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SECTION O

Introduction and motivation

As motivation, let us consider the mathematical description of heat transmission on a
homogeneous circular rod: the heat equation.

The heat equation on an interval [0,1) (describing the rod) is given by describing the
evolution of the temperature profile

Ju(t, x)
ot
together with some initial condition ug(x) = u(0,2) and the boundary condition u(t,0) =
u(t, 1) for all t > 0 to express that the ends of the rod are connected. Recall that in the 1D
case Af := a f and D > 0 is the diffusion coefficient.

The revolutlonary idea of Fourier was as follows. He noticed empirically that the heat
profile over time shows spatially oscillatory behaviour, and thus also motivated by the so-
lution of the wave equation using waves, he proposed to write any solution using spatially
oscillating functions like f,(z) = sin(27mnz) and g,(x) = cos(2rnz). More precisely, one
could try to find a solution of the form

= DAu(t, x)

— Z $p(t) sin(2mnx) + Z cn(t) cos(2mnz).

n>1 n>0
But now notice that Af, = —4n?n?f,, and thus if we try a solution of the form u,(z,t) =
fo(z)s,(t) with f,, as above, we obtain an equation
Dsy,
Sa—t() = —4Dm*n*s,(t).

This is a well-known ODE that is easily solved: s, (t) = exp(—4Dn*n?t)s,(0). Similarly for
the cos terms we get ¢, (t) = exp(—4Dm*n?t)c,(0).
We conclude that it would make sense to propose a solution of the form

u(t,z) = Z 5,(0) exp(—D4rn’t) sin(27nx) + Z cn(0) exp(—D4rn?t) cos(2mnx).

n>1 n>0

Notice that the initial condition then translates to the condition:

an sin(2mnx) + ch ) cos(2mnx).

n>1 n>0

If we do find such (s,(0), ¢,(0)),>0, then we may have found at least one solution to the heat
equation on the circular rod.

Now, this may sound very convincing, but on a closer look there are several questions
here:

(1) We have infinite sums - do they even converge? When do they converge and in which
sense?

(2) For which functions uy does the above-given expansion hold? In other words for
which initial conditions can we find a solution by this method?

(3) Are such expansions unique? Are the solutions we find unique?
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(4) Can one approximate solutions? For example this is relevant when trying to numer-
ically solve the equation. This is a question about convergence - and further, how
does the notion of convergence relate to the coefficients s, ¢,”

(5) More generally, how should one measure closesness of different initial conditions,
different solutions?

(6) What happens for non-circular rods, e.g. rods with endpoints in heat-baths? Or in
higher dimensions?

(7) What about more non-homogeneous case where D is no longer a constant in space?
Or when we replace A with more general (linear) operators, including for example
also some outside influences?

The aim of this course is to study the right mathematical framework to ask and answer such
questions. This will bring us to study function spaces, the Lebesgue integral and spectral
theory of linear operators. To see why some of those aspects might enter let us further
consider a simplified model.

0.1 A discrete model

To understand what we may hope to achieve, let us consider the same problem of heat
diffusion but on a discretised space. For example we think that the rod instead is decomposed
of n small containers which can exchange heat between its neighbours.

The temperature profile is now given by u(z,t) : {0,1,...,n} — R, with the periodicity
condition u(0,t) = u(n,t) for all ¢ > 0.

The evolution is still given by

ou(t

% = KAqu(t, x)
together with some initial condition wug(z) = u(0,z), only instead of the real Laplacian,
we have the discrete Laplacian Ayf(x) = i > ye f(y) — f(z), where y ~ z means that

y,x are neighbours in the underlying discrete graph and d, is the number of neighbours
of the vertex x. In our concrete case we have a circular graph with n vertices and thus
Agf(z) = w, where y, z denote the neighbouring vertices.

Now notice that the problem is really a system of n coupled ordinary differential equations
of second degree and Ay is just a linear operator on R" — R". So how do we solve it?

Let use the same steps as above but see that they have a very simple and concrete meaning
here:

e Notice that each u; can be seen as a vector in R™ with coordinates and A, can be
seen as a symmetric linear operator on R™(check it!)

e Assuch Ay can be diagonalized: there is an orthonormal basis ¢, ..., ¢, and eigen-
values A1, ..., A\, such that Ay¢; = \;¢;. In particular any function u : R" — R"™ can
be uniqueley written as Y., ¢;¢;.

e But now if we write u;(t) := ¢;(t)¢;, then again each ¢;(t) satisfies now a decoupled
ODE

ot
and thus has a solution ¢;(0) exp(K \;t).
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e We conclude a solution by finding ¢;(0) by determining the unique expansion ug :=
> i1 Gi(0) .

e Given the uniqueness of the expansion, this solution is also unique.

e And finally, we can easily compare solutions just using for example the Euclidean
norm. For example conclude that if the initial conditions are close, then so will be
the solutions at all times t > 0. We also know that this distance is equivalently
measured using the distances between two sets of coefficients (¢;)i=1..n, (€i)iz1..n -
and here using the Euclidean norm instead of some other norm is important.

Hence in this set-up all works super well and would work equally well as long as we have a
symmetric linear operator L instead of Ay.
What did we use here?

o We used the fact that R™ is finite-dimensional and thus there exist basis that give
unique expansions for each vector

e We used the fact that Ay is linear and symmetric and by the spectral theorem can
be diagonalised and we can find a basis of eigenvectors

e We used implicitly the linearity of the equation

None of these facts are clear in our original set-up as the space of functions from [0, 1] to
R is no longer finite-dimensional!

To address those we will have to look at spaces of functions and try to first see which
such spaces have a nice structure. For example, which spaces of functions satisfy linearity?
Which can be define a norm and talk about orthonormality? For which spaces do we have
orthonormal expansions? Looking for such nice properties brings us for example to also
introduce the Lebesgue integral to construct nice basis of functions.

After that, having spent some time understanding function spaces, we briefly look at the
study of linear operators on such spaces and in particular find some set-ups where there are
similar orthonormal decompositions using eigenfunctions. We then put all this together to
rigorously explain solving the inhomogeneous heat equation and other similar problems.

But this is already enough of introduction, let us get going!



SECTION 1

The space of continuous functions

Let us start with maybe the most intuitive of function spaces - the space of continuous
functions. This is partly a recap, as you have been working with continuous functions in
Analysis I-III, and we are just putting things in a wider context.

To start off the functions will be taking values on closed boxes D C R", i.e. rectangles
la1,b1] X -+ X [an, b,]) and taking values in R. At the end of the section we will discuss to
what extent we can (and may want to) generalize both of these choices. You may safely just
suppose D = [0, 1], as no actual extra difficulty comes from going to higher dimensions.

The set of all continuous functions from D — R will be denoted by C'(D,R):

C(D,R):={f:D — R, f continuous}.

