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Section 0

Introduction and motivation
As motivation, let us consider the mathematical description of heat transmission on a

homogeneous circular rod: the heat equation.
The heat equation on an interval [0, 1) (describing the rod) is given by describing the

evolution of the temperature profile
∂u(t, x)

∂t
= D∆u(t, x)

together with some initial condition u0(x) = u(0, x) and the boundary condition u(t, 0) =
u(t, 1) for all t ≥ 0 to express that the ends of the rod are connected. Recall that in the 1D
case ∆f := ∂2f

∂x2 and D > 0 is the diffusion coefficient.
The revolutionary idea of Fourier was as follows. He noticed empirically that the heat

profile over time shows spatially oscillatory behaviour, and thus also motivated by the so-
lution of the wave equation using waves, he proposed to write any solution using spatially
oscillating functions like fn(x) = sin(2πx) and gn(x) = cos(2πnx). More precisely, one could
try to find a solution of the form

u(t, x) =
∑
n≥1

sn(t) sin(2πnx) +
∑
n≥0

cn(t) cos(2πnx).

But now notice that ∆fn = −4Dπ2n2fn and thus if we try a solution of the form un(x, t) =
fn(x)sn(t) with fn as above, we obtain an equation

∂sn(t)

∂t
= −4Dπ2n2sn(t).

This is a well-known ODE that is easily solved: sn(t) = exp(−4Dπ2n2t)sn(0). Similarly for
the cos terms we get cn(t) = exp(−4Dπ2n2t)cn(0).

We conclude that it would make sense to propose a solution of the form

u(t, x) =
∑
n≥1

sn(0) exp(−D4πn2t) sin(2πnx) +
∑
n≥0

cn(0) exp(−D4πn2t) cos(2πnx).

Notice that the initial condition then translates to the condition:

u0 =
∑
n≥1

sn(0) sin(2πnx) +
∑
n≥0

cn(0) cos(2πnx).

If we do find such (sn(0), cn(0))n≥0, then we may have found at least one solution to the heat
equation on the circular rod.

Now, this may sound very convincing, but on a closer look there are several questions
here:

(1) We have infinite sums - do they even converge? When do they converge and in which
sense?

(2) For which functions u0 does the above-given expansion hold? In other words for
which initial conditions can we find a solution by this method?

(3) Are such expansions unique? Are the solutions we find unique?
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(4) Can one approximate solutions? For example this is relevant when trying to numer-
ically solve the equation. This is a question about convergence - and further, how
does the notion of convergence relate to the coefficients sn, cn?

(5) More generally, how should one measure closesness of different initial conditions,
different solutions?

(6) What happens for non-circular rods, e.g. rods with endpoints in heat-baths? Or in
higher dimensions?

(7) What about more non-homogeneous case where D is no longer a constant in space?
Or when we replace ∆ with more general (linear) operators, including for example
also some outside influences?

The aim of this course is to study the right mathematical framework to ask and answer such
questions. This will bring us to study function spaces, the Lebesgue integral and spectral
theory of linear operators. To see why some of those aspects might enter let us further
consider a simplified model.

0.1 A discrete model
To understand what we may hope to achieve, let us consider the same problem of heat

diffusion but on a discretised space. For example we think that the rod instead is decomposed
of n small containers which can exchange heat between its neighbours.

The temperature profile is now given by u(x, t) : {0, 1, . . . , n} → R, with the periodicity
condition u(0, t) = u(n, t) for all t ≥ 0.

The evolution is still given by
∂u(t, x)

∂t
= K∆du(t, x)

together with some initial condition u0(x) = u(0, x), only instead of the real Laplacian,
we have the discrete Laplacian ∆df(x) := 1

dx

∑
y∼x f(y) − f(x), where y ∼ x means that

y, x are neighbours in the underlying discrete graph and dx is the number of neighbours
of the vertex x. In our concrete case we have a circular graph with n vertices and thus
∆df(x) :=

f(y)+f(z)−2f(x)
2

, where y, z denote the neighbouring vertices.
Now notice that now the problem is really a system of n coupled ordinary differential

equations of second degree and ∆d is just a linear operator on Rn → Rn. So how do we solve
it?

Let use the same steps as above but see that they have a very simple and concrete meaning
here:

• Notice that each ut can be seen as a vector in Rn with coordinates and ∆d can be
seen as a symmetric linear operator on Rn(check it!)

• As such ∆d can be diagonalized: there is an orthonormal basis ϕ1, . . . , ϕn and eigen-
values λ1, . . . , λn such that ∆dϕi = λiϕi. In particular any function u : Rn → Rn can
be uniqueley written as

∑n
i=1 ciϕi.

• But now if we write ui(t) := ci(t)ϕi, then again each ci(t) satisfies now a decoupled
ODE

∂ci(t)

∂t
= Kλisn(t)

and thus has a solution ci(0) exp(Kλit).
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• We conclude a solution by finding ci(0) by determining the unique expansion u0 :=∑n
i=1 ci(0)ϕi.

• Given the uniqueness of the expansion, this solution is also unique.
• And finally, we can easily compare solutions just using for example the Euclidean

norm. For example conclude that if the initial conditions are close, then so will be
the solutions at all times t > 0. We also know that this distance is equivalently
measured using the distances between two sets of coefficients (ci)i=1...n, (c̃i)i=1...n -
and here using the Euclidean norm instead of some other norm is important.

Hence in this set-up all works super well and would work equally well as long as we have a
symmetric linear operator L instead of ∆d.

What did we use here?
• We used the fact that Rn is finite-dimensional and thus there exist basis that give

unique expansions for each vector
• We used the fact that ∆d is linear and symmetric and by the spectral theorem can

be diagonalised and we can find a basis of eigenvectors
• We used implicitly the linearity of the equation

None of these facts are clear in our original set-up as the space of functions from [0, 1] to
R is no longer finite-dimensional!

To address those we will have to look at spaces of functions and try to first see which
such spaces have a nice structure. For example, which spaces of functions satisfy linearity?
Which can be define a norm and talk about orthonormality? For which spaces do we have
orthonormal expansions? Looking for such nice properties brings us for example to also
introduce the Lebesgue integral to construct nice basis of functions.

After that, having spent some time understanding function spaces, we briefly at the study
of linear operators on such spaces and in particular find some set-ups where there are similar
orthonormal decompositions using eigenfunctions. We then put all this together to rigorously
explain solving the inhomogeneous heat equation and other similar problems.

But this is already enough of introduction, let us get going!
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Section 1

The space of continuous functions
Let us start with maybe the most intuitive of function spaces - the space of continuous

functions. This is partly a recap, as you have been working with continuous functions in
Analysis I-III, and we are just putting things in a wider context.

To start off the functions will be taking values on closed boxes D ⊆ Rn, i.e. rectangles
[a1, b1] × · · · × [an, bn]) and taking values in R. At the end of the section we will discuss to
what extent we can (and may want to) generalize both of these choices. You may safely just
suppose D = [0, 1], as no actual extra difficulty comes from going to higher dimensions.

The set of all continuous functions from D → R will be denoted by C(D,R):

C(D,R) := {f : D → R, f continuous}.

In what follows we will try to understand the structure of this space.

1.1 Vector space structure of C(D,R)
The first observation we can make about the space C(D,R) is that it has a linear structure

like for example the vector space (Rn,+): if f, g ∈ C(D,R), then also the function h(x) :=
f(x) + g(x) is in C(D,R), as is λf(x) where λ ∈ R.

Let us quickly check this for the first statement: for every x ∈ D, by continuity of f, g
we can choose δf , δg such that if y ∈ D, ∥x − y∥ < δf then |f(x) − f(y)| ≤ ϵ

2
and if

y ∈ D, ∥x − y∥ < δg, then |g(x) − g(y)| ≤ ϵ
2
. But this means that if ∥x − y∥ < min(δf , δg),

we have that |h(x)− h(y)| < ϵ by the triangle inequality.

Exercise 1.1. Show that in fact C(D,R) has also multiplicative structure: i.e. if f, g ∈
C(D,R), then also the product h(x) := f(x)g(x) is in C(D,R). What about the function
max(f, g)?

In fact, the space C(D,R) with addition satisfies all the axioms of a vector space! Indeed,
the identity element would be just the constant zero function, the inverse element of f the
function −f and all conditions are nicely met, as you can easily and patiently check.

