

Exercise sheet 12

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Markov inequality). *Let f be integrable and non-negative and let $\beta > 0$. Prove that $\lambda(\{x : f(x) > \beta\}) \leq (\int f d\lambda)/\beta$.*

Conclude that if $f, g \in L^1(E)$ satisfy $\|f - g\|_1 \leq \varepsilon$, then $\lambda(\{x : |f(x) - g(x)| > \lambda\}) \leq \varepsilon/\lambda$.

Exercise 2. Consider the form $\langle \cdot, \cdot \rangle$ on $L^2([0, 1], \mathbb{C})$ defined for $f, g \in L^2([0, 1], \mathbb{C})$ by

$$\langle f, g \rangle = \int_{[0,1]} f \bar{g} d\lambda,$$

is a (hermitian / complex) scalar product¹, turning $L^2([0, 1], \mathbb{C})$ into a complex vector space. Then, similarly to Exercise 3, sheet 3, show that $(\exp(2\pi i n \cdot))_{n \in \mathbb{Z}}$ are orthonormal functions in $L^2([0, 1])$.

Exercise 3. Show that, on an inner product space $(V, \langle \cdot, \cdot \rangle)$, the application $v \mapsto \sqrt{\langle v, v \rangle}$ always defines a norm.

Exercise 4. Let v_1, v_2, \dots be orthonormal vectors in a complete inner product space V . Show that for any $w \in V$, we have that $\hat{w} := \sum_{i \geq 1} \langle v_i, w \rangle v_i$ is well-defined and satisfies 1) $\|\hat{w}\| \leq \|w\|$ and 2) $\langle w - \hat{w}, v_i \rangle = 0$ for all $i \geq 1$.

Exercise 5.

1. Show that in any inner product space $(V, \langle \cdot, \cdot \rangle)$ with orthonormal basis $(v_i)_{i \geq 1}$, for any $w \in V$ the norm

$$\|w - \sum_{i=1}^n c_i v_i\|$$

is (strictly) minimized by $c_i = \langle v_i, w \rangle$.

2. Using this, show the second item of Lemma 3.16, i.e. that for $(V, \langle \cdot, \cdot \rangle)$ an inner product space admitting an orthonormal basis $(v_i)_{i \geq 1}$, the writing $w = \sum_{i \geq 1} a_i v_i$ of any $w \in V$ is such that each a_i is uniquely determined, and actually equal to $\langle v, v_i \rangle$.

Exercise 6. Let $l^2(\mathbb{N})$ denote the set of all real-valued sequences $\bar{c} = (c_i)_{i \geq 1}$ with $\sum_{i \geq 1} c_i^2 < \infty$. Show that equipping it with (coordinate-wise) addition and inner product $\langle \bar{a}, \bar{b} \rangle = \sum_{i \geq 1} a_i b_i$ turns it into an inner product space.

Non-examinable

Exercise 7. Finish the proof that L^1 is complete.

¹For positive-definiteness of the scalar product, one would need to identify functions in $L^2([0, 1], \mathbb{C})$ that are equal almost everywhere, like in the real case.