
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 13
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Fourier series on larger intervals). Using Fourier series on [0, 1] and scaling / trans-
lation show that for any L ∈ N, every fL ∈ L2([−L/2, L/2]) can be written as

fL(x) = L−1
∑
n∈Z

f̂L(n/L) exp
(
2πiL−1nx

)
, (1)

where the summing is absolute for any x ∈ [−L/2, L/2] and the limit in the series is with respect
to the L2 norm, and

f̂L(n/L) :=

∫
[−L/2,L/2]

fL(x) exp
(
−2πiL−1nx

)
dλ(x). (2)

Deduce Lemma 3.22, i.e. that the set of functions: (
√

2
L sin

(
2
Lπnx

)
)n≥1, (

√
2
L cos

(
2
Lπnx

)
)n≥1

together with the constant function 1√
L

forms an orthonormal basis of L2([−L/2, L/2)).

Exercise 2 (Finishing Theorem 3.23).

1. In the set-up of Theorem 3.23, prove rigorously that the three following functions

uP (t, x) = ⟨u0, 1⟩+
∑
n≥1

exp
(
−D4π2n2t

)
(sin(2πnx)⟨u0, 2 sin(2πnx)⟩+ cos(2πnx)⟨u0, 2 cos(2πnx)⟩)

uD(t, x) =
∑
n≥1

exp
(
−Dπ2n2t

)
sin(πnx)⟨u0, 2 sin(πnx)⟩

uN (t, x) = ⟨u0, 1⟩+
∑
n≥1

exp
(
−Dπ2n2t

)
cos(πnx)⟨u0, 2 cos(2πnx)⟩

are well-defined and belong to L2([0, 1]). Furthermore, prove that for each t > 0 they are dif-
ferentiable in t and twice differentiable in x such that the derivatives are Riemann integrable.
Finally, show that they solve the heat equation.

Hint: You can use the following result for derivatives of series: let (fn)n≥1 ⊂ C1([0, 1|,R) be such
that the series

∑+∞
n=1 fn and

∑+∞
n=1 f

′
n each converge pointwise absolutely to a bounded function. Then∑+∞

n=1 fn ∈ C1([0, 1],R) with derivative
∑+∞

n=1 f
′
n.

2. Finish the proof of uniqueness in Theorem 3.23 by verifying the steps in the formal calculation.
In particular, when u(t, x) is one of the three functions above argue the following.

• By using the connection to the Riemann integral and known results in that case or
otherwise show that for all t > 0,

∂∥u(t, x)∥2

∂t
= 2

∫
[0,1]

u(t, x)
∂u(t, x)

∂t
dλ(x)

• Similarly show that the integration by parts is allowed:∫
[0,1]

u(t, x)
∂2u(t, x)

∂x2
dλ(x) = −

∫
[0,1]

(
∂u(t, x)

∂x

)2

dλ(x).



Exercise 3 (Fourier transform of Gaussian density). The aim of this exercise is to calculate the
Fourier transform of the Gaussian density exp

(
−x2/2

)
.

• By allowing yourself to change the order of differentiation / integration and using integration
by parts, find a first-order ODE satisfied by the Fourier transform

f̂(k) :=

∫
R
exp

(
−x2/2

)
exp(−2kiπx)dλ(x).

• Justify carefully the change of integration and differentiation and integration by parts in part
1.

• Solve this ODE and find thus the Fourier transform of the Gaussian density.

• Is there a function f : R → R that is equal to its Fourier transform?

Exercise 4 (Convolutions, II). Recall for g a bounded measurable function on R the convolution
product f ⋆ g on L1(R) (i.e. for f ∈ L1), defined by

(f ⋆ g)(x) :=

∫
R
f(y)g(x− y)dy.

Suppose now that g is also integrable, i.e. that g ∈ L1(R). Show that the following identity holds:

F(f ⋆ g) = F(f) · F(g),

where · stands for pointwise multiplication.

Non-examinable
Exercise 5. Prove Lemma 3.20 and thus establish that the span of (sin(2πn·), cos(2πn·), 1)n≥1 is
equal to L2([0, 1]).

You may for example try to argue again using the Féjér kernel, like we did in the case of
continuous functions.


