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SECTION O

Introduction et motivation

Comme motivation, considérons la description mathématique de la transmission de chaleur
sur une tige circulaire homogeéne : ’équation de la chaleur.
L’équation de la chaleur sur un intervalle [0, 1) (décrivant la tige) est donnée par 'évolution
du profil de température
ou(t, )
ot
accompagnée d’une condition initiale uy(z) = u(0,z) et de la condition aux bords u(t¢,0) =
u(t, 1) pour tout ¢ > 0 afin d’exprimer que les extrémités de la tige sont connectées. Rappelons

= DAu(t, x)

que dans le cas 1D Af := &L et que D > 0 est le coefficient de diffusion.

L’idée révolutionnaire de Fourler était la suivante. Il a remarqué empiriquement que le
profil de chaleur au fil du temps présente un comportement oscillatoire spatial et, motivé
également par la solution de I’équation des ondes a l’aide des ondes, il a proposé d’écrire
toute solution en utilisant des fonctions oscillantes spatialement telles que f,(x) = sin(27x)
et g,(x) = cos(2mnx). Plus précisément, on pourrait essayer de trouver une solution de la
forme

u(t,z) =Y s,(t)sin(2mna) + Y e, (t) cos(2mn).

n>1 n>0
Mais remarquons maintenant que A f, = —4D7?n?f, et ainsi si nous essayons une solution
de la forme u,(x,t) = f.(x)s,(t) avec f, comme ci-dessus, nous obtenons une équation
s (t
é}( ) _ —4D7*n’s,(t).

Il s’agit d’une EDO bien connue qui se résout facilement : s,(t) = exp(—4Dn*n?t)s,(0). De
méme, pour les termes en cosinus, on obtient ¢, (t) = exp(—4D7?n%t)c,(0).
Nous concluons qu’il serait logique de proposer une solution de la forme

Z sn(0) exp(—D4rn*t) sin(2mnz) + Z ¢ (0) exp(—D4mrn’t) cos(2mnz).

n>1 n>0

Remarquez que la condition initiale se traduit alors par la condition :

an sin(2mnx) + ch ) cos(2mn).

n>1 n>0

Si nous trouvons de tels (s,(0), ¢,(0))n>0, alors nous avons peut-étre trouvé au moins une
solution a I’équation de la chaleur sur la tige circulaire.

Cela peut sembler trés convaincant, mais en y regardant de plus prés, plusieurs questions
se posent ici :

(1) Nous avons des sommes infinies - convergent-elles méme ? Quand convergent-elles et
en quel sens?

(2) Pour quelles fonctions wuy 1’expansion donnée ci-dessus est-elle valable ? En d’autres
termes, pour quelles conditions initiales peut-on trouver une solution par cette mé-

thode ?
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(3) De telles expansions sont-elles uniques ? Les solutions que nous trouvons sont-elles
uniques ?

(4) Peut-on approximer des solutions? Par exemple, cela est pertinent lors de la réso-
lution numérique de I’équation. C’est une question de convergence - et plus loin,
comment la notion de convergence se rapporte-t-elle aux coefficients s,,, ¢, ?

(5) Plus généralement, comment mesurer la proximité de différentes conditions initiales,
de différentes solutions ?

(6) Que se passe-t-il pour des tiges non circulaires, par exemple des tiges avec des extré-
mités dans des bains thermiques ? Ou en dimensions supérieures ?

(7) Qu’en est-il d’'un cas plus non homogéne ot D n’est plus une constante dans 'espace ?
Ou lorsque nous remplagons A par des opérateurs (linéaires) plus généraux, incluant
par exemple certaines influences extérieures ?

L’objectif de ce cours est d’étudier le cadre mathématique adéquat pour poser et répondre a
ces questions. Cela nous ameénera a étudier des espaces de fonctions, l'intégrale de Lebesgue
et la théorie spectrale des opérateurs linéaires. Pour comprendre pourquoi certains de ces
aspects pourraient intervenir, considérons un modeéle simplifié.

0.1 Un modéle discret

Pour comprendre ce que nous pouvons espérer obtenir, considérons le méme probléme de
diffusion de chaleur mais sur un espace discrétisé. Par exemple, nous pensons que la tige est
décomposée en n petits récipients pouvant échanger de la chaleur entre leurs voisins.

Le profil de température est maintenant donné par u(x,t) : {0,1,...,n} — R, avec la
condition de périodicité u(0,t) = u(n,t) pour tout t > 0.

