$ and $(c_n)_{n \geq 1}$ are the Fourier coefficients of f .

Using the definition of f_N and g show that for all $n \geq 0$,

$$\int_0^1 (f - g) \cos(2\pi n x) dx = \int_0^1 (f - g) \sin(2\pi n x) dx = 0,$$

and conclude the proof with the help of Proposition 1.12.

Exercise 4 (Fejér kernel, I) One possible choice for the function T_{n, x_0} in the notes is the so called Fejér kernel, denoted $F_n^{x_0}$. The Fejér kernel for $x_0 = 0$ is given by

$$F_n^0(x) = 1 + \sum_{k=1}^{n-1} 2 \left(1 - \frac{k}{n}\right) \cos(2\pi k x).$$

Deduce the expression for $F_n^{x_0}$ for $x_0 \in (0, 1)$.

Now prove carefully the following properties, thereby proving Lemma 1.13:

1. $\forall n \geq 1, F_n^{x_0}(x) \geq 0$,
2. $\forall n \geq 1, \int_0^1 F_n^{x_0}(x) dx = 1$,

$$3. \forall \varepsilon > 0, \lim_{n \rightarrow \infty} \int_0^1 \mathbf{1}_{|x-x_0|>\varepsilon} F_n^{x_0}(x) dx = 0.$$

$$\sum_{n=1}^{1+u-\varepsilon} \left(\frac{\varepsilon}{1-u} x_i u \varepsilon^{-2} + \cdots + \frac{\varepsilon}{\varepsilon-u} x_i u \varepsilon^{-2} + \frac{\varepsilon}{1-u} x_i u \varepsilon^{-2} \right) = x_i u \varepsilon^{-2} (|u| - u)$$

Hint: For 1., rewrite the cosine in the expression of F_n^0 with complex exponentials and prove the identity

Exercise 5 (Fejér kernel, II)

1. For $f \in C([0, 1], \mathbb{R})$ such that $f(0) = f(1)$, show that

$$\int_0^1 f(x) F_n^{x_0}(x) dx \xrightarrow{n \rightarrow \infty} f(x_0).$$

Therefore, the Fejér kernel is in some sense an ‘approximate Dirac delta function’.

2. Compute formally the Fourier coefficients of the Dirac delta function, i.e. a ‘function’¹ $\delta_{x_0} : [0, 1] \rightarrow \mathbb{R}^+$ for $x_0 \in [0, 1]$ fixed such that for all $f \in C([0, 1], \mathbb{R})$ such that $f(0) = f(1)$,

$$\int_0^1 f(x) \delta_{x_0}(x) dx = f(x_0),$$

and write formally its Fourier series.

3. Show that the Fourier coefficients of $F_n^{x_0}$ converge to the formal expression that you found in 2.

Cantor set

Exercise 6 (The Cantor set) Consider the following iteration: we set $C_0 = [0, 1]$ and obtain C_1 by removing the middle third, i.e. $C_1 = C_0 \setminus (1/3, 2/3)$. Now to obtain C_2 , we remove the middle third of the both remaining intervals. We continue iteratively and define $C = \bigcap_{i \geq 1} C_i$. Prove that C is a closed set (i.e. $[0, 1] \setminus C$ is open) with empty interior (i.e. there is no open interval contained in C).

It also has uncountably many elements and is a perfect set - both of these are in the for fun section. It can also be described as the set of numbers in $[0, 1]$ that admit a representation in ternary expansion containing no occurrence of 1.

For fun (non-examinable)

Exercise 7 (The Cantor set is perfect) Prove that the Cantor set C has uncountably many elements and is what is called a perfect set - it has no isolated points in the sense that for each point $x \in C$ there is a sequence of elements $x_n \in C$ with $x_n \neq x$ that converges to x .

¹Such a function does not exist, in the classical sense!