In what follows we will try to understand the structure of this space.

1.1 Vector space structure of C(D,R)

The first observation we can make about the space C(D,R) is that it has a linear structure
like for example the vector space (R",+): if f,g € C(D,R), then also the function h(z) :=
f(z) + g(x) is in C(D,R), as is Af(x) where A € R.

Let us quickly check this for the first statement: for every x € D, by continuity of f,g
we can choose df,d, such that if y € D, ||z — y|| < dy then |f(z) — f(y)| < 5 and if
y € D, ||z —y| <, then |g(x) — g(y)| < §. But this means that if ||z — y[| < min(dy, ),

we have that |h(z) — h(y)| < € by the triangle inequality.

Exercise 1.1. Show that in fact C(D,R) has also multiplicative structure: i.e. if f,g €
C(D,R), then also the product h(z) = f(x)g(z) is in C(D,R). What about the function
max(f, g)?

In fact, the space C'(D,R) with addition satisfies all the axioms of a vector space! Indeed,
the identity element would be just the constant zero function, the inverse element of f the
function — f and all conditions are nicely met, as you can easily and patiently check.

Exercise 1.2. Recall the axioms of a vector space and verify them in the case of (C'(D,R),+).

In what follows we will often also call the vector space just C'(D,R).

Now we might be also interested in summing infinitely many functions, i.e. looking at
sums » -, fn. But in what sense can we talk about it? More generally, given a sequence of
(gn)n>1 in which sense can we talk about its convergence and limit?

The first idea might be to define limits pointwise: for each z € D the sequence (g, (x))n>1
is just a sequence of real numbers and thus we know what its convergence means. Thus
we may want to define the convergence of (g, ),>1 as functions to mean the convergence of
(gn(2))n>1 for all x € D. This is called pointwise convergence and as you have already seen
it suffers a small drawback:

Exercise 1.3. For D a closed box in R™, find a sequence of functions in C(D,R) that

converges pointwise to a function that is not continuous.
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It is a good idea to start from the case D = [0, 1] (which we discussed in class), but then
think how to do it in general.

We will look for other notions of convergence and to do this will introduce a norm on the
set C(D,R).

1.2 The uniform norm on C'(D, R)

Recall that the vector space R" comes also with several natural norms that give a notion
of length of a vector and give us a way to measure distances between vectors. It comes out
that one can also endow C(D,R) with a natural norm.

Definition 1.1 (The supremum (or uniform) norm). For f € C(D,R) we define its supre-
mum (or uniform) norm || f||s := supgep |f(x)].

In this definition we use the fact that D is closed and bounded - otherwise the supremum
might not be finite.

Exercise 1.4. Find an example of D that is not closed or not bounded, and f € C(D,R)
such that || f||o as defined above is infinite.

We called the expression above a norm, but recall that a norm on a vector space has again
a precise mathematical definition and its conditions need to be checked:

Proposition 1.2. ||f||w indeed defines a norm on the vector space C(D,R).

Proof. We need to check the conditions for a norm.

(1) |Ifllsc = 0 with equality if and only if f is equal to the constant zero function. This
is clear.

(2) IMlse = M flloo 1s also clear.

(3) Finally, we need to check the triangle inequality || f + g|lcoc < ||f]loo + ||g]lco- We have

1 + glle = sup [f(z) + g(x)| < sup(|f(z)] + |g(z)])
€D €D
by the triangle inequality. But now
sup(| f(2)[ + [g(x)[) < sup[f(x)[ + sup |g(z)]
€D zeD zeD

and we conclude.

O

Thus (C(D,R),+, ] - ||) is @ normed vector space pretty much like R™ with any of these
norms. This gives us a way to talk about convergence that is much more natural:

Proposition 1.3. Let (f,)n>1 be a sequence of C(D,R) functions converging to some func-
tion f: D — R w.r.t. the uniform norm. Then in fact f is continuous.

This is a restatement of a result from Analysis I which says that pointwise limits of
continuous functions are not continuous.

The proof technique is called the 3¢ or €/3 argument and you have again seen it already
in Analysis I. Let us give the proof just to understand what is now different from the earlier

situation
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Proof. 1t suffices to show that for every x € D, we can find 6 > 0 such that |f(x)— f(y)| < 3e
whenever ||z —y| < 6.
We can first choose a fixed n € N large enough so that || f, — f|le < €, and in particular
|fn(x) — f(x)] < € for every x € D by the definition (these are the first two epsilons).
Further, by continuity of f,, we can choose 0 > 0 such that for every y € D with ||lx—y|| < 9,
we have that |f,(x) — f.(y)| < € (this is the third epsilon). Putting things together using
triangle inequality we obtain:

(L1) [f(@) = fW)] = [f(2) = falx) + fulx) = fuly) + fuly) = FY)] <
< |f(@) = fal@)| + [ fulx) = S+ [faly) — F(y)] < 3e.

U

Notice that for pointwise convergence the first step fails: we can not necessarily choose an
n such that sup,cp |fn(2) — f(x)] < 3e.

Thus using this norm the set C(D,R) is also closed under taking convergent sequences.
In fact, it is even nicer than that and there are no gaps at all in the space, e.g. the space is
complete - a notion you have met for R” and that we recall here.

Definition 1.4 (Completeness of a normed space). A normed space (X, || - ||) is called
complete if every Cauchy sequence (x)n>1 (i-e. every sequence such that for every e > 0,
there is an ne with ||z, — x| < € for all n,m > n.) converges to an element x € X.

Theorem 1.5. The space (C(D,R),+, ] - ||oo) is a complete normed vector space.

The idea is to use completeness of R to define a potential limiting function and then to
verify that it really is that function.

Proof. We only need to check the completeness. So let (f,),>1 be a Cauchy sequence in
C(D,R). As for every x € D, (fu(2))n>1 is Cauchy and R is complete, we know a limit
exists and we can denote this limit by f(x). It remains to see that f, — f in the uniform
norm and that f is continuous. The latter claim follows from the proposition above, so we
need to just prove the convergence w.r.t. the uniform norm. This is left as an exercise on
the exercise sheet.

O

Remark 1.6. Mathematicians call any normed vector space that is complete a Banach space.
Such spaces are quite important in setting up quantum field theory.

The completeness of the space has important application, one of them is finding solutions to
ODEs via approximation. The tool used there is the Banach contraction mapping theorem
that you have already met in Analysis II according to the course sheets and that is just
recalled here:

Theorem 1.7 (Banach contraction mapping theorem). Let F' : C(D,R) — C(D,R) be
contractive w.r.t. the uniform norm: ||F(f) — F(g)|lcc < C||f — glloo with 0 < C < 1. Then
there is a unique solution to F(f) = f that can be obtained from the limit lim,_,. F™(fy)

starting from any fo € C(D,R).
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1.3 Fourier series for continuous functions

The expansion of a function f on [0, 1] to a series of the form

(1.2) f(z) = Z Spsin(2mne) + Z ¢y, cos(2mna)
n>1 n>0

is called the Fourier expansion or Fourier series. We saw in the introduction that it could
be quite useful, but we didn’t see any results on its existence / uniqueness. So let us look at
this in the context of continuous functions f now.

