

Exercise sheet 10

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Some properties, revisited). *Recall that a property P is said to hold almost everywhere in \mathbb{R} , or for almost all $x \in \mathbb{R}$, if the set of $x \in \mathbb{R}$ for which P does not hold is measurable and of Lebesgue measure zero. Show the following form of linearity:*

Theorem. *Let f, g, h be measurable, integrable and suppose that $h = f + g$ holds almost everywhere. Then h is integrable and*

$$\int h d\lambda = \int f d\lambda + \int g d\lambda.$$

Show also the following stronger formulation of the monotone convergence theorem:

Theorem. *Let $(f_n)_{n \geq 1}$ be a sequence of positive and integrable functions from \mathbb{R} to \mathbb{R}^+ , that is almost everywhere increasing, i.e. such that for all $n \geq 1$, almost everywhere¹ $f_n \leq f_{n+1}$. Suppose also that there exists f measurable such that $f_n \xrightarrow[n \rightarrow \infty]{} f$ almost everywhere. Then*

$$\lim_{n \rightarrow \infty} \int f_n d\lambda = \int f d\lambda.$$

Exercise 2 (Reminder: switching sums). *Provide examples of double sequences $(a_{n,m})_{n,m \in \mathbb{N}}$ such that one of the limits below converges, but not the others; or that they all converge but to different limits:*

$$\begin{aligned} 1) \quad & \sum_{n=1}^{+\infty} \left(\sum_{m=1}^{+\infty} a_{n,m} \right) := \lim_{N \rightarrow \infty} \sum_{n=1}^N \left(\lim_{M \rightarrow \infty} \sum_{m=1}^M a_{n,m} \right) \\ 2) \quad & \sum_{m=1}^{+\infty} \left(\sum_{n=1}^{+\infty} a_{n,m} \right) := \lim_{M \rightarrow \infty} \sum_{m=1}^M \left(\lim_{N \rightarrow \infty} \sum_{n=1}^N a_{n,m} \right) \\ 3) \quad & \lim_{K \rightarrow \infty} \sum_{m=1}^K \sum_{n=1}^K a_{n,m} \end{aligned}$$

On the other hand, prove that if $(a_{n,m})_{n,m \in \mathbb{N}}$ is absolutely summable, i.e. if one of these limits above exists when replacing $a_{m,n}$ with $|a_{m,n}|$, then the others do as well and all the results are the same.

¹Think about whether it is important that it is "for all $n \geq 1$, for almost all $x \in \mathbb{R}$ $f_n(x) \leq f_{n+1}(x)$ " or "for almost all $x \in \mathbb{R}$, for all $n \geq 1$, $f_n(x) \leq f_{n+1}(x)$ "

Exercise 3. Let $f(x_1, \dots, x_n) : \mathbb{R}^n \rightarrow \mathbb{R}$ be (Borel-)measurable. Then for any $0 < m < n$ and any $(x_1, \dots, x_m) \in \mathbb{R}^m$, we have that $f_{x_1, \dots, x_m} : \mathbb{R}^{n-m} \rightarrow \mathbb{R}$, $f_{x_1, \dots, x_m}(y_1, \dots, y_{n-m}) := f(x_1, \dots, x_m, y_1, \dots, y_{n-m})$ is also measurable.

Exercise 4. Show that $f : (0, 1) \rightarrow \mathbb{R}$, $x \mapsto x^\alpha$ is integrable if and only if $\alpha > -1$. What about $f : (1, +\infty) \rightarrow \mathbb{R}$, $x \mapsto x^\alpha$? Revisit the Example 2.41 in the notes of finding a function $f : (-1, 1)^2 \rightarrow \mathbb{R}$ that is integrable, but so that there is some point $x \in (-1, 1)$ for which $f(x, \cdot) : (-1, 1) \rightarrow \mathbb{R}$ is not integrable.