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Section 0

Introduction et motivation
Comme motivation, considérons la description mathématique de la transmission de chaleur

sur une tige circulaire homogène : l’équation de la chaleur.
L’équation de la chaleur sur un intervalle [0, 1) (décrivant la tige) est donnée par l’évolution

du profil de température
∂u(t, x)

∂t
= D∆u(t, x)

accompagnée d’une condition initiale u0(x) = u(0, x) et de la condition aux bords u(t, 0) =
u(t, 1) pour tout t ≥ 0 afin d’exprimer que les extrémités de la tige sont connectées. Rappelons
que dans le cas 1D ∆f := ∂2f

∂x2 et que D > 0 est le coefficient de diffusion.
L’idée révolutionnaire de Fourier était la suivante. Il a remarqué empiriquement que le

profil de chaleur au fil du temps présente un comportement oscillatoire spatial et, motivé
également par la solution de l’équation des ondes à l’aide des ondes, il a proposé d’écrire
toute solution en utilisant des fonctions oscillantes spatialement telles que fn(x) = sin(2πx)
et gn(x) = cos(2πnx). Plus précisément, on pourrait essayer de trouver une solution de la
forme

u(t, x) =
∑
n≥1

sn(t) sin(2πnx) +
∑
n≥0

cn(t) cos(2πnx).

Mais remarquons maintenant que ∆fn = −4Dπ2n2fn et ainsi si nous essayons une solution
de la forme un(x, t) = fn(x)sn(t) avec fn comme ci-dessus, nous obtenons une équation

∂sn(t)

∂t
= −4Dπ2n2sn(t).

Il s’agit d’une EDO bien connue qui se résout facilement : sn(t) = exp(−4Dπ2n2t)sn(0). De
même, pour les termes en cosinus, on obtient cn(t) = exp(−4Dπ2n2t)cn(0).

Nous concluons qu’il serait logique de proposer une solution de la forme

u(t, x) =
∑
n≥1

sn(0) exp
(
−D4πn2t

)
sin(2πnx) +

∑
n≥0

cn(0) exp
(
−D4πn2t

)
cos(2πnx).

Remarquez que la condition initiale se traduit alors par la condition :

u0 =
∑
n≥1

sn(0) sin(2πnx) +
∑
n≥0

cn(0) cos(2πnx).

Si nous trouvons de tels (sn(0), cn(0))n≥0, alors nous avons peut-être trouvé au moins une
solution à l’équation de la chaleur sur la tige circulaire.

Cela peut sembler très convaincant, mais en y regardant de plus près, plusieurs questions
se posent ici :

(1) Nous avons des sommes infinies - convergent-elles même ? Quand convergent-elles et
en quel sens ?

(2) Pour quelles fonctions u0 l’expansion donnée ci-dessus est-elle valable ? En d’autres
termes, pour quelles conditions initiales peut-on trouver une solution par cette mé-
thode ?

2



(3) De telles expansions sont-elles uniques ? Les solutions que nous trouvons sont-elles
uniques ?

(4) Peut-on approximer des solutions ? Par exemple, cela est pertinent lors de la réso-
lution numérique de l’équation. C’est une question de convergence - et plus loin,
comment la notion de convergence se rapporte-t-elle aux coefficients sn, cn ?

(5) Plus généralement, comment mesurer la proximité de différentes conditions initiales,
de différentes solutions ?

(6) Que se passe-t-il pour des tiges non circulaires, par exemple des tiges avec des extré-
mités dans des bains thermiques ? Ou en dimensions supérieures ?

(7) Qu’en est-il d’un cas plus non homogène où D n’est plus une constante dans l’espace ?
Ou lorsque nous remplaçons ∆ par des opérateurs (linéaires) plus généraux, incluant
par exemple certaines influences extérieures ?

L’objectif de ce cours est d’étudier le cadre mathématique adéquat pour poser et répondre à
ces questions. Cela nous amènera à étudier des espaces de fonctions, l’intégrale de Lebesgue
et la théorie spectrale des opérateurs linéaires. Pour comprendre pourquoi certains de ces
aspects pourraient intervenir, considérons un modèle simplifié.

0.1 Un modèle discret
Pour comprendre ce que nous pouvons espérer obtenir, considérons le même problème de

diffusion de chaleur mais sur un espace discrétisé. Par exemple, nous pensons que la tige est
décomposée en n petits récipients pouvant échanger de la chaleur entre leurs voisins.

Le profil de température est maintenant donné par u(x, t) : {0, 1, . . . , n} → R, avec la
condition de périodicité u(0, t) = u(n, t) pour tout t ≥ 0.