In fact we will see that these questions resolve themselves very smoothly once we find the
"right functional space", but it is instructive to consider the questions already.

The first question is how should we go about finding the coefficients s,,, ¢,,? There the key
is the following lemma.

Lemma 1.8. The following orthogonality relations hold for integers m,n > 0:
1. Cosine-cosine Orthogonality:

1, ifn=m=0,
, ifn=m#0,
. ifn#m.

1
/ cos(2mnx) cos(2mma) dx =
0

O I

2. Sine-Sine Orthogonality:
0, ifn=0o0rm=0,
/1 sin(2mne) sin(2rme) de = ¢ 1, if n=m #0,
' 0, ifn+#m.
3. Sine-Cosine Orthogonality:
/1 sin(2mnz) cos(2rmax) de =0 Vn,m.
0

Proof. The proof is a simple consequence of trigonometric identities and their integrals and
is left for the exercise sheet. 0J

The consequence of this observation is that if we expect the representation (|1.2]) to hold
in any nice sense, then the coefficients s,, ¢, should be given by:

e Cosine Coefficients c¢,,:
Cn = 2/1 f(x) cos(2mnz) dx, for n > 1.
For the constant term c(()), we have:
cop = /1 f(z)dx.
0
e Sine Coefficients s,,:

1
Sp = 2/ f(x)sin(2mnz) dx, formn > 1.
0
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Further notice that if we want it to hold at the endpoints, then we better have f(0) = f(1)
as this also holds for every function in the series.

Maybe a bit surprisingly both the existence and uniqueness are really not clear even for
continuous functions!

Indeed, the understanding of counterexamples has evolved with time. The first observation
is as follows

e There exists a continuous function f satisfying f(0) = f(1) whose Fourier series
converges pointwise everywhere but does not converge uniformly.

It is not easy to come up with such a function but once given, it is easy to check (probably
on the exercise sheet).
A more stunning claim comes from the second half of 19th century from Du Bois-Reymond:

e There exist continuous functions f € C([0,1],R) with f(0) = f(1) such that the
Fourier series diverges at a point = € [0, 1].

This was then extended by several people, including Kolmogorov to show that

e There are continuous functions f € C([0,1],R) with f(0) = f(1) where the Fourier
series diverges at infinitely many or even dense set of points.

Finally, Katznelson showed in 1970s that in fact

e For every continuous function f and every e > 0, there is some continuous function
g with ||g — f]| < € and the Fourier series of g diverges at some point.

This means that these unpleasant functions are really everywhere!

There are two ways out of this. First, one could just try to restrict the set of functions
that one is considering. Second, one could try to weaken further the notion of convergence
and maybe give up having pointwise convergence. We will mainly concentrate on the second
direction, as the first is too restrictive. But to finish this section let us still show how the
first direction can give us some nice results:

Proposition 1.9. Let f € C*([0,1]) be twice continuously differentiable and satisfying
f(0) = f(1) and f'(0) = f'(1). Then its Fourier series
f(z) = lim (sp sin(2mnx) + ¢, cos(2mn)),

N—oo
0<n<N

converges w.r.t. || - ||oo-
Remark 1.10. In fact the result holds under much less stringent conditions, e.q. when the

functions are so-called Holder continuous, i.e. satisfying |f(z) — f(y)| < |x — y|* for some
a > 0. Just the proof then needs a bit more care and is out of the scope for us.

The key ingredient is the following lemma, which we observed when guessing the solution
to the heat equation and that really explains why Fourier series are so useful:

Lemma 1.11. Suppose that f € C([0,1],R) is k times continuously differentiable and sat-
isfies f2(0) = f7(1) forallj =0...k— 1EI Then there is some C' > 0 such that for alln > 1
lcn] < CnF and |s,| < Cn™".

The full proof is on the exercise sheet, but let’s see the case k = 1.

Here by f7 (z) we mean the j — th derivative of f at x, the 0—th derivative being the function itself.
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e We have by integration by parts that

/[01] sin(2mnz) f(x)dr = 1 cos(2mnz) f'(z) < #Hflﬂoo

B 2mn [0,1]
Let us proceed to the proof of the proposition.

Proof of Proposition[1.9. By the lemma we have that |c,|,|s,] < Cn™2. Hence the Fourier
series is Cauchy in the uniform norm. Indeed, if we denote by S,; the partial series

Su(f) = Z(sn sin(2mnx) + ¢, cos(2mnx)),

n>0

then by the triangle inequality for all M > N:
1Sm(f) = Sn(llloe < D (Isnsin@ana)lloc + leq cos(2mna)||uo),

N<n<M

but || sin(27mnz)||« = || cos(2mnz)||o = 1 and hence we can bound the sum by

2C ) n?<20NT

N<n<M

which goes to 0 as N — oo. Hence as C([0,1],R) is complete for the uniform norm, we
obtain the convergence to some continuous function g.

To conclude the theorem, we still need to argue that f = g. To do this we observe first
(this is on the exercise sheet) that for all n > 0

/Ol(f — g)sin(2mnx)dr = /Ol(f — g) cos(2mnx)dz = 0.

It then follows from the next proposition that g = f. O

Proposition 1.12. Suppose f is a continuous function on [0,1]. Then s, = 0,¢, = 0 for
all n >0 if and only if f(x) =0 for all z € [0, 1].

In particular, if the Fourier series of a function converges uniformly, then it is equal to
the function itself and each function has at most one expansion in Fourier series.

Before proceeding further, you should pause and think why this is not immediate.

In fact proving this proposition giving the means we have is not completely straightforward.
We will later see how it becomes slick and swift once we have found the right functional space
for the Fourier series, where each function has a unique series converging exactly w.r.t. to
the norm of the space.

We will prove here the proposition modulo a key construction, that is given on the example
sheet.

Proof. We want to show that s,, = 0,¢, = 0 for all n > 0 gives f = 0. We will argue by
contradiction and show that if for some g € (0,1) it holds that f(xy) # 0, then there is a
contradiction with the hypothesis of the proposition.

The idea is to construct an approximations 7,, ., of the identity, or if you wish an approx-
imations of the Dirac delta function d,, using finite sums of sines and cosines and to argue

that 1) on the one hand fol f(@)Tpodr = f(xq) for m large and 2) on the other hand by
10



hypothesis fol f(x)Th, zodx = 0 for all m > 1. The construction is recorded in the following
lemma.