Exercise 1.2. Recall the axioms of a vector space and verify them in the case of (C(D,R),+).

In what follows we will often also call the vector space just C(D,R).
Now we might be also interested in summing infinitely many functions, i.e. looking at

sums
∑

n≥1 fn. But in what sense can we talk about it? More generally, given a sequence of
(gn)n≥1 in which sense can we talk about its convergence and limit?

The first idea might be to define limits pointwise: for each x ∈ D the sequence (gn(x))n≥1

is just a sequence of real numbers and thus we know what its convergence means. Thus
we may want to define the convergence of (gn)n≥1 as functions to mean the convergence of
(gn(x))n≥1 for all x ∈ D. This is called pointwise convergence and as you have already seen
it suffers a small drawback:

Exercise 1.3. For D a closed box in Rn, find a sequence of functions in C(D,R) that
converges pointwise to a function that is not continuous.
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It is a good idea to start from the case D = [0, 1] (which we discussed in class), but then
think how to do it in general.

We will look for other notions of convergence and to do this will introduce a norm on the
set C(D,R).

1.2 The uniform norm on C(D,R)
Recall that the vector space Rn comes also with several natural norms that give a notion

of length of a vector and give us a way to measure distances between vectors. It comes out
that one can also endow C(D,R) with a natural norm.

Definition 1.1 (The supremum (or uniform) norm). For f ∈ C(D,R) we define its supre-
mum (or uniform) norm ∥f∥∞ := supx∈D |f(x)|.

In this definition we use the fact that D is closed and bounded - otherwise the supremum
might not be finite.

Exercise 1.4. Find an example of D that is not closed or not bounded, and f ∈ C(D,R)
such that ∥f∥∞ as defined above is infinite.

We called the expression above a norm, but recall that a norm on a vector space has again
a precise mathematical definition and its conditions need to be checked:

Proposition 1.2. ∥f∥∞ indeed defines a norm on the vector space C(D,R).

Proof. We need to check the conditions for a norm.
(1) ∥f∥∞ ≥ 0 with equality if and only if f is equal to the constant zero function. This

is clear.
(2) ∥λf∥∞ = |λ|∥f∥∞ is also clear.
(3) Finally, we need to check the triangle inequality ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞. We have

∥f + g∥∞ = sup
x∈D

|f(x) + g(x)| ≤ sup
x∈D

(|f(x)|+ |g(x)|)

by the triangle inequality. But now

sup
x∈D

(|f(x)|+ |g(x)|) ≤ sup
x∈D

|f(x)|+ sup
x∈D

|g(x)|

and we conclude.
□

Thus (C(D,R),+, ∥ · ∥∞) is a normed vector space pretty much like Rn with any of these
norms. This gives us a way to talk about convergence that is much more natural:

Proposition 1.3. Let (fn)n≥1 be a sequence of C(D,R) functions converging to some func-
tion f : D → R w.r.t. the uniform norm. Then in fact f is continuous.

This is a restatement of a result from Analysis I which says that pointwise limits of
continuous functions are not continuous.

The proof technique is called the 3ϵ or ϵ/3 argument and you have again seen it already
in Analysis I. Let us give the proof just to understand what is now different from the earlier
situation
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Proof. It suffices to show that for every x ∈ D, we can find δ > 0 such that |f(x)−f(y)| < 3ϵ
whenever ∥x− y∥ < δ.

We can first choose a fixed n ∈ N large enough so that ∥fn − f∥∞ < ϵ, and in particular
|fn(x)− f(x)| < ϵ for every x ∈ D by the definition (these are the first two epsilons).

Further, by continuity of fn we can choose δ > 0 such that for every y ∈ D with ∥x−y∥ < δ,
we have that |fn(x) − fn(y)| < ϵ (this is the third epsilon). Putting things together using
triangle inequality we obtain:

(1.1) |f(x)− f(y)| = |f(x)− fn(x) + fn(x)− fn(y) + fn(y)− f(y)| ≤
≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| < 3ϵ.

□

Notice that for pointwise convergence the first step fails: we can not necessarily choose an
n such that supx∈D |fn(x)− f(x)| < 3ϵ.

Thus using this norm the set C(D,R) is also closed under taking convergent sequences.
In fact, it is even nicer than that and there are no gaps at all in the space, e.g. the space is
complete - a notion you have met for Rn and that we recall here.

Definition 1.4 (Completeness of a normed space). A normed space (X, ∥ · ∥) is called
complete if every Cauchy sequence (xn)n≥1 (i.e. every sequence such that for every ϵ > 0,
there is an nϵ with ∥xn − xm∥ ≤ ϵ for all n,m ≥ nϵ) converges to an element x ∈ X.

Theorem 1.5. The space (C(D,R),+, ∥ · ∥∞) is a complete normed vector space.

The idea is to us completeness of R to define a potential limiting function and then to
verify that it really is that function.

Proof. We only need to check the completeness. So let (fn)n≥1 be a Cauchy sequence in
C(D,R). As for every x ∈ D, (fn(x))n≥1 is Cauchy and R is complete, we now a limit exists
and we can denote this limit by f(x). It remains to see that fn → f in the uniform norm
and that f is continuous. The latter claim follows from the proposition above, so we need
to just prove the convergence w.r.t. the uniform norm. This is left as an exercise on the
exercise sheet.

□

Remark 1.6. Mathematicians call any normed vector space that is complete a Banach space.
Such spaces are quite important in setting up quantum field theory.

The completeness of the space has important application, one of them is finding solutions to
ODEs via approximation. The tool used there is the Banach contraction mapping theorem
that you have already met in Analysis II according to the course sheets and that is just
recalled here:

Theorem 1.7 (Banach contraction mapping theorem). Let F : C(D,R) → C(D,R) be
contractive w.r.t. the uniform norm: ∥F (f)−F (g)∥∞ < C∥f −g∥∞ with C < 1. Then there
is a unique solution to F (f) = f that can be obtained from the limit limn→∞ F (n)(f).
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1.3 Fourier series for continuous functions
The expansion of a function f on [0, 1] to a series of the form

(1.2) f(x) =
∑
n≥1

sn sin(2πnx) +
∑
n≥0

cn cos(2πnx)

is called the Fourier expansion or Fourier series. We saw in the introduction that it could
be quite useful, but we didn’t see any results on its existence / uniqueness. So let us look at
this in the context of continuous functions f now.

In fact we will see that these questions resolve themselves very smoothly once we find the
"right functional space", but it is instructive to consider the questions already.

The first question is how should we go about finding the coefficients sn, cn? There the key
is the following lemma.

Lemma 1.8. The following orthogonality relations hold for integers m,n ≥ 0:
1. Cosine-cosine Orthogonality:

∫ 1

0

cos(2πnx) cos(2πmx) dx =


1, if n = m = 0,

1
2
, if n = m ̸= 0,

0, if n ̸= m.

2. Sine-Sine Orthogonality:

∫ 1

0

sin(2πnx) sin(2πmx) dx =


0, if n = 0 or m = 0,

1
2
, if n = m ̸= 0,

0, if n ̸= m.

3. Sine-Cosine Orthogonality:∫ 1

0

sin(2πnx) cos(2πmx) dx = 0 ∀n,m.

Proof. The proof is a simple consequence of trigonometric identities and their integrals and
is left for the exercise sheet. □

The consequence of this observation is that if we expect the representation (1.2) to hold
in any nice sense, then the coefficients sn, cn should be given by:

• Cosine Coefficients cn:

cn = 2

∫ 1

0

f(x) cos(2πnx) dx, for n ≥ 1.

For the constant term c0, we have:

c0 =

∫ 1

0

f(x) dx.

• Sine Coefficients sn:

sn = 2

∫ 1

0

f(x) sin(2πnx) dx, for n ≥ 1.
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Further notice that if we want it to hold at the endpoints, then we better have f(0) = f(1)
as this also holds for every function in the series.

Maybe a bit surprisingly both the existence and uniqueness are really not clear even for
continuous functions!

Indeed, the understanding of counterexamples has evolved with time. The first observation
is as follows

• There exists a continuous function f satisfying f(0) = f(1) whose Fourier series
converges pointwise everywhere but does not converge uniformly.

It is not easy to come up with such a function but once given, it is easy to check (probably
on the exercise sheet).