L’évolution est toujours donnée par

Ju(t, x)
——— = KAqu(t,x
ot d ( ) )
avec une condition initiale ug(x) = u(0,z), mais au lieu du laplacien réel, nous avons le
laplacien discret Ay f(x) := i > ye f(Y) = f(z), ot y ~ z signifie que y, z sont des voisins

dans le graphe discret sous-jacent et d,. est le nombre de voisins du sommet x. Dans notre cas

concret, nous avons un graphe circulaire avec n sommets et donc Ay f(z) := w,
ou ¥, z désignent les sommets voisins.

Remarquez maintenant que le probléme est réellement un systéme de n équations dif-
férentielles ordinaires de second degré et que A, est simplement un opérateur linéaire de
R" — R™. Comment le résoudre ?

Utilisons les mémes étapes que ci-dessus mais voyons qu’elles ont ici un sens trés simple
et concret :

— Remarquez que chaque u; peut étre vu comme un vecteur de R™ avec des coordonnées

et que A4 peut étre vu comme un opérateur linéaire symétrique sur R" (vérifiez-le!)

— En tant que tel, A, peut étre diagonalisé : il existe une base orthonormale ¢4, ..., ¢,

et des valeurs propres Ai,...,\, telles que Ay¢; = \;¢;. En particulier, toute fonction
u : R" — R™ peut étre écrite de maniére unique comme Y ' | ¢;¢;.
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— Mais maintenant, si nous écrivons u;(t) := ¢;(t)¢;, alors & nouveau chaque ¢;(t) satisfait

une EDO découplée
@Céit) = K)\isn(t)
et a donc pour solution ¢;(0) exp(K A\;t).

— Nous concluons une solution en trouvant ¢;(0) en déterminant ’expansion unique ug :=
> iz €i(0)¢s.

— Etant donné 'unicité de I'expansion, cette solution est également unique.

— Et enfin, nous pouvons facilement comparer les solutions en utilisant par exemple la
norme euclidienne. Par exemple, on conclut que si les conditions initiales sont proches,
les solutions le seront aussi pour tout ¢ > 0. Nous savons également que cette distance
se mesure de maniére équivalente en utilisant les distances entre deux ensembles de
coefficients (¢;)i=1..n, (Ci)i=1..n - €t ici, 'utilisation de la norme euclidienne au lieu d’une
autre norme est importante.

Ainsi, dans ce cadre, tout fonctionne trés bien et fonctionnerait tout aussi bien tant que

nous avons un opérateur linéaire symétrique L & la place de Ay.

Que nous avons-nous utilisé ici?

— Nous avons utilisé le fait que R™ est de dimension finie et qu’il existe donc des bases
qui donnent des développements uniques pour chaque vecteur

— Nous avons utilisé le fait que A, est linéaire et symétrique et que, selon le théoréme
spectral, il peut étre diagonalisé et nous pouvons trouver une base de vecteurs propres

— Nous avons implicitement utilisé la linéarité de I’équation

Aucune de ces affirmations n’est évidente dans notre configuration initiale, car I’espace
des fonctions de [0, 1] & R n’est plus de dimension finie!

Pour y remédier, nous devrons examiner les espaces de fonctions et essayer de voir tout
d’abord quels espaces de ce type posseédent une structure agréable. Par exemple, quels espaces
de fonctions satisfont la linéarité ? Lesquels permettent de définir une norme et de parler
d’orthonormalité ? Pour quels espaces avons-nous des développements orthonormaux ?

La recherche de telles propriétés agréables nous améne par exemple & introduire l'intégrale
de Lebesgue pour construire de belles bases de fonctions.

Aprés cela, aprés avoir passé un certain temps a comprendre les espaces de fonctions, nous
étudierons briévement les opérateurs linéaires sur de tels espaces et, en particulier, nous
trouverons des configurations dans lesquelles il existe des décompositions orthonormales si-
milaires a ’aide de fonctions propres. Nous réunirons ensuite tous ces éléments pour expliquer
rigoureusement la résolution de ’équation de la chaleur non homogéne et d’autres problémes
similaires.

Mais c’est déja assez d’introduction, allons-y!




SECTION 1

L’espace des fonctions continues

Commengons par I'un des espaces de fonctions les plus intuitifs : 'espace des fonctions
continues. Ceci constitue en partie un rappel, car vous avez déja travaillé avec des fonctions
continues en Analyse I-III, et nous ne faisons ici que les replacer dans un contexte plus large.