Lemma 1.13. For each xy € (0,1) one can construct a series of functions T,, .,(x) as a
linear sum of sin(2wxn), cos(2ram) with m,n < N, i.e. by setting

Ty () = Z (@2 SIN(2TNT) + byy 4, COS(2TNT)
n<N
such that the following points hold.
(1) For everym > 1, x € [0, 1] we have T}, 4,(x) >0
(2) For every m > 1 we have fol Tz () = 1.
(3) For all § > 0: fol Liz—zo>6mzo (x)dz — 0 as N — oo.

Given such a sequence of (7, 4,)m>1, We obtain the contradiction as follows.
On the one hand by the hypothesis for all m > 1 we have

1 1 1
/ F(@) T py(x)da = Z (amjo/ f(z)sin(2mnz)dx + bn,xo/ f(z) cos(27mx)dx> =0.
0 < 0 0
On the other hand suppose f(zg) # 0, say WLOG f(x¢) > 0. Then there is some § > 0 such
that f(z) > f(x¢)/2 in some region [—6 + o, xg + 6]. Write

5+$0 1
/ f m.to dl’_/ f(x)Tm,wodx+/ ]-\x xo|>§f( ) mzodx
0

754»560
We can bound the second term in absolute value by

1
15l / o soosTonn (2)d2

Which goes to zero by the lemma. The first term however can be bounded from below by

fzo)/2 [° J;f; Trnwo(x)dz. Combining the conditions of Lemma, we see that for m large
enough this integral is larger than say 1/2 and thus the whole term is larger than f(z()/4
for m large enough. And in particular we conclude that fol (@) Tz (z)dz # 0 for m large
enough! This gives a contradiction. But our assumption was that f(x¢) # 0, so this cannot

hold and we conclude the proposition. 0]

This was in the end not hard, but quite a fiddly proof and moreover also the existence of
Fourier series for continuous functions had several delicate points. We would prefer if the
existence and uniqueness would be simple consequences of a good set-up, like in the case of
R™. With this in mind, we will go towards larger function spaces.
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SECTION 2

Lebesgue measure and Lebesgue integral on R”

We will continue our aim of constructing a convenient / appropriate function space for
the Fourier expansions. Motivated by the finite-dimensional example, we would want to
construct a space of functions with an inner product of the type [ f(z)g(z)dz and then see
the Fourier series as an orthogonormal basis of this space.

To do this, we will have to make a detour and renew our understanding of two intimately
linked notions: 1) the integral of a function 2) the size / measure of subsets of R".

But let us start off by discussing why the Riemann integral does not suffice.

2.1 An issue with the Riemann integral

One way to define the Riemann integral of a function f : [0,1] — R is as follows.
(1) We subdivide [0, 1] into 2" equal disjoint intervals D, ; = [i27", (i + 1)27"] each of
size 27
(2) We call a function Riemann integrable if U, := 27" 32" ' sup, p,. f(z) (which is

decreasing) and L, := 27" 212:8 "inf p,.. f(x) (which is increasing) both converge
to the same limit.
(3) We define the Riemann integral of f, that from now on we denote for clarity by

®f01 f(x)dz to be equal to this limit.

It is easy to see that Riemann integral satisfies some nice properties:

Exercise 2.1. Show that the Riemann integral satisfies some desirable properties:

o All continuous functions on [0, 1] are Riemann integrable

e Fvery function f that changes value finitely many times is Riemann integrable

e Linearity: If f, g are Riemann integrable on [0, 1], then so is their sum and the integral
1s equal to the sums.

However, the Riemann integrability does not behave well under limits or infinite sums.
Indeed, consider a enumeration qi, ¢, ... of all rational numbers in [0, 1] (can you give a
concrete one?) and define f,(z) =1ifx € {q1,...,¢,} and f,(x) = 0 otherwise. Then each
fn is Riemann-integrable (with @ fol fa(z) = 0) by the exercise above, but the limit is not
Riemann integrable as in every interval the sup is equal to 1 and inf is equal to 0 and thus
U,=1foralln>1and L, =0 for all n > 1.

We will see how this is remedied with the notion of Lebesgue integral.

2.2 The Lebesgue measure

We start however by revisiting the notion of size / volume / measure of subsets of R™.
This is directly related to the integral as even in the case of Riemann integral, if the set
A C R is nice enough then [, 14(x)dz = size(A). What should nice enough be is one of the
main questions.

As said, the Lebesgue measure on R generalizes the notion of length and assigns each

permissible subset of R a size. More formally, the Lebesgue measure is a function L : F —
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[0,00), where F is some collection of subsets of R satisfying some collection of properties.
What should such natural properties be?

(1) First, in the case of R, we would like the length / measure of each interval [a, ],
(a,b), [a,b) or (a,b] to be just b — a. In particular each point {z} should have length
0

(2) We certainly would want also L()) =0 and L(A) > 0 for all A € F.

(3) Second, we would like measure to satisfy some additivity properties. For example
the size of the union of two disjoint sets should clearly be just the sum of their sizes:
i.e. in symbols L(A; U As) = L(Ay) + L(Ay). By induction this should hold for any
finite number of disjoint intervals: L(A; U---UA,) = L(A;) + ... L(4,).

(4) Further, it might make sense for this additivity to hold also if we have countably
many disjoint sets? But attention! We cannot ask it for all infinite unions: indeed,
for example [0, 1] can be seen as a disjoint union of all points {z} in [0, 1], but the
sum of their lengths would be 0 whereas the measure of [0, 1] has to be clearly 1!

Observe that only the first property has something specific to do with R, all the others are
of very abstract nature. A big breakthrough by Lebesgue was to understand that combining
these properties gives the right mathematical framework to talk of size / measure on any
set! This is encapsulated in the following general definition:

Definition 2.1 (Measure space, Borel 1898, Lebesgue 1901-1903). A measure space is a
triple (2, F, i), where
e () is a set, called the sample space or the universe.
o F is a set of subsets of §2, satisfying:
- 0eF;
—if A € F, then also A € F;
— If Ay, Ay, --- € F, then also |J,~; An € F.
F is called a o-algebra and any A € F is called a measurable set.
e And finally, we have a function p : F — [0,00] satisfying u(0) = 0 and countable
additivity for disjoint sets: if Ay, Ag,--- € F are pairwise disjoint,

a4 = 3 A

This function p is called a measure. If u(Q) < oo, we call p a finite measure.

Geometrically we interpret:

e () as our space of points
e F as the collection of subsets for which our notion of volume can be defined
e 4, our notion of volume: it gives each measurable set its volume.