L’évolution est toujours donnée par

∂u(t, x)

∂t
= K∆du(t, x)

avec une condition initiale u0(x) = u(0, x), mais au lieu du laplacien réel, nous avons le
laplacien discret ∆df(x) :=

1
dx

∑
y∼x f(y)− f(x), où y ∼ x signifie que y, x sont des voisins

dans le graphe discret sous-jacent et dx est le nombre de voisins du sommet x. Dans notre cas
concret, nous avons un graphe circulaire avec n sommets et donc ∆df(x) :=

f(y)+f(z)−2f(x)
2

,
où y, z désignent les sommets voisins.

Remarquez maintenant que le problème est réellement un système de n équations dif-
férentielles ordinaires de second degré et que ∆d est simplement un opérateur linéaire de
Rn → Rn. Comment le résoudre ?

Utilisons les mêmes étapes que ci-dessus mais voyons qu’elles ont ici un sens très simple
et concret :

— Remarquez que chaque ut peut être vu comme un vecteur de Rn avec des coordonnées
et que ∆d peut être vu comme un opérateur linéaire symétrique sur Rn (vérifiez-le !)

— En tant que tel, ∆d peut être diagonalisé : il existe une base orthonormale ϕ1, . . . , ϕn

et des valeurs propres λ1, . . . , λn telles que ∆dϕi = λiϕi. En particulier, toute fonction
u : Rn → Rn peut être écrite de manière unique comme

∑n
i=1 ciϕi.
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— Mais maintenant, si nous écrivons ui(t) := ci(t)ϕi, alors à nouveau chaque ci(t) satisfait
une EDO découplée

∂ci(t)

∂t
= Kλisn(t)

et a donc pour solution ci(0) exp(Kλit).
— Nous concluons une solution en trouvant ci(0) en déterminant l’expansion unique u0 :=∑n

i=1 ci(0)ϕi.
— Étant donné l’unicité de l’expansion, cette solution est également unique.
— Et enfin, nous pouvons facilement comparer les solutions en utilisant par exemple la

norme euclidienne. Par exemple, on conclut que si les conditions initiales sont proches,
les solutions le seront aussi pour tout t > 0. Nous savons également que cette distance
se mesure de manière équivalente en utilisant les distances entre deux ensembles de
coefficients (ci)i=1...n, (c̃i)i=1...n - et ici, l’utilisation de la norme euclidienne au lieu d’une
autre norme est importante.

Ainsi, dans ce cadre, tout fonctionne très bien et fonctionnerait tout aussi bien tant que
nous avons un opérateur linéaire symétrique L à la place de ∆d.

Que nous avons-nous utilisé ici ?
— Nous avons utilisé le fait que Rn est de dimension finie et qu’il existe donc des bases

qui donnent des développements uniques pour chaque vecteur
— Nous avons utilisé le fait que ∆d est linéaire et symétrique et que, selon le théorème

spectral, il peut être diagonalisé et nous pouvons trouver une base de vecteurs propres
— Nous avons implicitement utilisé la linéarité de l’équation
Aucune de ces affirmations n’est évidente dans notre configuration initiale, car l’espace

des fonctions de [0, 1] à R n’est plus de dimension finie !
Pour y remédier, nous devrons examiner les espaces de fonctions et essayer de voir tout

d’abord quels espaces de ce type possèdent une structure agréable. Par exemple, quels espaces
de fonctions satisfont la linéarité ? Lesquels permettent de définir une norme et de parler
d’orthonormalité ? Pour quels espaces avons-nous des développements orthonormaux ?

La recherche de telles propriétés agréables nous amène par exemple à introduire l’intégrale
de Lebesgue pour construire de belles bases de fonctions.

Après cela, après avoir passé un certain temps à comprendre les espaces de fonctions, nous
étudierons brièvement les opérateurs linéaires sur de tels espaces et, en particulier, nous
trouverons des configurations dans lesquelles il existe des décompositions orthonormales si-
milaires à l’aide de fonctions propres. Nous réunirons ensuite tous ces éléments pour expliquer
rigoureusement la résolution de l’équation de la chaleur non homogène et d’autres problèmes
similaires.

Mais c’est déjà assez d’introduction, allons-y !
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Section 1

L’espace des fonctions continues
Commençons par l’un des espaces de fonctions les plus intuitifs : l’espace des fonctions

continues. Ceci constitue en partie un rappel, car vous avez déjà travaillé avec des fonctions
continues en Analyse I-III, et nous ne faisons ici que les replacer dans un contexte plus large.