Pour commencer, les fonctions prennent leurs valeurs sur des domaines D rectangulaires
i.e. du forme [a;,b] X - -+ X [a,, 7] dans R™ et prennent leurs valeurs dans R. A la fin de la
section, nous discuterons dans quelle mesure il est possible (et souhaitable) de généraliser ces
choix. Vous pouvez sans probléme supposer que D = [0, 1], car le choix d’autres domaines
fermés et bornés ne présente pas de difficultés supplémentaires.

L’ensemble de toutes les fonctions continues de D vers R sera noté C(D,R) :

C(D,R):={f:D — R, f continu}.

Dans ce qui suit, nous allons essayer de comprendre la structure de cet espace.

1.1 Structure d’espace vectoriel de C'(D,R)

La premiére observation que nous pouvons faire a propos de 'espace C(D,R) est qu’il
posséde une structure linéaire, comme par exemple l'espace vectoriel (R™,+) : si f,g €
C(D,R), alors la fonction h(x) := f(x)+ g(x) appartient également & C'(D, R), tout comme
la fonction Af(z) ou A € R.

Vérifions rapidement cette propriété pour la premiére affirmation : pour chaque x € D,
par continuité de f, g, nous pouvons choisir df,d, tels que si y € D, ||z — y|| < dy, alors
|f(z) = f(y)] £ Setsiye D, |lz—y| <dy alors [g(z) — g(y)| < 5. Cela signifie que si
|z — y|| < min(dy,dy), on a |h(z) — h(y)| < € grace a I'inégalité triangulaire.

Exercise 1.1. Montrez que C'(D,R) posséde également une structure multiplicative : ¢’est-a-
dire que si f,g € C(D,R), alors le produit h(x) := f(x)g(x) appartient également a C(D,R).
Qu’en est-il de la fonction max(f,g) ¢

En fait, 'espace C'(D,R) avec I’addition satisfait tous les axiomes d’un espace vectoriel !
L’élément neutre est simplement la fonction nulle constante, et I’élément inverse de f est la
fonction — f. Toutes les conditions sont respectées, comme vous pouvez facilement le vérifier.

Exercise 1.2. Rappelez-vous des axiomes d’un espace vectoriel et vérifiez-les dans le cas de
(C(D,R), +).

Dans la suite, nous appellerons souvent 'espace vectoriel simplement C'(D,R).

Nous pourrions également nous intéresser a la somme d’un nombre infini de fonctions,
c’est-a-dire & des sommes du type ) ., f,. Mais dans quel sens pouvons-nous en parler ?
Plus généralement, étant donné une suite (gn)n>1, dans quel sens pouvons-nous parler de sa
convergence et de sa limite ?

La premiére idée pourrait étre de définir des limites point par point : pour chaque xz € D,
la suite (g,(7))n>1 est simplement une suite de nombres réels, et nous savons ce que signifie
sa convergence. Nous pourrions donc définir la convergence de (g, ),>1 en tant que fonctions
comme la convergence de (g,(x)),>1 pour tout x € D. C’est ce qu’on appelle la convergence

ponctuelle, mais elle présente un inconvénient bien connu :
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Exercise 1.3. Trouvez une suite de fonctions de C(D,R) qui converge ponctuellement vers
une fonction qui n’est pas continue.

Il est conseillé de commencer par le cas D = [0, 1] (discuté en cours), puis de réfléchir a la
maniére de procéder dans le cas général.

1.2 La norme uniforme sur C(D,R)

Rappelons que l'espace vectoriel R™ est muni de plusieurs normes canoniques qui per-
mettent de définir une notion de longueur d’un vecteur et de mesurer les distances entre
vecteurs. Il se trouve que 'on peut également munir C'(D,R) d’une norme canonique.

Definition 1.1 (La norme du supremum (ou norme uniforme)). Pour f € C(D,R), nous
définissons sa norme du supremum (ou norme uniforme) par :

[flloo == sup [f(z)].
zeD

Dans cette définition, nous utilisons le fait que D est fermé et borné, sinon le supremum
pourrait ne pas étre fini.

Exercise 1.4. Trouver un exemple d’ensemble D qui n’est pas fermé ou pas borné, et une
fonction f € C(D,R) telle que ||f||,, défini ci-dessus, soit infini.

