Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 14

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

More Fourier series and transforms

Exercise 1 (Legendre polynomials). The goal of this exercise is to show that the Gram-Schmidt
orthogonalization procedure applied to the sequence of monomials (z +— x™),>¢ on L*([—1,1]) yields

the (normalized) Legendre polynomials (v/n + 1/2P,;)n>0, where
(n+1)P,y1(x) = 2n+ DaP,(x) — nPy_1(z), Po=1,P(z)==x.
1. Show that the polynomial obtained at the n-th step of Gram-Schmidt is given by
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pn(x) = xpn—l(x) -
It might be helpful to first show that the projection of the monomial x™ onto the span of
{pk}Z;ll is the same as that of xpy,_1.

2. Show by induction that p, is an even function (i.e. p,(x) = pn(—x)) for n even, and an odd
function (i.e. p,(x) = —py(—x)) when n is odd.

3. Conclude that p, = P, - p,(1), by showing that they satisfy the same recurrence relation.
Exercise 2. In this exercise we aim to show that L*(R) is separable.

e Prove that each f € L?(R) can be approzimated arbitrarily well by J1{=n,n) for n large enough,
meaning that for every € > 0 there is some n € N with || f — f1j_, n)ll2 <e.

e By using dense countable subsets of L?([~n,n]) (which we know to be separable), find a
countable dense subset of L*(R).

uk

Exercise 3 (Heisenberg uncertainty principle). Let f : R — C be a smooth function such that all
its derivatives decay more than polynomially fast - more precisely, such that 2™ f™) are bounded for
any m,n € N with f(™) denoting the n—th derivative (this is called a Schwartz function). Suppose
further that [, |f*|dXA = 1. Show that

o JelPldr=1;
o both 22|f(x)|? and k2| f(k)|? are integrable;
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e the following uncertainty principle holds:

</Rx2|f(x)2d/\(x)) </R k:2|f(k:)2d)\(x)> > 161#.

"Why is {exp(2mikz)}, g not a basis?
Actually, a basis can be neatly constructed from Hermite polynomials and the Hamiltonian of the quantum harmonic
oscillator, as studied in Exercise 8.




e In fact for any xg, ko:

(/R(xo —x)2|f(x)2d)\(x)) </R(k:o —k:)Qf(k:)|2d)\(x)> > 1622,

Intuitively this says that for any function both f and f cannot be simultaneously localised. The
interpretation in the realm of quantum mechanics is that the position of the particle and its mo-
mentum cannot be localised simultaneously.
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Operators

Exercise 4. Consider (H, ||-||) a separable Hilbert space and T a bounded linear operator.

e Show the following inequality for f € H:
1T < NTN -

o Show that T is continuous in the sense that if a sequence (fn)n>1 converges to f w.r.t || - ||,
then also T f,, converges to T'f.

Exercise 5 (Boundedness of operators). We aim to argue that the position operator formally given
by f — xf is not bounded on L?(R):

e Find a square-integrable function f such that xf(x) is not square integrable.

e Show that the position operator is well defined for functions f that are square integrable and
such that also xf is square integrable.

e Find fori > 1 functions f; € L*(R) of unit norm with zf; € L*(R) but ||z f;||2 — oo.

Exercise 6 (Finite rank linear operators). Consider a real Hilbert space H. Let uq,...,u, € H,
V1,..., 00 € H, and define T(f) := >0 (f, u;)v;.

e Prove that T is bounded.

Now let T be of finite rank and Hermitian, i.e. (Tf,g) = (f,Tg) for any f,g € H.

e Argue that T can be diagonalized, i.e. that we can find g1,...¢gm orthonormal with m < n
and X\; € R such that if we write f =" ¢;{f,gi)g; + fo with fo orthogonal to gi,...,gm
then

T(f) = Z cidilf, 9i)gi-
=1



Non-examinable

Exercise 7 (Density of polynomials in L?). Show that the set of Legendre polynomials {Py,}, <,
defined in Ezercise 1 is an orthonormal basis of L?([—1,1]), by showing that it is spanning.
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Exercise 8. In this exercise we aim to show that the set of nice functions seen in class is dense
in L?(R). Here a function f was called nice if f € L*(R) N L*(R) with support in some [—m,m]
and whose Fourier transform satisfies | f(k)| < Ck=2 for all k > 1 is dense in L*(R).

To do this

e By using the heat equation with initial data ug(z) = f(x), show that every f € L*([-n,n])
can be arbitrarily approzimated by a function g € L*([—n,n]) whose Fourier series decays
faster Ck—2

e Using this show that every f € L?>(R) can be approzimated by a nice function.

Exercise 9 (Quantizing the harmonic oscillator). The quantum version of a one-dimensional
harmonic oscillator of angular frequency w and mass m is described by the following Hamiltonian

operator on L*(R):
N 2 32
H:= o —(P?* + w*m?X?),
where P is the momentum operator Pf = —ihf’ and X the position operator X f : x — zf(x).
This operator is not bounded on L?(R): it is only defined on the subset of functions such that x f
and f' are integrable: but for simplicity, we will see it as an operator on the Schwartz space S (see
the previous exercise sheet for a definition thereof ). The goal of this exercise is to show that the

Hamiltonian can still be diagonalized in an appropriate way.

1. For f € S, show the commutation relation [X, P|f = ihf. We formally write this identity as
[X, P] = ihid. Deduce that if one denotes

a=aX +ifP, af=aX —iBP

=\

then the Hamiltonian can be rewritten H = wh(a'a + 51 d) (understanding this equality as
tested against f € S).

with

2. Prove that H is positive semi-definite, i.e. that all its eigenvalues are non-negative. On
the other hand, observe that if ¢ is an eigenfunction of eigenvalue A for H, then a¢ is an
eigenfunction with eigenvalue X — wh for H or it is zero. Deduce that the lowest eigenvalue
for H is wh/2 and that an eigenfunction having this eigenvalue is in the kernel of a.

3. Find a function ¢qg in the kernel of a (i.e. an eigenfunction of eigenvalue zero) of norm one
and use it to construct eigenfunctions of H of higher eigenvalues.

4. Prove by induction that the n-th eigenfunction is of the type P,(x)do(x), where P, is a
polynomial of degree nE| Deduce that the basis of eigenfunctions of H is also a basis of
L2(R), i.e. it is dense in L*(R).

The n-th eigenvalue is often referred to in the physics litterature as the state having « n quanta
of excitation ». It is interesting to think about why the state with lowest energy has no quantum of
excitation, but does not have zero energy (its energy is actually wh/2).

21t can actually be computed explicitly and related to Hermite polynomials.