Pour commencer, les fonctions prennent leurs valeurs sur des domaines D rectangulaires
i.e. du forme [a1, b1]× · · · × [an, rn] dans Rn et prennent leurs valeurs dans R. À la fin de la
section, nous discuterons dans quelle mesure il est possible (et souhaitable) de généraliser ces
choix. Vous pouvez sans problème supposer que D = [0, 1], car le choix d’autres domaines
fermés et bornés ne présente pas de difficultés supplémentaires.

L’ensemble de toutes les fonctions continues de D vers R sera noté C(D,R) :
C(D,R) := {f : D → R, f continu}.

Dans ce qui suit, nous allons essayer de comprendre la structure de cet espace.

1.1 Structure d’espace vectoriel de C(D,R)
La première observation que nous pouvons faire à propos de l’espace C(D,R) est qu’il

possède une structure linéaire, comme par exemple l’espace vectoriel (Rn,+) : si f, g ∈
C(D,R), alors la fonction h(x) := f(x) + g(x) appartient également à C(D,R), tout comme
la fonction λf(x) où λ ∈ R.

Vérifions rapidement cette propriété pour la première affirmation : pour chaque x ∈ D,
par continuité de f, g, nous pouvons choisir δf , δg tels que si y ∈ D, ∥x − y∥ < δf , alors
|f(x) − f(y)| ≤ ϵ

2
et si y ∈ D, ∥x − y∥ < δg, alors |g(x) − g(y)| ≤ ϵ

2
. Cela signifie que si

∥x− y∥ < min(δf , δg), on a |h(x)− h(y)| < ϵ grâce à l’inégalité triangulaire.

Exercise 1.1. Montrez que C(D,R) possède également une structure multiplicative : c’est-à-
dire que si f, g ∈ C(D,R), alors le produit h(x) := f(x)g(x) appartient également à C(D,R).
Qu’en est-il de la fonction max(f, g) ?

En fait, l’espace C(D,R) avec l’addition satisfait tous les axiomes d’un espace vectoriel !
L’élément neutre est simplement la fonction nulle constante, et l’élément inverse de f est la
fonction −f . Toutes les conditions sont respectées, comme vous pouvez facilement le vérifier.

Exercise 1.2. Rappelez-vous des axiomes d’un espace vectoriel et vérifiez-les dans le cas de
(C(D,R),+).

Dans la suite, nous appellerons souvent l’espace vectoriel simplement C(D,R).
Nous pourrions également nous intéresser à la somme d’un nombre infini de fonctions,

c’est-à-dire à des sommes du type
∑

n≥1 fn. Mais dans quel sens pouvons-nous en parler ?
Plus généralement, étant donné une suite (gn)n≥1, dans quel sens pouvons-nous parler de sa
convergence et de sa limite ?

La première idée pourrait être de définir des limites point par point : pour chaque x ∈ D,
la suite (gn(x))n≥1 est simplement une suite de nombres réels, et nous savons ce que signifie
sa convergence. Nous pourrions donc définir la convergence de (gn)n≥1 en tant que fonctions
comme la convergence de (gn(x))n≥1 pour tout x ∈ D. C’est ce qu’on appelle la convergence
ponctuelle, mais elle présente un inconvénient bien connu :
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Exercise 1.3. Trouvez une suite de fonctions de C(D,R) qui converge ponctuellement vers
une fonction qui n’est pas continue.

Il est conseillé de commencer par le cas D = [0, 1] (discuté en cours), puis de réfléchir à la
manière de procéder dans le cas général.

1.2 La norme uniforme sur C(D,R)
Rappelons que l’espace vectoriel Rn est muni de plusieurs normes canoniques qui per-

mettent de définir une notion de longueur d’un vecteur et de mesurer les distances entre
vecteurs. Il se trouve que l’on peut également munir C(D,R) d’une norme canonique.

Definition 1.1 (La norme du supremum (ou norme uniforme)). Pour f ∈ C(D,R), nous
définissons sa norme du supremum (ou norme uniforme) par :

∥f∥∞ := sup
x∈D

|f(x)|.

Dans cette définition, nous utilisons le fait que D est fermé et borné, sinon le supremum
pourrait ne pas être fini.

Exercise 1.4. Trouver un exemple d’ensemble D qui n’est pas fermé ou pas borné, et une
fonction f ∈ C(D,R) telle que ∥f∥∞, défini ci-dessus, soit infini.

Nous avons appelé l’expression ci-dessus une norme, mais rappelons qu’une norme sur un
espace vectoriel a une définition mathématique précise, et que ses propriétés doivent être
vérifiées :

Proposition 1.2. ∥f∥∞ définit bien une norme sur l’espace vectoriel C(D,R).