We can define a measure on any set of points, finite or infinite. Some telling examples are:

Example 2.2 (Counting measure). On any set £ one can define the counting measure fi.:
we set F := P(Q) (the set of all subsets), and p.({w}) =1 for any w € Q. For any finite
set B, u.(E) gives its number of elements. If E is infinite, then so is u.(E). In particular,
if Q is an infinite set, then p.(2) = oo, so this is a measure, but not a finite measure.

Notice that on a space with finite number of points it gives the natural uniform measure -

each point is treated in the same way. However, it is not the natural measure of size on say
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R as the size of say [0, 1] would be infinite. The natural uniform measure on [0, 1] or R will
be called the Lebesgue measure, but its existence is already mathematically non-trivial - we
will come to this in a bit.

Example 2.3 (Delta measure). The (Dirac) delta function that you have seen mentioned in
the courses, is actually a measure, not a function and can be defined on any space and for
any o—algebra that contains points. On any set ) one can define the Dirac delta measure
Wy at the point x as follows: suppose F contains points and we set pu,({x}) = 1 and more
generally p.(F) =1 if x € F and p,(F) = 0 otherwise, for every F € F. In particular,
rigorously the delta function is defined as a measure and not a function.

We will come back to this and its connection to the 'Dirac delta function’ you have seen
before later on.

Finally, a both nice and important aspect of the framework of measure spaces is that it also
gives the mathematical basis for probability theory - this was observed by A. Kolmogorov
some 30 years after the introduction of measure spaces! A probability space is a measure
space with total mass equal to 1, i.e. x(€2) = 1. In that case we often use the notation of P
for the measure p. The framework of probability is used for observing / measuring what’s
going on in the world:

e ) as the space of all microstates / all possible outcomes; e.g. the states of the
atmosphere

e F is the collection of observable events / outcomes: i.e. subsets of microstates, whose
happening or not happening can be observed; for example we can maybe only measure
macroscopic parameters like temperature, or the amount of rain over an hour

e The measure P will assign a number in [0, 1], called probability, to each observable
event. Those events that surely happen, get probability 1.

Example 2.4. The probability space for describing a fair coin toss would be

{H, T3 A0,{H}{T},{H,T}},P),

where P{H}) =P({F}) =1/2.
The probability space for describing a fair dice would be

({1,2,3,4,5,6},P({1,2,3,4,5,6}),P),

where we define P(F') = |F|/6. If instead we paint all the faces 1,2,3,4,5 black so they become
indistinguishable, we can modify our model by taking F = {0,{1,2,3,4,5,6},{1,2,3,4,5},{6}}
and using the probability measure P defined only on these subsets, still with the same formula
as above.

Exercise 2.2. Find a measure space to describe two unrelated fair coin tosses. What as-
sumptions are you making in giving the description? Define a sigma-algebra suitable for
studying the situation where one can only ask if the two coins have the same side up, or
different sides up.

Finally, as mentioned not all natural measure spaces are simple to define. We already
mentioned that the natural "uniform" measure on [0, 1] or R needs some work. But one
would actually also want to define natural measures on more complicated structures like the

space of all continuous functions - indeed, this gives one way to formalize path-integrals in
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quantum mechanics. This was achieved by Wiener in the beginning of 20th century; the
similar task for string theory, i.e. defining probability measures over surfaces with different
metric structures has been partially resolved only in the recent years.

2.2.1 Basic properties of measure spaces

Before discussing the Lebesgue measure let us play aroud a bit with the notion of a measure
space.
First, the following lemma helps to see which other sets would be measurable:

Lemma 2.5 (Constructing more measurable sets). Consider a set Q with a o-algebra F.

(1) If Ay, Az, ..., € F, then also 5, An € F.
(2) Then also Q € F and if A, B € F, then also A\ B € F.
(8) Foranyn > 1, if Ay,..., A, € F, then also AyU---UA, € F and A1N---NA, € F.

Proof of Lemma[2.5. By de Morgan’s laws for any sets (A;);cs, we have that

A= (45
i€l i€l
Property (1) follows from this, as if Ay, Ay, -+ € F, then by the definition of a o-algebra
also Af, AS,--- € F and hence
(J4g)eF.
i>1
For (3), again by de Morgan laws, it suffices to show that A;U---UA, € F. But this follows
from the definition of a o-algebra, as A, U---U A, = Ui21 A; with A, = 0 for k > n + 1.
Finally, for (2) we can just write Q = ()°.
The fact that A\ B € F is left as an exercise. O

The statements are also very intuitive at least in the context of probability: e.g. the first
one says that if we can observe if some events A, A,,... happen, then we can observe if
they all happen at once; the second property says that if two events can be observed, then
we can always also observe if one of them happened but not the other one.

In a similar vein, the basic conditions on the measure, give rise to several natural properties
too:

Proposition 2.6 (Basic properties of a measure and a probability measure). Consider a
measure space (2, F, ). Let Ay, Ay, -+ € F. Then

(1) For anyn > 1, and Ay, ..., A, disjoint, we have finite additivity
p(A) + -+ p(Ay) = p(A U UA).
In particular if Ay C Ay then u(A;) < u(As).
(2) If for all n > 1, we have A, C A,i1, then as n — oo, it holds that u(A,) —

M(Uk21 Ag).
(3) We have countable subadditivity (also called the union bound): p({J,>, An) < D51 1(AL).

If in fact w(QY) is finite (e.g. a probability measure), we further also have the following
properties:

(4) For any A € F, we have that u(A°) = u(2) — u(A).
15



(5) If for all n > 1, we have A, O A,i1, then as n — oo, it holds that p(A,) —
M(ﬂkg Ag).

Again, please do check that all these properties also make sense intuitively!

Proof of Proposition [2.0. Finite additivity follows from countable additivity by taking A =
0 for k >n+1.

(2), (3) are left as exercises.

For (4), we just notice that A and A° are disjoint and A U A° = Q. Thus by disjoint
additivity P(A) + P(A°) = 1. Finally, for (5), define B, = AS. Then P(A,) = P(BS) =
1 —P(B,). Similarly P((,s; Ak) = 1 — P(U,~, Bx). Thus the result follows from (2). The
rest is left as an exercise - 0J

2.2.2 The Lebesgue measure

The Lebesgue measure is the right notion uniform measure on the spaces R" (or say a unit
cube [0, 1]™ or a ball). This measure is called uniform because it is isotropic, i.e. it treats all
the points in the set equally. More formally, it is up to a multiplicative constant the measure
w such that p(A) = p(A+ A), where A is some measurable set and A\+ A :={a+\:a € A}.

To define the uniform measure on R", we should first pick the right o—algebra. First, it
certainly has to be big enough to contain at least all the boxes. Now, it is an interesting fact
that in the standard axiomatization of mathematics [ one cannot take the o—-algebra to be
equal to P(R") - otherwise one runs into contradictions as explained in the non-examinable
part of the example sheet. However, there are some o—algebras that are big enough to
contain all sets we might be interested in and small enough at the same time to create no
contradiction.