A more stunning claim comes from the second half of 19th century from Du Bois-Reymond:
• There exist continuous functions f ∈ C([0, 1],R) with f(0) = f(1) such that the

Fourier series diverges at a point x ∈ [0, 1].
This was then extended by several people, including Kolmogorov to show that

• There are continuous functions f ∈ C([0, 1],R) with f(0) = f(1) where the Fourier
series diverges at infinitely many or even dense set of points.

Finally, Katznelson showed in 1970s that in fact
• For every continuous function f and every ϵ > 0, there is some continuous function
g with ∥g − f∥ < ϵ and the Fourier series of g diverges at some point.

This means that these unpleasant functions are really everywhere!
There are two ways out of this. First, one could just try to restrict the set of functions

that one is considering. Second, one could try to weaken further the notion of convergence
and maybe give up having pointwise convergence. We will mainly concentrate on the second
direction, as the first is too restrictive. But to finish this section let us still show how the
first direction can give us some nice results:

Proposition 1.9. Let f ∈ C2([0, 1]) be twice continuously differentiable and satisfying
f(0) = f(1) and f ′(0) = f ′(1). Then its Fourier series

f(x) = lim
N→∞

∑
n≤N

(sn sin(2πnx) + cn cos(2πnx),

converges w.r.t. ∥ · ∥∞.

Remark 1.10. In fact the result holds under much less stringent conditions, e.g. when the
functions are so-called Holder continuous, i.e. satisfying |f(x) − f(y)| < |x − y|a for some
a > 0. Just the proof then needs a bit more care and is out of the scope for us.

The key ingredient is the following lemma, which we observed when guessing the solution
to the heat equation and that really explains why Fourier series are so useful:

Lemma 1.11. Suppose that f ∈ C([0, 1],R) is k times continuously differentiable and sat-
isfies f j(0) = f j(1) for all j = 0 . . . k− 1 1 Then there is some C > 0 such that for all n ≥ 1
|cn| ≤ Cn−k and |sn| ≤ Cn−k.

The full proof is on the exercise sheet, but let’s see the case k = 1.

1Here by f j(x) we mean the j − th derivative of f at x, the 0−th derivative being the function itself.
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• We have by integration by parts that∫
[0,1]

sin(2πnx)f(x)dx =
1

2πn

∫
[0,1]

cos(2πnx)f ′(x) ≤ 1

2πn
∥f ′∥∞.

Let us proceed to the proof of the proposition.

Proof of Proposition 1.9. By the lemma we have that |cn|, |sn| ≤ Cn−2. Hence the Fourier
series is Cauchy in the uniform norm. Indeed, if we denote by SM the partial series

SM(f) =
N∑

n≥1

(sn sin(2πnx) + cn cos(2πnx)),

then by the triangle inequality for all M > N :

∥SM(f)− SN(f)∥∞ ≤
∑

N<n≤M

(∥sn sin(2πnx)∥∞ + ∥cn cos(2πnx)∥∞),

but ∥ sin(2πnx)∥∞ = ∥ cos(2πnx)∥∞ = 1 and hence we can bound the sum by

2C
∑

N<n≤M

n−2 ≤ 2CN−1,

which goes to 0 as N → ∞. Hence as C([0, 1],R) is complete for the uniform norm, we
obtain the convergence to some continuous function g.

To conclude the theorem, we still need to argue that f = g. To do this we observe first
(this is on the exercise sheet) that for all n ≥ 0∫ 1

0

(f − g) sin(2πnx)dx =

∫ 1

0

(f − g) cos(2πnx)dx = 0.

It then follows from the next proposition that g = f . □

Proposition 1.12. Suppose f is a continuous function on [0, 1]. Then sn = 0, cn = 0 for
all n ≥ 0 if and only if f(x) = 0 for all x ∈ [0, 1].

In particular, if the Fourier series of a function converges uniformly, then it is equal to
the function itself and each function has at most one expansion in Fourier series.

Before proceeding further, you should pause and think why this is not immediate.
In fact proving this proposition giving the means we have is not completely straightforward.

We will later see how it becomes slick and swift once we have found the right functional space
for the Fourier series, where each function has a unique series converging exactly w.r.t. to
the norm of the space.

We will prove here the proposition modulo a key construction, that is given on the example
sheet.

Proof. We want to show that sn = 0, cn = 0 for all n ≥ 0 gives f = 0. We will argue by
contradiction and show that if for some x0 ∈ (0, 1) it holds that f(x0) ̸= 0, then there is a
contradiction with the hypothesis of the proposition.

The idea is to construct an approximations Tm,x0 of the identity, or if you wish an approx-
imations of the Dirac delta function δx0 using finite sums of sines and cosines and to argue
that 1) on the one hand

∫ 1

0
f(x)Tm,x0dx ≈ f(x0) for m large and 2) on the other hand by
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hypothesis
∫ 1

0
f(x)Tm,x0dx = 0 for all m ≥ 1. The construction is recorded in the following

lemma.

Lemma 1.13. For each x0 ∈ (0, 1) one can construct a series of functions Tm,x0(x) as a
linear sum of sin(2πxn), cos(2πxm) with m,n ≤ N , i.e. by setting

Tm,x0(x) =
∑
n≤N

(an,x0 sin(2πnx) + bn,x0 cos(2πnx)

such that the following points hold.
(1) For every m ≥ 1, x ∈ [0, 1] we have Tm,x0(x) ≥ 0

(2) For every m ≥ 1 we have
∫ 1

0
Tm,x0(x) = 1.

(3) For all δ > 0:
∫ 1

0
1|x−x0|>δTm,x0(x)dx → 0 as N → ∞.

Given such a sequence of (Tm,x0)m≥1, we obtain the contradiction as follows.
On the one hand by the hypothesis for all m ≥ 1 we have∫ 1

0

f(x)Tm,x0(x)dx =
∑
n≤m

(
an,x0

∫ 1

0

f(x) sin(2πnx)dx+ bn,x0

∫ 1

0

f(x) cos(2πnx)dx

)
= 0.

On the other hand suppose f(x0) ̸= 0, say WLOG f(x0) > 0. Then there is some δ > 0 such
that f(x) > f(x0)/2 in some region [−δ + x0, x0 + δ]. Write∫ 1

0

f(x)Tm,x0(x)dx =

∫ δ+x0

−δ+x0

f(x)Tm,x0dx+

∫ 1

0

1|x−x0|>δf(x)Tm,x0dx.

We can bound the second term in absolute value by

∥f∥∞
∫ ∫ 1

0

1|x−x0|>δTm,x0(x)dx,

which goes to zero by the lemma. The first term however can be bounded from below by
f(x0)/2

∫ δ+x0

−δ+x0
Tm,x0(x)dx. Combining the conditions of Lemma, we see that for m large

enough this integral is larger than say 1/2 and thus the whole term is larger than f(x0)/4

for m large enough. And in particular we conclude that
∫ 1

0
f(x)Tm,x0(x)dx ̸= 0 for m large

enough! This gives a contradiction. But our assumption was that f(x0) ̸= 0, so this cannot
hold and we conclude the proposition. □

This was in the end not hard, but quite a fiddly proof and moreover also the existence of
Fourier series for continuous functions had several delicate points. We would prefer if the
existence and uniqueness would be simple consequences of a good set-up, like in the case of
Rn. With this in mind, we will go towards larger function spaces.
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Section 2

Lebesgue measure and Lebesgue integral on Rn

We will continue our aim of constructing a convenient / appropriate function space for
the Fourier expansions. Motivated by the finite-dimensional example, we would want to
construct a space of functions with an inner product of the type

∫
f(x)g(x)dx and then see

the Fourier series as an orthogonormal basis of this space.
To do this, we will have to make a detour and renew our understanding of two intimately

linked notions: 1) the integral of a function 2) the size / measure of subsets of Rn.
But let us start off by discussing why the Riemann integral does not suffice.

2.1 An issue with the Riemann integral
One way to define the Riemann integral of a function f : [0, 1] → R is as follows.
(1) We subdivide [0, 1] into 2n equal disjoint intervals Dn,i = [i2−n, (i + 1)2−n] each of

size 2−n;
(2) We call a function Riemann integrable if Un := 2−n

∑2n

i=0 supx∈Dn,i
f(x) (which is

decreasing) and Ln := 2−n
∑2n

i=0 infx∈Dn,i
f(x) (which is increasing) both converge to

the same limit.
(3) We define the Riemann integral of f , that from now on we denote for clarity by

®
∫ 1

0
f(x)dx to be equal to this limit.