Démonstration. Nous devons vérifier les conditions d’une norme.

(1) ∥f∥∞ ≥ 0, avec égalité si et seulement si f est la fonction identiquement nulle. Cela
est évident.

(2) ∥λf∥∞ = |λ|∥f∥∞, ce qui est également clair.

(3) Enfin, nous devons vérifier l’inégalité triangulaire : ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞. Nous
avons :

sup
x∈D

(|f(x)|+ |g(x)|) ≤ sup
x∈D

|f(x)|+ sup
x∈D

|g(x)|

par l’inégalité triangulaire. On en déduit le résultat :

∥f + g∥∞ = sup
x∈D

|f(x) + g(x)| ≤ sup
x∈D

(|f(x)|+ |g(x)|) = ∥f∥∞ + ∥g∥∞.

□

Ainsi, (C(D,R),+, ∥·∥∞) est un espace vectoriel normé, à l’instar de Rn muni de n’importe
quelle de ces normes. Cela nous permet d’introduire une notion de convergence qui est bien
plus naturelle :

Proposition 1.3. Soit (fn)n≥1 une suite de fonctions dans C(D,R) qui converge vers une
fonction f : D → R pour la norme uniforme. Alors, f est nécessairement continue.
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Ceci reformule un résultat du cours d’Analyse I selon lequel la limite simple d’une suite
de fonctions continues n’est pas nécessairement continue.

La technique de preuve utilisée est appelée l’argument des 3ϵ ou ϵ/3, et vous l’avez déjà
rencontrée en Analyse I. Donnons la preuve afin de bien comprendre ce qui est différent par
rapport à la situation précédente.

Démonstration. Il suffit de montrer que pour tout x ∈ D, il existe δ > 0 tel que |f(x)−f(y)| <
3ϵ dès que |x− y| < δ.

Tout d’abord, choisissons un entier n ∈ N suffisamment grand pour que ∥fn − f∥∞ < ϵ,
et en particulier |fn(x) − f(x)| < ϵ pour tout x ∈ D d’après la définition (ce sont les deux
premiers ϵ).

Ensuite, par continuité de fn, on peut choisir δ > 0 tel que, pour tout y ∈ D vérifiant
|x−y| < δ, on ait |fn(x)−fn(y)| < ϵ (c’est le troisième ϵ). En utilisant l’inégalité triangulaire,
on obtient :

|f(x)− f(y)| = |f(x)− fn(x) + fn(x)− fn(y) + fn(y)− f(y)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| < 3ϵ.

□

Remarquons que, dans le cas de la convergence simple, la première étape échoue : on ne
peut pas nécessairement choisir un n tel que supx∈D |fn(x)− f(x)| < 3ϵ.

Ainsi, muni de cette norme, l’ensemble C(D,R) est stable par passage à la limite pour les
suites convergentes. En fait, il est encore mieux structuré : il est complet, une notion que
vous avez rencontrée pour Rn et que nous rappelons ici.

Definition 1.4 (Complétude d’un espace normé). Un espace normé (X, | · |) est dit complet
si toute suite de Cauchy (xn)n≥1 (c’est-à-dire toute suite telle que pour tout ϵ > 0, il existe
un entier nϵ vérifiant |xn − xm| ≤ ϵ pour tous n,m ≥ nϵ) converge vers un élément x ∈ X.

Theorem 1.5. L’espace (C(D,R),+, | · |∞) est un espace vectoriel normé complet.

L’idée est d’utiliser la complétude de R pour définir une fonction limite potentielle, puis
de vérifier qu’il s’agit bien de cette fonction.

Démonstration. Il ne reste plus qu’à vérifier la complétude. Soit (fn)n≥1 une suite de Cauchy
dans C(D,R). Pour tout x ∈ D, la suite (fn(x))n≥1 est de Cauchy et comme R est complet,
elle converge vers une limite que l’on note f(x). Il reste à prouver que fn → f pour la norme
uniforme et que f est continue. Ce dernier point découle directement de la proposition
précédente, il ne reste donc qu’à démontrer la convergence dans la norme uniforme, ce qui
est laissé en exercice. □

Remark 1.6. Tout espace vectoriel normé complet est appelé un espace de Banach. Ces
espaces jouent un rôle important notamment en théorie quantique des champs.