Definition 2.7 (Borel o-algebra). The Borel o-algebra Fp on R™ is defined as the smallest
o—algebra containing all bozes, i.e. all sets of the form 117, [a;, b;] with real numbers a; < b;.

1=

This definition hides a claim: the fact that such a smallest o—algebra exists. However,
it is a simple but not that illuminating exercise to show that an arbitrary intersection of
o—algebras is a o—algebra and thus the smallest has a well-defined meaning. It is maybe
more interesting to see what it contains, i.e. what we can measure [}

Example 2.8. The Borel c—algebra contains for example all points, i.e. sets of the form
{z}: indeed, we can write

{z} = () + [=m ™t m]").

m>1

Exercise 2.3. Show that the Borel c—algebra on R™ also contains all products of half-lines
7, (—00, a;], all open balls B(x,r) and in fact all open sets of R™

The main theorem of this section is then the following result, that we assume without
proof:

2Meaning that we assume the axiom of choice
3t is maybe as interesting to see that there are sets in the power-set of R™ that do not belong to the
Borel o—algebra. However, describing them explicitly is not that easy - if interested, see the for fun section
on the example sheet.
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Theorem 2.9 (Existence and uniqueness of Lebesgue measure). There is a unique measure
A defined on (R™, Fg) such that the measure of each box 11" [a;, b;] is given by 11, (b; — a;).

Some other nice properties of the Lebesgue measure follow from this theorem:

e [t is translation invariant: for every set A € Fp, if we denote by A + b the set

{a+b:a € A}, then the Lebesgue measure A satisfies A(4) = A(A + b). Indeed,
denote by A(A) := A(A +b). This defines another measure on (R", Fp) such that

A(box) equals the volume of the box. Thus by uniqueness part of the theorem we
obtain A = A and hence A\(A + b) = A(A) for all Borel sets A.

e It can be also proved that the Lebesgue measure is rotation invariant: for every set

A € Fg, if we denote by R(A) the set rotated by the rotation matrix R, then the
Lebesgue measure \ satisfies A(A) = A(R(A)).

Maybe somewhat surprisingly the proof of this natural theorem is not immediate. The
problem is the following: it is simple to assign measure to each box, or each finite union of
disjoint boxes etc...however, the Borel o-algebra is much richer than that. Indeed, there are
sets in the Borel og-algebra that one cannot obtain in a finite number of steps by starting with
boxes and taking iteratively unions, intersections and complements in any order. Hence the
fact that one can assign a measure to all Borel sets in a way that the axioms are satisfied and
boxes have the right size is not immediate. Also the statement of uniqueness is non-evident
for the same reason - why should equality for all boxes imply it for all Borel sets?

The

proof goes beyond the scope of this course, but here is the sketch for one of the

possible approaches for those interested (not examinable).

* Start of non-examinable section

For any rectangle R = I [a;, b;], let’s denote by |R| its natural volume II7_, (b; — a;).

(1)

First, we define for any set A C R? a notion of size called the exterior measure:
m*(E) := inf Y7 |R;|, where the infimum is over all coverings of the set E using
rectangles - this gives a certain approximation of size from above.

Notice that from this definition it is not immediate that even m*(R) = |R|, but
that can be argued for both closed and open rectangles. Also, it is important that
we allow for countably many rectangles - see exercise sheet.

It comes out that showing all the axioms of the measure for all subsets of R? is
impossible E] So now comes the key idea of choosing a subclass of sets which is large
enough to contain Borel sets, but small enough to be able to make everything work:
we call a set measurable if for every e > 0, there is some countable collection of
rectangles (R;);>1 such that £ C |J,o, R; and m*(EA(U,», Ri)) < e. This means
that our earlier approximation from above can be chosen to fit well.

It then remains to argue that these sets actually form a o—algebra and that all axioms
are satisfied for ((R%, Fr,m*). In fact they form a o—algebra, called the Lebesgue
o—algebra Fp, that is even larger than Fp!

This final step doesn’t require any big theorems or inputs, but it does require quite
a bit of care in setting up the order of the argument. It is then an easy conclusion
that Fg C Fr, as Fp can be generated from just rectangles and we can conclude.

4as long as one assumes the Axiom of Choice
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* End of non-examinable section %

Example 2.10. The Lebesgue measure of a point is zero: indeed for every e > 0, we have
that A({z}) < M{z} + [—¢€,€]™) = (2€)", which can be made arbitrarily small.
Hence also the measure of all rational numbers is zero: we have by countably additivity

Q) = > peqr{a}) =0.

Exercise 2.4. Show that the Lebesque measure of R™ is infinite and that the Lebesgue mea-
sure of the line segment [0,1] x {0} --- x {0} C R™ is zero.

Now consider the Lebesgue measure on R. Prove that the measure of irrational numbers
contained in [0, R] is equal to R; prove also that the Lebesgue measure of the Cantor set is
zero.

2.3 Lebesgue integral

Recall our grand plan was to construct a function space which has a nice inner product of
the form [ f(z)g(x)dz and all the nice properties of a function space like linearity, closedness
under limits and completeness. With Riemann integral this would never be possible, as we
saw it does not behave that well under taking limits. Hence let us see another notion of
integral, called the Lebesgue integral. To start off, let’s see that defining a measure always
gives us a natural space of functions and those will be the candidates for defining the integral
for.

2.3.1 Measurable functions

Each measure space comes with a class of natural functions, called measurable functions.
These will also form the class of functions for which we aim to define the Lebesgue integral.

We will constrain ourselves to working with functions from R"™ — R, although the notion
of a "measurable" function is quite a bit larger, applying to maps between any two sets
together with o—algebras; in our case these would be the pairs (R", Fp) and (R, Fp), where
in both cases we consider the Borel o—algebra.

The simplest measurable functions (on (R", Fp)) are those given by characteristic func-
tions 1g for some Borel-measurable set E' € Fg, i.e. functions that tell us whether x is in a
set - then 1g(x) = 1 - or not, in which case 1g(z) = 0. Their countable linear combinations
are called simple functions:

Definition 2.11 (Simple functions). Let Ey, Es, ... be disjoint Borel sets in R™ and ¢y, ¢a, . . .
real numbers. Then a function of the form f(z) = Zz‘zl Cilyer, s called a stmple function.

We can then define

Definition 2.12 (Measurable function). We call a function f : R™ — R measurable if it is
a pointwise limit of simple functions.
This definition is natural, however it is not so easy to work with. So let us start by proving

an equivalence with another rather nice definition.