It is easy to see that Riemann integral satisfies some nice properties:

Exercise 2.1. Show that the Riemann integral satisfies some desirable properties:
• All continuous functions on [0, 1] are Riemann integrable
• Every function f that changes value finitely many times is Riemann integrable
• Linearity: If f, g are Riemann integrable on [0, 1], then so is their sum and the integral

is equal to the sums.

However, the Riemann integrability does not behave well under limits or infinite sums.
Indeed, consider a enumeration q1, q2, . . . of all rational numbers in [0, 1] (can you give a
concrete one?) and define fn(x) = 1 if x ∈ {q1, . . . , qn} and fn(x) = 0 otherwise. Then each
fn is Riemann-integrable (with ®

∫ 1

0
fn(x) = 0) by the exercise above, but the limit is not

Riemann integrable as in every interval the sup is equal to 1 and inf is equal to 0 and thus
Un = 1 for all n ≥ 1 and Ln = 0 for all n ≥ 1.

We will see how this is remedied with the notion of Lebesgue integral.

2.2 The Lebesgue measure
We start however by revisiting the notion of size / volume / measure of subsets of Rn.

This is directly related to the integral as even in the case of Riemann integral, if the set
A ⊆ R is nice enough then

∫
R 1A(x)dx = size(A). What should nice enough be is one of the

main questions.
As said, the Lebesgue measure on R generalizes the notion of length and assigns each

permissible subset of R a size. More formally, the Lebesgue measure is a function µ : F →
12



[0,∞), where F is some collection of subsets of R satisfying some collection of properties.
What should such natural properties be?

(1) First, in the case of R, we would like the length / measure of each interval [a, b],
(a, b), [a, b) or (a, b] to be just b− a. In particular each point {x} should have length
0

(2) We certainly would want also L(∅) = 0 and L(A) ≥ 0 for all A ≥ 0.
(3) Second, we would like measure to satisfy some additivity properties. For example

the size of the union of two disjoint sets should clearly be just the sum of their sizes:
i.e. in symbols L(A1 ∪ A2) = L(A1) + L(A2). By induction this should hold for any
finite number of disjoint intervals: L(A1 ∪ · · · ∪ An) = L(A1) + . . . L(An).

(4) Further, it might make sense for this additivity to hold also if we have countably
many disjoint sets? But attention! We cannot ask it for all infinite unions: indeed,
for example [0, 1] can be seen as a disjoint union of all points {x} in [0, 1], but the
sum of their lengths would be 0 whereas the measure of [0, 1] has to be clearly 1!

Observe that only the first property has something specific to do with R, all the others are
of very abstract nature. A big breakthrough by Lebesgue was to understand that combining
these properties gives the right mathematical framework to talk of size / measure on any
set! This is encapsulated in the following general definition:

Definition 2.1 (Measure space, Borel 1898, Lebesgue 1901-1903). A measure space is a
triple (Ω,F , µ), where

• Ω is a set, called the sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2, · · · ∈ F , then also

⋃
n≥1An ∈ F .

F is called a σ-algebra and any A ∈ F is called a measurable set.
• And finally, we have a function µ : F → [0,∞] satisfying µ(∅) = 0 and countable

additivity for disjoint sets: if A1, A2, · · · ∈ F are pairwise disjoint,

µ(
⋃
n≥1

An) =
∑
n≥1

µ(An).

This function µ is called a measure. If µ(Ω) < ∞, we call µ a finite measure.

Geometrically we interpret:
• Ω as our space of points
• F as the collection of subsets for which our notion of volume can be defined
• µ our notion of volume: it gives each measurable set its volume.

We can define a measure on any set of points, finite or infinite. Some telling examples are:

Example 2.2 (Counting measure). On any set Ω one can define the counting measure µc:
we set F := P(Ω) (the set of all subsets), and µc({ω}) := 1 for any ω ∈ Ω. For any finite
set E, µc(E) gives its number of elements. If E is infinite, then so is µc(E). In particular,
if Ω is an infinite set, then µc(Ω) = ∞, so this is a measure, but not a finite measure.

Notice that on a space with finite number of points it gives the natural uniform measure -
each point is treated in the same way. However, it is not the natural measure of size on say

13



R as the size of say [0, 1] would be infinite. The natural uniform measure on [0, 1] or R will
be called the Lebesgue measure, but its existence is already mathematically non-trivial - we
will come to this in a bit.

Example 2.3 (Delta measure). The (Dirac) delta function that you have seen mentioned in
the courses, is actually a measure, not a function and can be defined on any space and for
any σ−algebra that contains points. On any set Ω one can define the Dirac delta measure
µx at the point x as follows: suppose F contains points and we set µx({x}) = 1 and more
generally µx(F ) = 1 if x ∈ F and µx(F ) = 0 otherwise, for every F ∈ F .

We will come back to this and its connection to the ’Dirac delta function’ you have seen
before later on.

Finally, a both nice and important aspect of the framework of measure spaces is that it also
gives the mathematical basis for probability theory - this was observed by A. Kolmogorov
some 30 years after the introduction of measure spaces! A probability space is a measure
space with total mass equal to 1, i.e. µ(Ω) = 1. In that case we often use the notation of P
for the measure µ. The framework of probability is used for observing / measuring what’s
going on in the world:

• Ω as the space of all microstates / all possible outcomes; e.g. the states of the
atmosphere

• F is the collection of observable events / outcomes: i.e. subsets of microstates, whose
happening or not happening can be observed; for example we can maybe only measure
macroscopic parameters like temperature, or the amount of rain over an hour

• The measure P will assign a number in [0, 1], called probability, to each observable
event. Those events that surely happen, get probability 1.

Example 2.4. The probability space for describing a fair coin toss would be

({H,T}, {∅, {H}, {T}, {H,T}},P),
where P({H}) = P({F}) = 1/2.

The probability space for describing a fair dice would be

({1, 2, 3, 4, 5, 6},P({1, 2, 3, 4, 5, 6}),P),
where we define P(F ) = |F |/6. If instead we paint all the faces 1,2,3,4,5 black so they become
indistinguishable, we can modify our model by taking F = {∅, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5}, {6}}
and using the probability measure P̃ defined only on these subsets, still with the same formula
as above.

Exercise 2.2. Find a measure space to describe two unrelated fair coin tosses. What as-
sumptions are you making in giving the description? Define a sigma-algebra suitable for
studying the situation where one can only ask if the two coins have the same side up, or
different sides up.

Finally, as mentioned not all natural measure spaces are simple to define. We already
mentioned that the natural "uniform" measure on [0, 1] or R needs some work. But one
would actually also want to define natural measures on more complicated structures like the
space of all continuous functions - indeed, this gives one way to formalize path-integrals in
quantum mechanics. This was achieved by Wiener in the beginning of 20th century; the
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similar task for string theory, i.e. defining probability measures over surfaces with different
metric structures has been partially resolved only in the recent years.

2.2.1 Basic properties of measure spaces
Before discussing the Lebesgue measure let us play aroud a bit with the notion of a measure

space.
First, the following lemma helps to see which other sets would be measurable:

Lemma 2.5 (Constructing more measurable sets). Consider a set Ω with a σ-algebra F .
(1) If A1, A2, . . . ,∈ F , then also

⋂
n≥1An ∈ F .

(2) Then also Ω ∈ F and if A,B ∈ F , then also A \B ∈ F .
(3) For any n ≥ 1, if A1, . . . , An ∈ F , then also A1∪· · ·∪An ∈ F and A1∩· · ·∩An ∈ F .

Proof of Lemma 2.5. By de Morgan’s laws for any sets (Ai)i∈I , we have that⋂
i∈I

Ai = (
⋃
i∈I

Ac
i)

c.

Property (1) follows from this, as if A1, A2, · · · ∈ F , then by the definition of a σ-algebra
also Ac

1, A
c
2, · · · ∈ F and hence

(
⋃
i≥1

Ac
i)

c ∈ F .

For (3), again by de Morgan laws, it suffices to show that A1∪· · ·∪An ∈ F . But this follows
from the definition of a σ-algebra, as A1 ∪ · · · ∪ An =

⋃
i≥1Ai with Ak = ∅ for k ≥ n + 1.

