

Exercise sheet 14

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

More Fourier series and transforms

Exercise 1 (Legendre polynomials). *The goal of this exercise is to show that the Gram-Schmidt orthogonalization procedure applied to the sequence of monomials $(x \mapsto x^n)_{n \geq 0}$ on $L^2([-1, 1])$ yields the (normalized) Legendre polynomials $(\sqrt{n+1/2}P_n)_{n \geq 0}$, where*

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), \quad P_0 = 1, P_1(x) = x.$$

1. Show that the polynomial obtained at the n -th step of Gram-Schmidt is given by

$$p_n(x) = xp_{n-1}(x) - \frac{\langle p_{n-1}, xp_{n-1} \rangle}{\langle p_{n-1}, p_{n-1} \rangle} p_{n-1}(x) - \frac{\langle p_{n-2}, xp_{n-1} \rangle}{\langle p_{n-2}, p_{n-2} \rangle} p_{n-2}(x).$$

It might be helpful to first show that the projection of the monomial x^n onto the span of $\{p_k\}_{k=1}^{n-1}$ is the same as that of xp_{n-1} .

2. Show by induction that p_n is an even function (i.e. $p_n(x) = p_n(-x)$) for n even, and an odd function (i.e. $p_n(x) = -p_n(-x)$) when n is odd.
3. Conclude that $p_n = P_n \cdot p_n(1)$, by showing that they satisfy the same recurrence relation.

Exercise 2. In this exercise we aim to show that $L^2(\mathbb{R})$ is separable.

- Prove that each $f \in L^2(\mathbb{R})$ can be approximated arbitrarily well by $f1_{[-n,n]}$ for n large enough, meaning that for every $\varepsilon > 0$ there is some $n \in \mathbb{N}$ with $\|f - f1_{[-n,n]}\|_2 < \varepsilon$.
- By using dense countable subsets of $L^2([-n, n])$ (which we know to be separable), find a countable dense subset of $L^2(\mathbb{R})$.

1.

Exercise 3 (Heisenberg uncertainty principle). *Let $f : \mathbb{R} \rightarrow \mathbb{C}$ be a smooth function such that all its derivatives decay more than polynomially fast - more precisely, such that $x^m f^{(n)}$ are bounded for any $m, n \in \mathbb{N}$ with $f^{(n)}$ denoting the n -th derivative (this is called a Schwartz function). Suppose further that $\int_{\mathbb{R}} |f^2| d\lambda = 1$. Show that*

- $\int_{\mathbb{R}} |\hat{f}^2| d\lambda = 1$;
- both $x^2 |f(x)|^2$ and $k^2 |\hat{f}(k)|^2$ are integrable;

Hint: look at the Fourier transform of f .

- the following uncertainty principle holds:

$$\left(\int_{\mathbb{R}} x^2 |f(x)|^2 d\lambda(x) \right) \left(\int_{\mathbb{R}} k^2 |\hat{f}(k)|^2 d\lambda(x) \right) \geq \frac{1}{16\pi^2}.$$

¹Why is $\{\exp(2\pi i kx)\}_{k \in \mathbb{R}}$ not a basis?

Actually, a basis can be neatly constructed from Hermite polynomials and the Hamiltonian of the quantum harmonic oscillator, as studied in Exercise 8.

- In fact for any x_0, k_0 :

$$\left(\int_{\mathbb{R}} (x_0 - x)^2 |f(x)|^2 d\lambda(x) \right) \left(\int_{\mathbb{R}} (k_0 - k)^2 |\hat{f}(k)|^2 d\lambda(x) \right) \geq \frac{1}{16\pi^2}.$$

Intuitively this says that for any function both f and \hat{f} cannot be simultaneously localised. The interpretation in the realm of quantum mechanics is that the position of the particle and its momentum cannot be localised simultaneously.

Hint: look at the function $x f(x) + \hat{f}(x)$ and $\langle x f(x) + \hat{f}(x), x f(x) + \hat{f}(x) \rangle$.

Operators

Exercise 4. Consider $(\mathcal{H}, \|\cdot\|)$ a separable Hilbert space and T a bounded linear operator.

- Show the following inequality for $f \in H$:

$$\|Tf\| \leq \|T\|_{op} \|f\|.$$

- Show that T is continuous in the sense that if a sequence $(f_n)_{n \geq 1}$ converges to f w.r.t $\|\cdot\|$, then also Tf_n converges to Tf .

Exercise 5 (Boundedness of operators). We aim to argue that the position operator formally given by $f \rightarrow xf$ is not bounded on $L^2(\mathbb{R})$:

- Find a square-integrable function f such that $xf(x)$ is not square integrable.
- Show that the position operator is well defined for functions f that are square integrable and such that also xf is square integrable.
- Find for $i \geq 1$ functions $f_i \in L^2(\mathbb{R})$ of unit norm with $xf_i \in L^2(\mathbb{R})$ but $\|xf_i\|_2 \rightarrow \infty$.

