
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 14
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

More Fourier series and transforms
Exercise 1 (Legendre polynomials). The goal of this exercise is to show that the Gram-Schmidt
orthogonalization procedure applied to the sequence of monomials (x 7→ xn)n≥0 on L2([−1, 1]) yields
the (normalized) Legendre polynomials (

√
n+ 1/2Pn)n≥0, where

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), P0 = 1, P1(x) = x.

1. Show that the polynomial obtained at the n-th step of Gram-Schmidt is given by

pn(x) = xpn−1(x)−
⟨pn−1, xpn−1⟩
⟨pn−1, pn−1⟩

pn−1(x)−
⟨pn−2, xpn−1⟩
⟨pn−2, pn−2⟩

pn−2(x).

It might be helpful to first show that the projection of the monomial xn onto the span of
{pk}n−1

k=1 is the same as that of xpn−1.

2. Show by induction that pn is an even function (i.e. pn(x) = pn(−x)) for n even, and an odd
function (i.e. pn(x) = −pn(−x)) when n is odd.

3. Conclude that pn = Pn · pn(1), by showing that they satisfy the same recurrence relation.

Exercise 2. In this exercise we aim to show that L2(R) is separable.

• Prove that each f ∈ L2(R) can be approximated arbitrarily well by f1[−n,n] for n large enough,
meaning that for every ε > 0 there is some n ∈ N with ∥f − f1[−n,n]∥2 < ε.

• By using dense countable subsets of L2([−n, n]) (which we know to be separable), find a
countable dense subset of L2(R).

1.

Exercise 3 (Heisenberg uncertainty principle). Let f : R → C be a smooth function such that all
its derivatives decay more than polynomially fast - more precisely, such that xmf (n) are bounded for
any m,n ∈ N with f (n) denoting the n−th derivative (this is called a Schwartz function). Suppose
further that

∫
R |f2|dλ = 1. Show that

•
∫
R |f̂2|dλ = 1;

• both x2|f(x)|2 and k2|f̂(k)|2 are integrable;

Hint:lookattheFouriertransformoff′.

• the following uncertainty principle holds:(∫
R
x2|f(x)|2dλ(x)

)(∫
R
k2|f̂(k)|2dλ(x)

)
≥ 1

16π2
.

1Why is {exp(2πikx)}k∈R not a basis?
Actually, a basis can be neatly constructed from Hermite polynomials and the Hamiltonian of the quantum harmonic
oscillator, as studied in Exercise 8.



• In fact for any x0, k0:(∫
R
(x0 − x)2|f(x)|2dλ(x)

)(∫
R
(k0 − k)2|f̂(k)|2dλ(x)

)
≥ 1

16π2
.

Intuitively this says that for any function both f and f̂ cannot be simultaneously localised. The
interpretation in the realm of quantum mechanics is that the position of the particle and its mo-
mentum cannot be localised simultaneously.

Hint:lookatthefunctionx7→αxf+βf′(x)andexpanditsL
2

norm.

Operators
Exercise 4. Consider (H, ∥·∥) a separable Hilbert space and T a bounded linear operator.

• Show the following inequality for f ∈ H:

∥Tf∥ ≤ ∥T∥op∥f∥.

• Show that T is continuous in the sense that if a sequence (fn)n≥1 converges to f w.r.t ∥ · ∥,
then also Tfn converges to Tf .

Exercise 5 (Boundedness of operators). We aim to argue that the position operator formally given
by f → xf is not bounded on L2(R):

• Find a square-integrable function f such that xf(x) is not square integrable.

• Show that the position operator is well defined for functions f that are square integrable and
such that also xf is square integrable.

• Find for i ≥ 1 functions fi ∈ L2(R) of unit norm with xfi ∈ L2(R) but ∥xfi∥2 → ∞.

Exercise 6 (Finite rank linear operators). Consider a real Hilbert space H. Let u1, . . . , un ∈ H,
v1, . . . , vn ∈ H, and define T (f) :=

∑n
i=1⟨f, ui⟩vi.