Nous avons appelé 'expression ci-dessus une norme, mais rappelons qu'une norme sur un
espace vectoriel a une définition mathématique précise, et que ses propriétés doivent étre
vérifiées :

Proposition 1.2. || f||, définit bien une norme sur l’espace vectoriel C(D,R).

Démonstration. Nous devons vérifier les conditions d’une norme.

(1) [[fllo, = 0, avec égalité si et seulement si f est la fonction identiquement nulle. Cela
est évident.

(2) IMflloe = 1M fll s ce qui est également clair.

(3) Enfin, nous devons vérifier 'inégalité triangulaire : || f + gl < || fll.. + llgll..- Nous
avons :

21615(|f($)| +lg(2)]) < Sup ()] + sup l9(2)|

par I'inégalité triangulaire. On en déduit le résultat :

I£+ glloe = sup|£(z) + g(2)] < sup(|f(2)] + 19(2)]) = [Ifllc + ll9 ]

O

Ainsi, (C(D,R), +, ||']|.) est un espace vectoriel normé, a l'instar de R” muni de n’importe
quelle de ces normes. Cela nous permet d’introduire une notion de convergence qui est bien
plus naturelle :

Proposition 1.3. Soit (f,)n>1 une suite de fonctions dans C(D,R) qui converge vers une

fonction f: D — R pour la norme uniforme. Alors, f est nécessairement continue.
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Ceci reformule un résultat du cours d’Analyse I selon lequel la limite simple d’une suite
de fonctions continues n’est pas nécessairement continue.

La technique de preuve utilisée est appelée 'argument des 3e ou €/3, et vous l'avez déja
rencontrée en Analyse I. Donnons la preuve afin de bien comprendre ce qui est différent par
rapport a la situation précédente.

Démonstration. Il suffit de montrer que pour tout z € D, il existe § > 0 tel que | f(z)—f(y)| <
3e dés que |z —y| < 4.

Tout d’abord, choisissons un entier n € N suffisamment grand pour que ||f, — f||, < €,
et en particulier |f,(z) — f(x)| < € pour tout x € D d’aprés la définition (ce sont les deux
premiers €).

Ensuite, par continuité de f,, on peut choisir 6 > 0 tel que, pour tout y € D vérifiant
lz—y| <9, onait |f,(x)— fu(y)| < € (c’est le troisiéme €). En utilisant I'inégalité triangulaire,
on obtient :

[f(@) = fW)] = 1f (@) = fulz) + fulx) = fuly) + fuly) — F ()]
< [f(@) = fal)| + [falz) = fu(@)] + [faly) = Fy)] < 3e.
UJ

Remarquons que, dans le cas de la convergence simple, la premiére étape échoue : on ne
peut pas nécessairement choisir un n tel que sup,cp | fn(2) — f(2)] < 3e.

Ainsi, muni de cette norme, ’ensemble C'(D, R) est stable par passage a la limite pour les
suites convergentes. En fait, il est encore mieux structuré : il est complet, une notion que
vous avez rencontrée pour R” et que nous rappelons ici.

Definition 1.4 (Complétude d’un espace normé). Un espace normé (X, |-|) est dit complet
si toute suite de Cauchy (x,)n>1 (c’est-a-dire toute suite telle que pour tout € > 0, il existe
un entier ne vérifiant |z, — x| < € pour tous n,m > n.) converge vers un élément v € X .

Theorem 1.5. L’espace (C(D,R),+,]| - |«) est un espace vectoriel normé complet.

L’idée est d’utiliser la complétude de R pour définir une fonction limite potentielle, puis
de vérifier qu’il s’agit bien de cette fonction.

Démonstration. Il ne reste plus qu’a vérifier la complétude. Soit (f,,),>1 une suite de Cauchy
dans C'(D,R). Pour tout = € D, la suite (f,(x))n>1 est de Cauchy et comme R est complet,
elle converge vers une limite que 'on note f(x). Il reste a prouver que f,, — f pour la norme
uniforme et que f est continue. Ce dernier point découle directement de la proposition
précédente, il ne reste donc qu’a démontrer la convergence dans la norme uniforme, ce qui
est laissé en exercice. 0

Remark 1.6. Tout espace vectoriel normé complet est appelé un espace de Banach. Ces
espaces jouent un role important notamment en théorie quantique des champs.