La complétude de l’espace a une application importante, dont l’une est la recherche de
solutions aux EDO par approximation. L’outil utilisé ici est le théorème du point fixe de
Banach, que vous avez déjà rencontré en Analyse II selon les feuilles de cours et qui est
simplement rappelé ici :
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Theorem 1.7 (Théorème du point fixe de Banach). Soit F : C(D,R) → C(D,R) une
application contractante par rapport à la norme uniforme : ∥F (f) − F (g)∥∞ < C∥f − g∥∞
avec C < 1. Alors, il existe une unique solution à l’équation F (f) = f qui peut être obtenue
par la limite limn→∞ F (n)(f).

1.3 Séries de Fourier pour les fonctions continues
Le développement d’une fonction f sur [0, 1] en une série de la forme

(1.1) f(x) =
∑
n≥1

sn sin(2πnx) +
∑
n≥0

cn cos(2πnx)

est appelé développement de Fourier ou série de Fourier. Nous avons vu en introduction que
cela pouvait être très utile, mais nous n’avons pas encore étudié l’existence ou l’unicité d’un
tel développement. Regardons cela maintenant dans le cadre des fonctions continues f .

En fait, nous verrons que ces questions se résolvent naturellement une fois que nous avons
trouvé le « bon espace fonctionnel », mais il est instructif de les poser dès maintenant.

La première question est : comment déterminer les coefficients sn, cn ? La clé est le lemme
suivant.

Lemma 1.8. Les relations d’orthogonalité suivantes sont vérifiées pour des entiers m,n ≥ 0 :
Orthogonalité cosinus-cosinus :

∫ 1

0

cos(2πnx) cos(2πmx) dx =


1, if n = m = 0,

1
2
, if n = m ̸= 0,

0, if n ̸= m.

Orthogonalité sinus-sinus :

∫ 1

0

sin(2πnx) sin(2πmx) dx =


0, if n = 0 or m = 0,

1
2
, if n = m ̸= 0,

0, if n ̸= m.

Orthogonalité sinus-cosinus :∫ 1

0

sin(2πnx) cos(2πmx) dx = 0 ∀n,m.

Démonstration. La preuve est une simple conséquence des identités trigonométriques et de
leurs intégrales et est laissée en exercice. □

Grâce à cette observation, si l’on s’attend à ce que la représentation ci-dessus soit valide
sous une certaine forme, alors les coefficients sn, cn doivent être donnés par :

— Coefficients cosinus

cn = 2

∫ 1

0

f(x) cos(2πnx) dx, pour n ≥ 1.

Pour le terme constant c0, on a

c0 =

∫ 1

0

f(x) dx.
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— Coefficients sinus sn :

sn = 2

∫ 1

0

f(x) sin(2πnx) dx, for n ≥ 1.

Remarquons que si nous voulons que l’égalité soit vérifiée aux extrémités, alors nous devons
avoir f(0) = f(1), car cela est aussi valable pour chaque fonction dans la série.

Il est surprenant de constater que l’existence et l’unicité du développement en série de
Fourier ne sont pas du tout évidentes, même pour les fonctions continues !

En effet, la compréhension des contre-exemples a évolué avec le temps. Une première
observation est la suivante :

— Il existe une fonction continue f satisfaisant f(0) = f(1) dont la série de Fourier
converge ponctuellement partout mais ne converge pas uniformément. Il n’est pas facile
de construire une telle fonction, mais une fois donnée, il est aisé de vérifier ce phénomène
(probablement en exercice).

Une affirmation encore plus frappante provient de la seconde moitié du XIXe siècle,
avec Du Bois-Reymond :

— Il existe des fonctions continues f ∈ C([0, 1],R) avec f(0) = f(1) dont la série de
Fourier diverge en un point x ∈ [0, 1].

Ce résultat a ensuite été généralisé par plusieurs mathématiciens qui ont trouvé des
fonctions continues f ∈ C([0, 1],R) avec f(0) = f(1) dont la série de Fourier diverge
en une infinité de points.

Enfin, la situation n’est pas complètement désespérée :

Proposition 1.9. Soit f ∈ C2([0, 1]) une fonction deux fois continûment différentiable,
satisfaisant f(0) = f(1) et f ′(0) = f ′(1). Alors, sa série de Fourier

f(x) = lim
N→∞

∑
n≤N

(sn sin(2πnx) + cn cos(2πnx),

converge par rapport à la norme uniforme | · |∞.

Remark 1.10. En réalité, ce résultat reste valable sous des conditions bien moins contrai-
gnantes, par exemple pour les fonctions Hölderiennes, c’est-à-dire vérifiant |f(x) − f(y)| <
|x− y|a pour un certain a > 0. Cependant, la preuve nécessite plus de précautions et dépasse
notre cadre.
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