Exercise 6 (Finite rank linear operators). Consider a real Hilbert space \mathcal{H} . Let $u_1, \dots, u_n \in \mathcal{H}$, $v_1, \dots, v_n \in \mathcal{H}$, and define $T(f) := \sum_{i=1}^n \langle f, u_i \rangle v_i$.

- Prove that T is bounded.

Now let T be of finite rank and Hermitian, i.e. $\langle Tf, g \rangle = \langle f, Tg \rangle$ for any $f, g \in \mathcal{H}$.

- Argue that T can be diagonalized, i.e. that we can find g_1, \dots, g_m orthonormal with $m \leq n$ and $\lambda_i \in \mathbb{R}$ such that if we write $f = \sum_{i=1}^m c_i \langle f, g_i \rangle g_i + f_0$ with f_0 orthogonal to g_1, \dots, g_m then

$$T(f) = \sum_{i=1}^m c_i \lambda_i \langle f, g_i \rangle g_i.$$

Non-examinable

Exercise 7 (Density of polynomials in L^2). Show that the set of Legendre polynomials $\{P_n\}_{n \geq 1}$ defined in Exercise 1 is an orthonormal basis of $L^2([-1, 1])$, by showing that it is spanning.

Hint: using the fact that $\cos(\pi x)$ is a polynomial in $\cos(\pi x)$.

Exercise 8. In this exercise we aim to show that the set of nice functions seen in class is dense in $L^2(\mathbb{R})$. Here a function f was called nice if $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ with support in some $[-m, m]$ and whose Fourier transform satisfies $|\hat{f}(k)| \leq Ck^{-2}$ for all $k \geq 1$ is dense in $L^2(\mathbb{R})$.

To do this

- By using the heat equation with initial data $u_0(x) = f(x)$, show that every $f \in L^2([-n, n])$ can be arbitrarily approximated by a function $g \in L^2([-n, n])$ whose Fourier series decays faster Ck^{-2}
- Using this show that every $f \in L^2(\mathbb{R})$ can be approximated by a nice function.

Exercise 9 (Quantizing the harmonic oscillator). The quantum version of a one-dimensional harmonic oscillator of angular frequency ω and mass m is described by the following Hamiltonian operator on $L^2(\mathbb{R})$:

$$H := \frac{1}{2m}(P^2 + \omega^2 m^2 X^2),$$

where P is the momentum operator $Pf = -i\hbar f'$ and X the position operator $Xf : x \mapsto xf(x)$. This operator is not bounded on $L^2(\mathbb{R})$: it is only defined on the subset of functions such that xf and f' are integrable: but for simplicity, we will see it as an operator on the Schwartz space \mathcal{S} (see the previous exercise sheet for a definition thereof). The goal of this exercise is to show that the Hamiltonian can still be diagonalized in an appropriate way.

1. For $f \in \mathcal{S}$, show the commutation relation $[X, P]f = i\hbar f$. We formally write this identity as $[X, P] = i\hbar \text{id}$. Deduce that if one denotes

$$a = \alpha X + i\beta P, \quad a^\dagger = \alpha X - i\beta P$$

with

$$\alpha = \sqrt{\frac{\omega m}{2\hbar}}, \quad \beta = \sqrt{\frac{1}{2\omega m\hbar}},$$

then the Hamiltonian can be rewritten $H = \omega h(a^\dagger a + \frac{1}{2}\text{id})$ (understanding this equality as tested against $f \in \mathcal{S}$).

2. Prove that H is positive semi-definite, i.e. that all its eigenvalues are non-negative. On the other hand, observe that if ϕ is an eigenfunction of eigenvalue λ for H , then $a\phi$ is an eigenfunction with eigenvalue $\lambda - \omega\hbar$ for H or it is zero. Deduce that the lowest eigenvalue for H is $\omega\hbar/2$ and that an eigenfunction having this eigenvalue is in the kernel of a .
3. Find a function ϕ_0 in the kernel of a (i.e. an eigenfunction of eigenvalue zero) of norm one and use it to construct eigenfunctions of H of higher eigenvalues.
4. Prove by induction that the n -th eigenfunction is of the type $P_n(x)\phi_0(x)$, where P_n is a polynomial of degree n^2 . Deduce that the basis of eigenfunctions of H is also a basis of $L^2(\mathbb{R})$, i.e. it is dense in $L^2(\mathbb{R})$.

The n -th eigenvalue is often referred to in the physics litterature as the state having « n quanta of excitation ». It is interesting to think about why the state with lowest energy has no quantum of excitation, but does not have zero energy (its energy is actually $\omega\hbar/2$).

²It can actually be computed explicitly and related to Hermite polynomials.