La complétude de 'espace a une application importante, dont 1'une est la recherche de
solutions aux EDO par approximation. L’outil utilisé ici est le théoréme du point fixe de
Banach, que vous avez déja rencontré en Analyse II selon les feuilles de cours et qui est
simplement rappelé ici :
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Theorem 1.7 (Théoréme du point fixe de Banach). Soit F' : C(D,R) — C(D,R) une
application contractante par rapport a la norme uniforme : ||F(f) — F(9)|lco < C|lf — glloo
avec C' < 1. Alors, il existe une unique solution a l’équation F(f) = f qui peut étre obtenue
par la limite lim,,_, o F (”)( f).

1.3 Séries de Fourier pour les fonctions continues

Le développement d’une fonction f sur [0, 1] en une série de la forme

(1.1) fx) = Z Sp sin(2mnzx) + Z Cp cos(2mn)
n>1 n>0

est appelé développement de Fourier ou série de Fourier. Nous avons vu en introduction que
cela pouvait étre trés utile, mais nous n’avons pas encore étudié 1’existence ou 'unicité d’un
tel développement. Regardons cela maintenant dans le cadre des fonctions continues f.

En fait, nous verrons que ces questions se résolvent naturellement une fois que nous avons
trouvé le « bon espace fonctionnel », mais il est instructif de les poser dés maintenant.

La premiére question est : comment déterminer les coefficients s,,, ¢,, 7 La clé est le lemme
suivant.

Lemma 1.8. Les relations d’orthogonalité suivantes sont vérifiées pour des entiers m,n > 0 :
Orthogonalité cosinus-cosinus :

1, ifn=m=0,
, ifn=m#0,
. ifn#m.

1
/ cos(2mnx) cos(2mma) dx =
0

O NI

Orthogonalité sinus-sinus :
0, ifn=0o0rm=0,
/1 sin(2mne) sin(2mme) de = ¢ 3, if n=m #0,
i 0, ifn#m.

Orthogonalité sinus-cosinus :
1
/ sin(2mnz) cos(2rmax) de =0  Vn,m.
0

Démonstration. La preuve est une simple conséquence des identités trigonométriques et de
leurs intégrales et est laissée en exercice. 0]

Grace a cette observation, si I'on s’attend a ce que la représentation ci-dessus soit valide
sous une certaine forme, alors les coefficients s,,, ¢,, doivent étre donnés par :
— Coefficients cosinus

1
Cpn = 2/ f(x) cos(2mnz)dz, pourn > 1.
0

Pour le terme constant ¢y, on a

co = /Olsf(x) dz.



— Coefficients sinus s, :
1
Sp = 2/ f(z)sin(2rnz) dx, forn > 1.
0

Remarquons que si nous voulons que ’égalité soit vérifiée aux extrémités, alors nous devons

avoir f(0) = f(1), car cela est aussi valable pour chaque fonction dans la série.

Il est surprenant de constater que l'existence et 'unicité du développement en série de

Fourier ne sont pas du tout évidentes, méme pour les fonctions continues !

En effet, la compréhension des contre-exemples a évolué avec le temps. Une premiére

observation est la suivante :

— Il existe une fonction continue f satisfaisant f(0) = f(1) dont la série de Fourier
converge ponctuellement partout mais ne converge pas uniformément. Il n’est pas facile
de construire une telle fonction, mais une fois donnée, il est aisé de vérifier ce phénoméne
(probablement en exercice).

Une affirmation encore plus frappante provient de la seconde moitié du XIXe siécle,
avec Du Bois-Reymond :

— 11 existe des fonctions continues f € C([0,1],R) avec f(0) = f(1) dont la série de
Fourier diverge en un point x € [0, 1].

Ce résultat a ensuite été généralisé par plusieurs mathématiciens qui ont trouvé des
fonctions continues f € C([0,1],R) avec f(0) = f(1) dont la série de Fourier diverge
en une infinité de points.

Enfin, la situation n’est pas complétement désespérée :

Proposition 1.9. Soit f € C?([0,1]) une fonction deuz fois continiment différentiable,
satisfaisant f(0) = f(1) et f'(0) = f'(1). Alors, sa série de Fourier

f(z) = J\llinoo ;V(sn sin(2mnx) + ¢, cos(2mnx),

converge par rapport a la norme uniforme | - |s.

Remark 1.10. En réalité, ce résultat reste valable sous des conditions bien moins contrai-
gnantes, par exemple pour les fonctions Holderiennes, c’est-a-dire vérifiant |f(z) — f(y)| <
|z — y|* pour un certain a > 0. Cependant, la preuve nécessite plus de précautions et dépasse
notre cadre.
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