Proposition 2.13. A function f : R™ — R is measurable if and only if for every a < b the

preimage f~'([a,b))) is Borel measurable.
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We will sometimes call this condition the preimage condition.
The proof consists of two lemmas, one for each direction both teaching us something about
measurable functions:

Lemma 2.14. Suppose that the sequence of functions (fi)i>1 from R™ to R is such that
for every a < b the preimage f;"([a,b)) is Borel measurable. Suppose also that f; converge
pointwise to f.

Then f also satisfies the same property, i.e. the preimages f~*([a,b)) are Borel measurable.

Lemma 2.15. Suppose f is such that for every a < b the preimage f~([a,b)) is Borel
measurable. Then f is a pointwise limit of simple functions f,.
Further, a sequence can be chosen to be pointwise increasing and to converge uniformly.

The proof of proposition follows from these two lemmas.

Proof of Proposition. Lemma [2.15] tells us directly that if f satisfies the preimage condition,
then it is measurable.

Let us now show conversely that each measurable function satisfies the preimage condition.
Using Lemma and the definition of measurable functions it satisfies to show that each
simple function satisfies the preimage property.

So, consider a simple function g = Y. ¢;1g, with ¢; € R and E; € Fp. Then f~([a,b)) =
Us:ciela,p)) & 18 a countable union of Borel measurable sets and thus Borel measurable as
desired, finishing the proof. O

Let us now prove the two lemmas.

Proof of Lemma[2.13. Our aim is to show that f~!([a,b)) is a Borel set and this follows

from:
F a0 =UJU N £ ((a=1/5,0—1/k)).

721 k>1n>1m>n
The verification of this equality is on the exercise sheet

Proof of Lemmal[2.15 Consider f, : R — R defined by
falz) :=27"2"f(2)].

Each f, is a simple function as we can write
Fal@) =D k27" pwpepan (1))
kez

and by assumption the sets {f(x) € [k27",(k 4+ 1)27")} are measurable. Further we notice
that

fulw) =272 f(a) | = 2772 (270 f ()| > 27 (277 f ()] = fn()
proving monotonicity. As also
ful@) 2 2772%(f(x) = 277) = f(z) = 27"
and thus || f(z) — fu(z)]| < 27" and we obtain uniform convergence. O

Several nice properties of the space of measurable functions can be now verified. First,

the space of measurable functions again has a linear structure:
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Lemma 2.16. If f,g are measurable, then so are \f for A € R and f + g.
Proof. This is on the exercise sheet. 0

Second, the space of measurable functions is closed under pointwise limits.

Lemma 2.17. Let (f,)n>1 be a sequence of measurable functions converging pointwise to a
function f. Then f is also measurable.

Motice that this lemma follows directly from Lemma under the equivalence of defini-
tions given by Proposition [2.13] Finally, the space contains all continuous functions.

Lemma 2.18. Let f: R"™ — R be continuous, then f is also measurable.

Proof. This is also on the exercise sheet
O

To finish this section we remark again that in everything we did above we didn’t use at all
that the domain of our functions was R"! We could have equally well worked on any other
measure space, laying groundwork for defining integration in a very large generality!

2.3.2 The idea behind Lebesgue integral

Recall that if a function f : R — R is Riemann-integrable then we can calculate its
Riemann integral on [0, 1] using the following approximation procedure:

e we subdivide [0, 1] into 2" equal disjoint intervals D; each of size 27";

e we calculate the approximated integral 27 32" 1 f(i27™);
e we take the limit n — oo.

To calculate the Lebesgue integral (that we will shortly define) for a Lebesgue-integrable
function on [0, 1] we can also proceed via an approximation, but rather in the image of the
function:

e we take the dyadic approximations from the previous subsection: f,, :=27"|2" f(x)];
e we calculate ) ., i27"X(x € [0,1] : fu(x) =1427");
e and take the limit n — oo.
So in some sense the difference w.r.t. to the Riemann integral is that we group the values not
according to the vicinity in the domain [0, 1], but rather based on the vicinity of the function
values. So if you wish, you can think that the Lebesgue integral treats each function in a
more personal way, the approximations are based on its behaviour.
Let us now move to the formal definition of the Lebesgue integral, which we do using a
slightly wider class of approximations.

2.3.3 Definition of the Lebesgue integral via simple functions

There are several ways to define the Riemann integralE] Similarly, there are multiple
equivalent approaches to constructing the Lebesgue integral (e.g., Stein—Shakarchi, Kol-
mogorov—Fomin, and Boccarini all present slightly different versions). Last year we picked a

SFor instance, one can define it using upper and lower (Darboux) sums with arbitrary partitions or
just dyadic ones; or even avoid these altogether and define integrability via convergence of approximating
Riemann sums in a suitable sense.
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definition via dyadic approximations that is maybe simplest to state and intuitive to grasp;
this year we go for a definition that is simplest to work with mathematically.

Although the definition we will give works for measurable functions on any measure space
(Q, F,n), we will focus on the case (0, F,u) = (R", Fp, A), i.e., R" with its Borel sigma-
algebra and Lebesgue measure.

For simple functions, i.e. step functions of the form f(z) =", ¢;1g,, with E; are disjoint
Borel sets and ¢; € R the Lebesgue integral is simple to define:

Lemma 2.19 (Lebesgue integral for simple functions). Let f(x) be a simple function given
e.g. by f(z) = >, c;ilg,. We call f Lebesque integrable if >, |¢;|\(E;) < oo and define its
Lebesgue integral by

F@)Mdz) =" cME).
Further, being integrable and the value of the integral are independent of the chosen repre-
sentation of f as a simple function.

This is called a lemma and not a definition because of the final part. For example the
function f(x) = 1j1) could be equivalently written as f(x) = 1jg,1/2) + 11/2,1) Or even as an
infinite sum f(z) = ) . 1p, where (E;);>1 is any partition of [0,1] into disjoint Borel sets
(can you find one?). Thus, one does need to verify that integrability and the integral do not
depend on the choice of the representation. Luckily, this is a simple check.

Proof. Denote by S the set the image of f, i.e. the set {f(x) : z € R"}. Notice that for a
simple function it is always countable.

Then observe that for every s € S, we can define Fy := {x : f(x) = s} that depend only
on the function f. Further, for any representation f(z) = . ¢;lp, we have Fy = Uj.,—sE;
and in particular all F; are Borel and disjoint for different s € S.

As Yo |Gl ANE) = Do ses ISIAFS) and Y0 A (E) = Y cq SA(Fs) we conclude that both
integrability and the integral are well-defined and independent of the representation. 0

Example 2.20. For example, in contrast to the Riemann integral f(x) = 1g(z) is integrable
with integral equal to 0. Similarly, and f(x) = lpapo() is integrable with integral equal to
1 - both are themselves simple functions!

For general measurable functions we will proceed in two steps: first we define the Lebesgue
integral for non-negative functions, and then generalise it to all measurable functions by
separating into non-negative and positive parts.