Finally, for (2) we can just write Ω = ∅c.
The fact that A \B ∈ F is left as an exercise. □

The statements are also very intuitive at least in the context of probability: e.g. the first
one says that if we can observe if some events A1, A2, . . . happen, then we can observe if
they all happen at once; the second property says that if two events can be observed, then
we can always also observe if one of them happened but not the other one.

In a similar vein, the basic conditions on the measure, give rise to several natural properties
too:

Proposition 2.6 (Basic properties of a measure and a probability measure). Consider a
measure space (Ω,F , µ). Let A1, A2, · · · ∈ F . Then

(1) For any n ≥ 1, and A1, . . . , An disjoint, we have finite additivity

µ(A1) + · · ·+ µ(An) = µ(A1 ∪ · · · ∪ An).

In particular if A1 ⊆ A2 then µ(A1) ≤ µ(A2).
(2) If for all n ≥ 1, we have An ⊆ An+1, then as n → ∞, it holds that µ(An) →

µ(
⋃

k≥1Ak).
(3) We have countable subadditivity (also called the union bound): µ(

⋃
n≥1An) ≤

∑
n≥1 µ(An).

If in fact µ(Ω) is finite (e.g. a probability measure), we further also have the following
properties:

(4) For any A ∈ F , we have that µ(Ac) = µ(Ω)− µ(A).
(5) If for all n ≥ 1, we have An ⊇ An+1, then as n → ∞, it holds that µ(An) →

µ(
⋂

k≥1Ak).
15



Again, please do check that all these properties also make sense intuitively!

Proof of Proposition 2.6. Finite additivity follows from countable additivity by taking Ak =
∅ for k ≥ n+ 1.

(2), (3) are left as exercises.
For (4), we just notice that A and Ac are disjoint and A ∪ Ac = Ω. Thus by disjoint

additivity P(A) + P(Ac) = 1. Finally, for (5), define Bn = Ac
n. Then P(An) = P(Bc

n) =
1 − P(Bn). Similarly P(

⋂
k≥1Ak) = 1 − P(

⋃
k≥1Bk). Thus the result follows from (2). The

rest is left as an exercise □

2.2.2 The Lebesgue measure
The Lebesgue measure is the right notion uniform measure on the spaces Rn (or say a unit

cube [0, 1]n or a ball). This measure is called uniform because it is isotropic, i.e. it treats all
the points in the set equally. More formally, it is up to a multiplicative constant the measure
µ such that µ(A) = µ(λ+A), where A is some measurable set and λ+A := {a+λ : a ∈ A}.

To define the uniform measure on Rn, we should first pick the right σ−algebra. First, it
certainly has to be big enough to contain at least all the boxes. Now, it is an interesting fact
that in the standard axiomatization of mathematics 2 one cannot take the σ−-algebra to be
equal to P(Rn) - otherwise one runs into contradictions as explained in the non-examinable
part of the example sheet. However, there are some σ−algebras that are big enough to
contain all sets we might be interested in and small enough at the same time to create no
contradiction.

Definition 2.7 (Borel σ-algebra). The Borel σ-algebra FB on Rn is defined as the smallest
σ−algebra containing all boxes, i.e. all sets of the form Πn

i=1[ai, bi] with real numbers ai < bi.

This definition hides a claim: the fact that such a smallest σ−algebra exists. However,
it is a simple but not that illuminating exercise to show that an arbitrary intersection of
σ−algebras is a σ−algebra and thus the smallest has a well-defined meaning. It is maybe
more interesting to see what it contains, i.e. what we can measure 3:

Example 2.8. The Borel σ−algebra contains for example all points, i.e. sets of the form
{x}: indeed, we can write

{x} =
⋂
m≥1

({x}+ [−m−1,m−1]n).

Exercise 2.3. Show that the Borel σ−algebra on Rn also contains all products of half-lines
Πn

i=1(−∞, ai], all open balls B(x, r) and in fact all open sets of Rn

The main theorem of this section is then the following result, that we assume without
proof:

Theorem 2.9 (Existence and uniqueness of Lebesgue measure). There is a unique measure
λ defined on (Rn,FB) such that the measure of each box Πn

i=1[ai, bi] is given by Πn
i=1(bi − ai)

2Meaning that we assume the axiom of choice
3It is maybe as interesting to see that there are sets in the power-set of Rn that do not belong to the

Borel σ−algebra. However, describing them explicitly is not that easy - if interested, see the for fun section
on the example sheet.
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Some other nice properties of the Lebesgue measure follow from this theorem:
• It is translation invariant: for every set A ∈ FB, if we denote by A + b the set
{a + b : a ∈ A}, then the Lebesgue measure λ satisfies λ(A) = λ(A + b). Indeed,
denote by λ̃(A) := λ(A + b). This defines another measure on (Rn,FB) such that
λ̃(box) equals the volume of the box. Thus by uniqueness part of the theorem we
obtain λ̃ = λ and hence λ(A+ b) = λ(A) for all Borel sets A.

• It can be also proved that the Lebesgue measure is rotation invariant: for every set
A ∈ FB, if we denote by R(A) the set rotated by the rotation matrix R, then the
Lebesgue measure λ satisfies λ(A) = λ(R(A)).

Maybe somewhat surprisingly the proof of this natural theorem is not immediate. The
problem is the following: it is simple to assign measure to each box, or each finite union of
disjoint boxes etc...however, the Borel σ-algebra is much richer than that. Indeed, there are
sets in the Borel σ-algebra that one cannot obtain in a finite number of steps by starting with
boxes and taking iteratively unions, intersections and complements in any order. Hence the
fact that one can assign a measure to all Borel sets in a way that the axioms are satisfied and
boxes have the right size is not immediate. Also the statement of uniqueness is non-evident
for the same reason - why should equality for all boxes imply it for all Borel sets?

The proof goes beyond the scope of this course, but here is the sketch for one of the
possible approaches for those interested (not examinable).

⋆ Start of non-examinable section ⋆

For any rectangle R = Πn
i=1[ai, bi], let’s denote by |R| its natural volume Πn

i=1(bi − ai).
(1) First, we define for any set A ⊆ Rd a notion of size called the exterior measure:

m∗(E) := inf
∑∞

i=1 |Ri|, where the infimum is over all coverings of the set E using
rectangles - this gives a certain approximation of size from above.

Notice that from this definition it is not immediate that even m∗(R) = |R|, but
that can be argued for both closed and open rectangles. Also, it is important that
we allow for countably many rectangles - see exercise sheet.

(2) It comes out that showing all the axioms of the measure for all subsets of Rd is
impossible 4. So now comes the key idea of choosing a subclass of sets which is large
enough to contain Borel sets, but small enough to be able to make everything work:
we call a set measurable if for every ϵ > 0, there is some countable collection of
rectangles (Ri)i≥1 such that E ⊆

⋃
i≥1Ri and m∗(E△(

⋃
i≥1Ri)) < ϵ. This means

that our earlier approximation from above can be chosen to fit well.
(3) It then remains to argue that these sets actually form a σ−algebra and that all axioms

are satisfied for ((Rd,FL,m
∗). In fact they form a σ−algebra, called the Lebesgue

σ−algebra FL, that is even larger than FB!
This final step doesn’t require any big theorems or inputs, but it does require quite

a bit of care in setting up the order of the argument. It is then an easy conclusion
that FB ⊆ FL, as FB can be generated from just rectangles and we can conclude.

⋆ End of non-examinable section ⋆

4as long as one assumes the Axiom of Choice
17



Example 2.10. The Lebesgue measure of a point is zero: indeed for every ϵ > 0, we have
that λ({x}) ≤ λ({x}+ [−ϵ, ϵ]n) = (2ϵ)n, which can be made arbitrarily small.

Hence also the measure of all rational numbers is zero: we have by countably additivity
µ(Q) =

∑
q∈Q µ({q}) = 0.

Exercise 2.4. Show that the Lebesgue measure of Rn is infinite and that the Lebesgue mea-
sure of the line segment [0, 1]× {0} · · · × {0} ⊆ Rn is zero.

Now consider the Lebesgue measure on R. Prove that the measure of irrational numbers
contained in [0, R] is equal to R; prove also that the Lebesgue measure of the Cantor set is
zero.