• Prove that T is bounded.

Now let T be of finite rank and Hermitian, i.e. ⟨Tf, g⟩ = ⟨f, Tg⟩ for any f, g ∈ H.

• Argue that T can be diagonalized, i.e. that we can find g1, . . . gm orthonormal with m ≤ n
and λi ∈ R such that if we write f =

∑m
i=1 ci⟨f, gi⟩gi + f0 with f0 orthogonal to g1, . . . , gm

then

T (f) =

m∑
i=1

ciλi⟨f, gi⟩gi.



Non-examinable
Exercise 7 (Density of polynomials in L2). Show that the set of Legendre polynomials {Pn}n≥1

defined in Exercise 1 is an orthonormal basis of L2([−1, 1]), by showing that it is spanning.

Hint:usingthefactthat{cos(πnx)}n≥1isanorthonormalbasisofL
2
([0,1])andexpandcos(πnx)

asapolynomialincos(πx).

Exercise 8. In this exercise we aim to show that the set of nice functions seen in class is dense
in L2(R). Here a function f was called nice if f ∈ L1(R) ∩ L2(R) with support in some [−m,m]

and whose Fourier transform satisfies |f̂(k)| ≤ Ck−2 for all k ≥ 1 is dense in L2(R).
To do this

• By using the heat equation with initial data u0(x) = f(x), show that every f ∈ L2([−n, n])
can be arbitrarily approximated by a function g ∈ L2([−n, n]) whose Fourier series decays
faster Ck−2

• Using this show that every f ∈ L2(R) can be approximated by a nice function.

Exercise 9 (Quantizing the harmonic oscillator). The quantum version of a one-dimensional
harmonic oscillator of angular frequency ω and mass m is described by the following Hamiltonian
operator on L2(R):

H :=
1

2m
(P 2 + ω2m2X2),

where P is the momentum operator Pf = −iℏf ′ and X the position operator Xf : x 7→ xf(x).
This operator is not bounded on L2(R): it is only defined on the subset of functions such that xf
and f ′ are integrable: but for simplicity, we will see it as an operator on the Schwartz space S (see
the previous exercise sheet for a definition thereof). The goal of this exercise is to show that the
Hamiltonian can still be diagonalized in an appropriate way.

1. For f ∈ S, show the commutation relation [X,P ]f = iℏf . We formally write this identity as
[X,P ] = iℏid. Deduce that if one denotes

a = αX + iβP, a† = αX − iβP

with

α =

√
ωm

2ℏ
, β =

√
1

2ωmℏ
,

then the Hamiltonian can be rewritten H = ωh(a†a + 1
2 id) (understanding this equality as

tested against f ∈ S).

2. Prove that H is positive semi-definite, i.e. that all its eigenvalues are non-negative. On
the other hand, observe that if ϕ is an eigenfunction of eigenvalue λ for H, then aϕ is an
eigenfunction with eigenvalue λ − ωℏ for H or it is zero. Deduce that the lowest eigenvalue
for H is ωℏ/2 and that an eigenfunction having this eigenvalue is in the kernel of a.

3. Find a function ϕ0 in the kernel of a (i.e. an eigenfunction of eigenvalue zero) of norm one
and use it to construct eigenfunctions of H of higher eigenvalues.

4. Prove by induction that the n-th eigenfunction is of the type Pn(x)ϕ0(x), where Pn is a
polynomial of degree n2. Deduce that the basis of eigenfunctions of H is also a basis of
L2(R), i.e. it is dense in L2(R).

The n-th eigenvalue is often referred to in the physics litterature as the state having « n quanta
of excitation ». It is interesting to think about why the state with lowest energy has no quantum of
excitation, but does not have zero energy (its energy is actually ωℏ/2).

2It can actually be computed explicitly and related to Hermite polynomials.