2.3 Lebesgue integral
Recall our grand plan was to construct a function space which has a nice inner product of

the form
∫
f(x)g(x)dx and all the nice properties of a function space like linearity, closedness

under limits and completeness. With Riemann integral this would never be possible, as we
saw it does not behave that well under taking limits. Hence let us see another notion of
integral, called the Lebesgue integral. To start off, let’s see that defining a measure always
gives us a natural space of functions and those will be the candidates for defining the integral
for.

2.3.1 Measurable functions
Each measure space comes with a class of natural functions, called measurable functions.

These will also form the class of functions for which we aim to define the Lebesgue integral.
We will constrain ourselves to working with functions from Rn → R, although the notion

of a "measurable" function is quite a bit larger, applying to maps between any two sets
together with σ−algebras; in our case these would be the pairs (Rn,FB) and (R,FB), where
in both cases we consider the Borel σ−algebra.

The simplest measurable functions (on (Rn,FB)) are those given by characteristic func-
tions 1E for some Borel-measurable set E ∈ FB, i.e. functions that tell us whether x is in a
set - then 1E(x) = 1 - or not, in which case 1E(x) = 0. Their countable linear combinations
are called simple functions:
Definition 2.11 (Simple functions). Let E1, E2, . . . be disjoint Borel sets in Rn and c1, c2, . . .
real numbers. Then a function of the form f(x) =

∑
i≥1 ci1x∈Ei

is called a simple function.

We can then define
Definition 2.12 (Measurable function). We call a function f : Rn → R measurable if it is
a pointwise limit of simple functions.

This definition is natural, however it is not so easy to work with. So let us start by proving
an equivalence with another rather nice definition.
Proposition 2.13. A function f : Rn → R is measurable if and only if for every a < b the
preimage f−1([a, b))) is Borel measurable.

We will sometimes call this condition the preimage condition.
The proof consists of two lemmas, one for each direction both teaching us something about

measurable functions:
18



Lemma 2.14. Suppose that the sequence of functions (fi)i≥1 from Rn to R is such that for
every a < b the preimage f−1

i ([a, b))) is Borel measurable. Suppose also that fi converge
pointwise to f .

Then f also satisfies the same property, i.e. the preimages f−1([a, b)) are Borel measurable.

Lemma 2.15. Suppose f is such that for every a < b the preimage f−1([a, b))) is Borel
measurable. Then f is a pointwise limit of simple functions fn.

Further, a sequence can be chosen to be pointwise increasing and to converge uniformly.

The proof of proposition follows from these two lemmas.

Proof of Proposition. Lemma 2.15 tells us directly that if f satisfies the preimage condition,
then it is measurable.

Let us now show conversely that each measurable function satisfies the preimage condition.
Using Lemma 2.14 and the definition of measurable functions it satisfies to show that each
simple function satisfies the preimage property.

So, consider a simple function g =
∑

i ci1Ei
with ci ∈ R and Ei ∈ FB. Then f−1([a, b)) =

∪i:ci∈[a,b)]Ei is a countable union of Borel measurable sets and thus Borel measurable as
desired, finishing the proof. □

Let us now prove the two lemmas.

Proof of Lemma 2.14. Our aim is to show that f−1([a, b)) is a Borel set and this follows
from:

f−1([a, b)) =
⋂
j≥1

⋃
k≥1

⋃
n≥1

⋂
m≥n

f−1
m ((a− 1/j, b− 1/k)).

The verification of this equality is on the exercise sheet
□

Proof of Lemma 2.15. Consider fn : Rn → R defined by
fn(x) := 2−n⌊2nf(x)⌋.

Each fn is a simple function as we can write

fn(x) =
∑
k∈Z

k2−n1{f(x)∈[k2−n,(k+1)2−n)}

and by assumption the sets {f(x) ∈ [k2−n, (k + 1)2−n)} are measurable. Further we notice
that

fn(x) = 2−n⌊2nf(x)⌋ = 2−m2m−n⌊2−nf(x)⌋ ≥ 2−m⌊2−f(x)⌋ = fm(x)

proving monotonicity. As also
fn(x) ≥ 2−n2n(f(x)− 2−n) = f(x)− 2−n

and thus ∥f(x)− fn(x)∥ ≤ 2−n and we obtain uniform convergence. □

Several nice properties of the space of measurable functions can be now verified. First,
the space of measurable functions again has a linear structure:

Lemma 2.16. If f, g are measurable, then so are λf for λ ∈ R and f + g.

Proof. This is on the exercise sheet. □

Second, the space of measurable functions is closed under pointwise limits.
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Lemma 2.17. Let (fn)n≥1 be a sequence of measurable functions converging pointwise to a
function f . Then f is also measurable.

Motice that this lemma follows directly from Lemma 2.14 under the equivalence of defini-
tions given by Proposition 2.13. Finally, the space contains all continuous functions.

Lemma 2.18. Let f : Rn → R be continuous, then f is also measurable.

Proof. This is also on the exercise sheet
□

To finish this section we remark again that in everything we did above we didn’t use at all
that the domain of our functions was Rn! We could have equally well worked on any other
measure space, laying groundwork for defining integration in a very large generality!

2.3.2 The idea behind Lebesgue integral
Recall that if a function f : R → R is Riemann-integrable then we can calculate its

Riemann integral on [0, 1] using the following approximation procedure:
• we subdivide [0, 1] into 2n equal disjoint intervals Di each of size 2−n;
• we calculate the approximated integral 2−n

∑2n−1

i=0 f(i2−n);
• we take the limit n → ∞.

To calculate the Lebesgue integral (that we will shortly define) for a Lebesgue-integrable
function on [0, 1] we can also proceed via an approximation, but rather in the image of the
function:

• we take the dyadic approximations from the previous subsection: fn := 2−n⌊2nf(x)⌋;
• we calculate

∑
i∈Z i2

−nλ(x ∈ [0, 1] : fn(x) = i2−n);
• and take the limit n → ∞.

So in some sense the difference w.r.t. to the Riemann integral is that we group the values not
according to the vicinity in the domain [0, 1], but rather based on the vicinity of the function
values. So if you wish, you can think that the Lebesgue integral treats each function in a
more personal way, the approximations are based on its behaviour.

Let us now move to the formal definition of the Lebesgue integral, which we do using a
slightly wider class of approximations.

2.3.3 Definition of the Lebesgue integral via simple functions
There are several ways to define the Riemann integral.5 Similarly, there are multiple

equivalent approaches to constructing the Lebesgue integral (e.g., Stein–Shakarchi, Kol-
mogorov–Fomin, and Boccarini all present slightly different versions). Last year we picked a
definition via dyadic approximations that is maybe simplest to state and intuitive to grasp;
this year we go for a definition that is simplest to work with mathematically.

5For instance, one can define it using upper and lower (Darboux) sums with arbitrary partitions or
just dyadic ones; or even avoid these altogether and define integrability via convergence of approximating
Riemann sums in a suitable sense.

20



Although the definition we will give works for measurable functions on any measure space
(Ω,F , µ), we will focus on the case (Ω,F , µ) = (Rn,FB, λ), i.e., Rn with its Borel sigma-
algebra and Lebesgue measure.

For simple functions, i.e. step functions of the form f(x) =
∑

i ci1Ei
, with Ei are disjoint

Borel sets and ci ∈ R the Lebesgue integral is simple to define:

Lemma 2.19 (Lebesgue integral for simple functions). Let f(x) be a simple function given
e.g. by f(x) =

∑
i ci1Ei

. We call f Lebesgue integrable if
∑

i |ci|λ(Ei) < ∞ and define its
Lebesgue integral by ∫

Rn

f(x)λ(dx) :=
∑
i

ciλ(Ei).

Further, being integrable and the value of the integral are independent of the chosen repre-
sentation of f as a simple function.

This is called a lemma and not a definition because of the final part. For example the
function f(x) = 1[0,1] could be equivalently written as f(x) = 1[0,1/2) + 1[1/2,1] or even as an
infinite sum f(x) =

∑
i 1Ei

where (Ei)i≥1 is any partition of [0, 1] into disjoint Borel sets
(can you find one?). Thus, one does need to verify that integrability and the integral do not
depend on the choice of the representation. Luckily, this is a simple check.

Proof. Denote by S the set the image of f , i.e. the set {f(x) : x ∈ Rn}. Notice that for a
simple function it is always countable.

Then observe that for every s ∈ S, we can define Fs := {x : f(x) = s} that depend only
on the function f . Further, for any representation f(x) =

∑
i ci1Ei

we have Fs = ∪i:ci=sEi

and in particular all Fs are Borel and disjoint for different s ∈ S.
As

∑
i |ci|λ(Ei) =

∑
s∈S |s|λ(Fs) and

∑
i ciλ(Ei) =

∑
s∈S sλ(Fs) we conclude that both

integrability and the integral are well-defined and independent of the representation. □

Example 2.20. For example, in contrast to the Riemann integral f(x) = 1Q(x) is integrable
with integral equal to 0. Similarly, and f(x) = 1[0,1]\Q(x) is integrable with integral equal to
1 - both are themselves simple functions!

For general measurable functions we will proceed in two steps: first we define the Lebesgue
integral for non-negative functions, and then generalise it to all measurable functions by
separating into non-negative and positive parts.

Definition 2.21 (Lebesgue integral). Let f : Rn → R be non-negative and measurable.
Then we define∫

Rn

f(x)λ(dx) := sup

{∫
Rn

g(x)λ(dx)

∣∣∣∣ 0 ≤ g ≤ f, g simple
}
.

We say that f is integrable if this supremum is finite.
For a general measurable function f , we write f = f+ − f−, where f+, f− are the positive

and negative parts of f , given by

f+ = max(f, 0), f− = max(−f, 0).

We say that f is integrable if both f+ and f− are integrable, and define∫
Rn

f(x)λ(dx) :=

∫
Rn

f+(x)λ(dx)−
∫
Rn

f−(x)λ(dx).
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We will sometimes for the sake of brevity also use the shortcut
∫
fλ(dx) :=

∫
Rn f(x)λ(dx)

or even
∫
fdλ.

Remark 2.22. One could also try to alternatively define the integral as a limit of integrals of
any sequence of uniformly approximating simple functions. This works well when integrating
over sets of finite measure (like say [0, 1]); however, as you see on the example sheet, it would
require care when integrating over sets of infinite measure, like R or Rn.

Exercise 2.5. Verify from the definitions that f(x) = x1[0,1] is measurable and integrable.
Calculate its integral also from the definition. What about f(x) = x−11(0,1]

Remark 2.23. We can further define the integral over any Borel integrable set E, which we
denote by

∫
E
f(x)λ(dx) by just considering the integral of 1E(x)f(x), which as a product of

measurable functions is nicely measurable.

Remark 2.24. We can similarly define an integral over complex-valued functions by just
separating the real and imaginary parts, i.e. if f(x) = r(x)+ iq(x) we call it integrable if the
real functions r, q are and just set

∫
fdλ =

∫
rdλ+ i

∫
gdλ.

Whereas it is natural to define the Lebesgue integral via simple functions, as countable
collections go well with the measure-theoretic framework, it is technically convenient to
observe that one can actually work with simple functions that are given by just finite sums.

Lemma 2.25. Let us call a simple functions f simple and finite, if it can be written as f(x) =∑n
i=1 ci1Ei

(x) for some finite disjoint sets E1, . . . , En and some real numbers c1, . . . , cn. Then
we have that

sup

{∫
Rn

g(x)λ(dx)

∣∣∣∣ 0 ≤ g ≤ f, g simple
}

= sup

{∫
Rn

g(x)λ(dx)

∣∣∣∣ 0 ≤ g ≤ f, g simple and finite
}

and in particular one can equivalently define the Lebesgue integral by just considering simple
functions that are given by finite sums.

Proof. It is clear that the LHS is larger than the RHS. So it just remains to show that RHS
is at least as big as the LHS. To do this notice that for any non-negative integrable simple
function g(x) =

∑
i≥1 ci1Ei

(x), i.e. a function for which
∑

i≥1 ciλ(Ei) < ∞, we can associate
a simple finite function gϵ(x) =

∑Nϵ

i=1 ci1Ei
, where Nϵ is chosen such that

∑
i>Nϵ

ciλ(Ei) < ϵ.
By definition this guarantees that

|
∫
Rn

g(x)λ(dx)−
∫
Rn

gϵ(x)λ(dx)| < ϵ.

Now denote by SL the supremum on the LHS and by SR the supremum on the RHS of the
equality in the lemma. By definition we can choose g such that

∫
Rn g(x)λ(dx) ≥ SL− ϵ. But

then by construction
∫
Rn gϵ(x)λ(dx) ≥ SL − 2ϵ and by taking ϵ → 0 we see that RHS is also

at least as large as the LHS.
We conclude that two suprema agree, and the integral could equivalently have been defined

using only finite simple functions. □

2.3.4 Basic properties of the Lebesgue integral
We begin by examining some basic properties of the Lebesgue integral. Notice that several

of these natural properties do not hold for the Riemann integral!
22



Proposition 2.26 (Basic properties of the Lebesgue integral). Let f : Rn → R be measur-
able. Then

(1) if f ≥ 0 and f is integrable, then
∫
fdλ ≥ 0

(2) if |f(x)| ≤ C for all x ∈ Rn, then it is integrable over any finite box [a1, b1] × · · · ×
[an, bn] ⊆ Rn

(3) if λ(f ̸= 0) := λ({x : f(x) ̸= 0}) = 0, then f is integrable and
∫
fdλ = 0

(4) if f ≥ 0 and
∫
fdλ = 0, then λ(f ̸= 0) = 0.

Notice that even property 2 is rather interesting: it somehow says that for a measurable
function only unboundedness can prevent it from being integrable! We have separated the
question of "regularity" of the function (carried by the notion of measurability) from that of
its size (which governs integrability).

Proof. The first property comes directly from the definition. The others are on the exercise
sheet.

□

In particular, applying property (3) to the difference f − g of two measurable f, g we
should intuitively obtain:

Corollary 2.27. Let f, g be two measurable functions such that λ(f ̸= g) := λ({x : f(x) ̸=
g(x)}) = 0. Then f is integrable iff g is integrable and

∫
fdλ =

∫
gdλ.

However, writing down the proof we will see that we are still lacking a tool to show this
nicely 6

Proof. Define h = g − f . Then h is measurable and λ(h ̸= 0) = 0. Thus by the proposition
h is integrable and

∫
hdλ = 0.

We would like to know say that g = f +h and it is integrable because f, h are and further∫
gdλ =

∫
(f + h)dλ =

∫
fdλ+

∫
hdλ.

But here we are already using the linearity of the Lebesgue integral, something we still need
to prove and that is stated in the next proposition. □

Proposition 2.28. Let f, g be Lebesgue integrable functions. We have the following linearity
statement. For a, b ∈ R, then af + bg is integrable and∫

(af + bg)dλ = a

∫
fdλ+ b

∫
gdλ.

It comes out this linearity is not as straightforward to prove as one hopes!
Indeed, it is straight-forward to check that for finite simple functions f, g it holds that∫
(f + g)dλ =

∫
fdλ+

∫
gdλ. To see this set f =

∑n
i=1 ci1Ei

and g =
∑m

i=1 dj1Fj
, then

g + f =
∑

i=0...n

∑
j=0...m

(ci + dj)1Ei∩Fj
,

where we define c0 = d0 := 0 and E0 := Rn \ ∪n
i=1Ei and F0 = Rn \ ∪m

j=1Fj. Here we have
introduced c0, d0 because the function f takes value 0 in the complement of ∪N

i=1Ei and g
takes value 0 in the complement of ∪M

j=1Fj.

6One can show this particular case also by hand, but it is a bit tiring and not worthwhile.
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It can be then checked from the definition that
∫
(f+g)dλ =

∫
fdλ+

∫
gdλ for these finite

simple functions (on the exercise sheet).
It is also easy to see that for non-negative measurable f, g we have that

∫
(f + g)dλ ≥∫

fdλ +
∫
gdλ. Indeed, whenever h ≥ 0, j ≥ 0 are simple finite functions bounded from

above by f, g respectively, the function k := h + j is a simple finite function bounded from
above by f + g. Thus

sup

{∫
Rn

k(x)λ(dx)

∣∣∣∣ 0 ≤ k ≤ f + g, k simple and finite
}

is larger than the sum of

sup

{∫
Rn

h(x)λ(dx)

∣∣∣∣ 0 ≤ h ≤ f, h simple and finite
}

and
sup

{∫
Rn

j(x)λ(dx)

∣∣∣∣ 0 ≤ j ≤ g, j simple and finite
}

The other inequality, however, requires a few tools. The issue is the following:
• given a simple function k below f + g, it is not straight-forward to construct two

simple functions, h below f , and j below g with h+ j = k.
So instead of attempting a direct construction, we will take a detour through some general
theorems that will allow us to prove linearity rigorously. In short we will show that under
certain conditions, when fn → f pointwise, we have

∫
fndλ →

∫
fdλ.

More precisely we will use one simple ingredient and one more serious one. The simple
ingredient follows directly from the definition of the integral.
Lemma 2.29. Let 0 ≤ g ≤ f be measurable. Then if f is integrable, so is g and moreover∫
fdλ ≥

∫
gdλ.

The more substantial theorem is about approximating the integral of f via integrals of
approximations fn.
Theorem 2.30 (Monotone convergence theorem). Let 0 ≤ f1 ≤ f2 ≤ . . . be a sequence of
integrable functions converging pointwise to some f = limn→∞ fn. Then f is integrable if
limn→∞

∫
fndλ < ∞ and in this case∫

fdλ = lim
n→∞

∫
fndλ.

Before proving this, let us see how linearity follows.

Proof of Proposition 2.28. Let us just prove the more interesting case: that
∫
(f + g)dλ =∫

fdλ +
∫
gdλ. We saw that this linearity holds for simple functions on the exercise sheet.

We will now first show using Monotone convergence theorem that it holds for all integrable
non-negative functions, and then use the decomposition into positive and negative parts to
argue for the general case.

Pick a sequence of simple functions fn, gn ≥ 0 with fn ≤ fn+1 and gn ≤ gn+1 and fn → f ,
gn → g pointwise from below. Then also fn + gn → f + g pointwise from below. On the one
hand by the linearity of simple functions for all n ≥ 1∫

(fn + gn)dλ =

∫
fndλ+

∫
gndλ.
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On the other hand by the Monotone convergence theorem∫
fndλ →

∫
fdλ ;

∫
gndλ →

∫
gdλ.

In particular this means that

lim
n→∞

∫
(fn + gn)dλ = lim

n→∞

(∫
fndλ+

∫
gndλ

)
=

∫
fdλ+

∫
gdλ

is finite and hence by Monotone convergence theorem f + g is integrable and

lim
n→∞

∫
(fn + gn)dλ =

∫
(f + g)dλ.

So we obtain that ∫
(f + g)dλ =

∫
fdλ+

∫
gdλ,

as desired.
For general integrable f, g let us write f = f+ − f−, g = g+ − g− and f + g = (f + g)+ −

(f + g)− and recall that all these positive and negative parts are non-negative measurable
functions.

Now, notice that (f +g)+ ≤ f++g+ and (f +g)− ≤ f−+g− and thus if f, g are integrable
then so are (f + g)+, (f + g)− by Lemma 2.29 and hence also f + g.

Now we can rewrite the pointwise equality

(f + g)+ − (f + g)− = f+ − f− + g+ − f−,

as
(f + g)+ + f− + g− = (f − g)− + f+ + g+.

But to this we can apply the first part of the proof on both sides to conclude that∫
(f + g)+dλ+

∫
f−dλ+

∫
g−dλ =

∫
(f + g)−dλ+

∫
f+dλ+

∫
g+dλ.

It now remains to recombine the terms and to use the definition of the integral to see that∫
(f + g)dλ =

∫
fdλ+

∫
gdλ

as desired.
□

2.3.5 Convergence theorems
Let us now look more closely at the statement in the style

• if fn → f pointwise, then
∫
fndλ →

∫
fdλ.

We will first see some counterexamples, then prove the Monotone convergence theorem and
a few other useful convergence results.

The first failure could be that the limiting f is not integrable. Recall that the pointwise
limit of measurable functions is measurable. Thus we at least know that f is regular enough
to be potentially integrable. It could fail to be integrable because of "size":

25



Example 2.31. Consider the functions (fn)n≥1 defined on R by fn(x) = 1[0,n] − 1[−n,0].
These functions are all finite simple functions and their integral is equal to 0. But notice
that their pointwise limit f = 1[0,∞) − 1(−∞,0] is measurable but not integrable.

But even if the limiting function is integrable, it’s integral is not necessarily equal to the
limit of integrals.

Example 2.32. Consider the functions (fn)n≥1 defined on R by fn(x) = n1(0,1/n). They are
finite simple functions and satisfy

∫
fndλ = 1 by definition. But notice that fn(x) converge

to the constant 0 function pointwise, as for every x ∈ R, there is some nx ∈ N such that
fn(x) = 0 for all n ≥ nx. But the integral of the constant 0 function is just 0 and thus the
integrals of fn do not converge to the integral of their pointwise limit.

In this example the functions concentrate the mass on a smaller and smaller region, keeping
area under the graph equal to 1. Eventually this tiny vertical box somehow moves out of
the interval (0, 1) and disappears. But suppose we ask all of the fn to be bounded?

Example 2.33. Consider the functions (fn)n≥1 defined on R by fn(x) = n−11[0,n. Again
they are measurable and bounded, thus integrable with

∫
fndλ = 1. Also fn(x) converge to

the constant 0 function pointwise too, as for every x ∈ R, there is some nx ∈ N such that
fn(x) = 0 for all n ≥ nx. But the integral of the constant 0 function is just 0 and thus the
integrals of fn do not converge to the integral of their pointwise limit either.

In this case the area is kept constant by keeping the box horisontally. But suppose,
λ(fn ̸= 0) < C for some constant C?

Example 2.34. Consider the functions (fn)n≥1 defined on R by fn(x) = 1[n,n+1). Again
they are measurable and bounded, thus integrable with

∫
fndλ = 1. Also fn(x) converge to

the constant 0 function pointwise too, as for every x ∈ R, there is some nx ∈ N such that
fn(x) = 0 for all n ≥ nx. But the integral of the constant 0 function is just 0 and thus the
integrals of fn do not converge to the integral of their pointwise limit either.

Now the functions remain bounded but all of the mass moves away to infinity. In some
sense the these are the counterexamples to keep in mind and the conditions given in the
Monotone convergence theorem rule those cases out. Recall the statement:

Theorem 2.35 (Monotone convergence theorem). Let 0 ≤ f1 ≤ f2 ≤ . . . be a sequence of
integrable functions converging pointwise to some f = limn→∞ fn. Then f is integrable if
limn→∞

∫
fndλ < ∞ and in this case∫

fdλ = lim
n→∞

∫
fndλ.

And here is the proof.

Proof of the Monotone convergence theorem, Theorem 2.35. First, as 0 ≤ fn ≤ f , it is clear
that

lim
n→∞

∫
fndλ ≤

∫
fdλ.

The question is why does the other inequality (and thus also the claim on integrability) hold.
So we can now assume

∫
fdλ < ∞.
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Let us start with the case where the limit f = limn→∞ fn itself is a simple finite function.
In particular it can be represented by f =

∑m
i=1 ci1Ei

for some disjoint Borel sets Ei and
distinct ci > 0 and its integral equals

∫
fdλ =

∑m
i=1 ciλ(Ei). As this is finite by assumption,

we have that λ(Ei) < ∞ for every i = 1 . . .m.
For each ϵ > 0 and n ≥ 1 we can then define the sets Fn := {x : fn(x) ≥ (1 − ϵ)f(x)}

and further Fn,i = Fn ∩ Ei. These sets are increasing and pointwise convergence of fn
to f guarantees that ∪n≥1Fn,i = Ei for all i = 1 . . .m. But then the properties of the
measure λ imply that λ(Fn,i) → λ(Ei); here we use that λ(Ei) < ∞. But now by definition
fn(x) ≥ (1− ϵ)

∑m
i=1 ci1Fn,i

and thus by Lemma 2.29∫
fndλ ≥ (1− ϵ)

m∑
i=1

λ(Fn,i)

and we conclude that
lim
n→∞

∫
fndλ ≥ (1− ϵ)

∫
fdλ.

As ϵ was arbitrary the claim follows for simple limiting functions f .
But now for general f we can pick any simple function g ≤ f and conclude similarly that

lim
n→∞

∫
fndλ ≥

∫
gdλ.

As this holds for any simple function g that is bounded above by f , we conclude the claims of
the theorem from the definition of the integral: if limn→∞

∫
fndλ < ∞, then f is integrable

and its integral equals that limit. □
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