Definition 2.21 (Lebesgue integral). Let f : R — R be non-negative and measurable.
Then we define

[ 1) o) i= s { [ st o)

We say that [ is integrable if this supremum is finite.
For a general measurable function f, we write f = f, — f_, where fi, f_ are the positive
and negative parts of f, given by
er:maX(f?O)? f, :max(_f>0)'
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We say that f is integrable if both f, and f_ are integrable, and define
) Adn) = [ fo@ M) — [ f () Ada).
R™ R7 R"

We will sometimes for the sake of brevity also use the shortcut [ fA(dz) == [g. f(x) A(dx)
or even [ fdA.

Remark 2.22. One could also try to alternatively define the integral as a limit of integrals of
any sequence of uniformly approrimating simple functions. This works well when integrating
over sets of finite measure (like say [0, 1]); however, as you see on the example sheet, it would
require care when integrating over sets of infinite measure, like R or R™.

Exercise 2.5. Verify from the definitions that f(x) = x1j91) s measurable and integrable.
Calculate its integral also from the definition. What about f(x) = 2~ 1]

Remark 2.23. We can further define the integral over any Borel integrable set E, which we
denote by [, f(x)\(dx) by just considering the integral of 1p(x)f(x), which as a product of
measurable functions is nicely measurable.

Remark 2.24. We can similarly define an integral over complex-valued functions by just
separating the real and imaginary parts, i.e. if f(x) = r(x)+iq(x) we call it integrable if the
real functions r,q are and just set [ fd\ = [rd\+1i [ gd\.

Whereas it is natural to define the Lebesgue integral via simple functions, as countable
collections go well with the measure-theoretic framework, it is technically convenient to
observe that one can actually work with simple functions that are given by just finite sums.

Lemma 2.25. Let us call a simple functions f simple and finite, if it can be written as f(x) =
Yo cilp,(x) for some finite disjoint sets Ey, ..., E, and some real numbers c1, ..., ¢,. Then
we have that

sup {/n g(x)A(dz) |0<g<f g simple} = sup {/n 9(x) Mdx)

and wn particular one can equivalently define the Lebesque integral by just considering simple
functions that are given by finite sums.

Proof. 1t is clear that the LHS is larger than the RHS. So it just remains to show that RHS
is at least as big as the LHS. To do this notice that for any non-negative integrable simple
function g(z) = 5, cilg, (), i.e. a function for which ;. ¢;A(E;) < oo, we can associate

0<g< [, g simple and ﬁmte}

a simple finite function g.(z) = Zfil cilp;, where N is chosen such that } . ¢ A\(E;) < e.
By definition this guarantees that

| - g(x)A\(dx) — /Rn ge(z2)A(dz)| < e.

Now denote by Sy, the supremum on the LHS and by Sk the supremum on the RHS of the
equality in the lemma. By definition we can choose g such that [, g(z)\(dz) > S, —e. But
then by construction [, ge(z)A(dx) > Sp, — 2e and by taking € — 0 we see that RHS is also
at least as large as the LHS.

We conclude that two suprema agree, and the integral could equivalently have been defined

using only finite simple functions. U
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2.3.4 Basic properties of the Lebesgue integral

We begin by examining some basic properties of the Lebesgue integral. Notice that several
of these natural properties do not hold for the Riemann integral!

Proposition 2.26 (Basic properties of the Lebesgue integral). Let f : R" — R be measur-
able. Then
(1) if f >0 and f is integrable, then [ fd\ >0
(2) if |f(x)| < C for all x € R", then it is integrable over any finite box [ai,by] X - -+ X
[an, by] C R”
(3) if M(f #0) :=AX{x: f(z) #0}) =0, then f is integrable and [ fd\ =0
(4) if f >0 and [ fd\ =0, then A\(f # 0) = 0.

Notice that even property 2 is rather interesting: it somehow says that for a measurable
function only unboundedness can prevent it from being integrable! We have separated the
question of "regularity" of the function (carried by the notion of measurability) from that of
its size (which governs integrability).

Proof. The first property comes directly from the definition. The others are on the exercise
sheet.
O

In particular, applying property (3) to the difference f — g of two measurable f,g we
should intuitively obtain:

Corollary 2.27. Let f,g be two measurable functions such that A\(f # g) == A{z : f(z) #
g(x)}) = 0. Then f is integrable iff g is integrable and [ fd\ = [ gd\.

However, writing down the proof we will see that we are still lacking a tool to show this
nicely H
Proof. Define h = g — f. Then h is measurable and A(h # 0) = 0. Thus by the proposition

h is integrable and [ hdX = 0.
We would like to know say that g = f 4 h and it is integrable because f, h are and further

/gd)\:/(f+h)d>\:/fd>\+/hd>\.

But here we are already using the linearity of the Lebesgue integral, something we still need
to prove and that is stated in the next proposition. ([l

Proposition 2.28. Let f, g be Lebesgue integrable functions. We have the following linearity
statement. For a,b € R, then af + bg is integrable and

/(af—i—bg)d)\:a/fd)\—i-b/gd)\.

It comes out this linearity is not as straightforward to prove as one hopes!
Indeed, it is straight-forward to check that for finite simple functions f, ¢ it holds that
J(f+g9)d\= [ fd\+ [ gd\. To see this set f =", cilg and g =3 7", d;1p;, then

g+ f= Z Z (Ci‘f‘dj)lEij’

1=0...n j=0...m

60ne can show this particular case also by hand, but it is a bit tiring and not worthwhile.
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where we define ¢y = dy := 0 and Ey := R" \ U, E; and Fy = R" \ UL, Fj. Here we have
introduced ¢y, dy because the function f takes value 0 in the complement of UY,E; and ¢
takes value 0 in the complement of UM, F;.

It can be then checked from the definition that [(f+g)d\ = [ fd\+ [ gd) for these finite
simple functions (on the exercise sheet).

It is also easy to see that for non-negative measurable f,g we have that [(f + g)d\ >
[ fd\ + [ gd\. Indeed, whenever h > 0,5 > 0 are simple finite functions bounded from
above by f, g respectively, the function k := h + j is a simple finite function bounded from
above by f + ¢g. Thus

sup {/ k(x) A(dz) ‘ 0<k<f+g,ksimple and ﬁnite}

is larger than the sum of

sup { / () Aldr)
sup { [ i) ata

The other inequality, however, requires a few tools. The issue is the following:

0 < h < f, h simple and ﬁnite}

and

0<j<g,jsimple and ﬁnite}

e given a simple function £ below f + g, it is not straight-forward to construct two
simple functions, h below f, and j below g with h + j = k.

So instead of attempting a direct construction, we will take a detour through some general
theorems that will allow us to prove linearity rigorously. In short we will show that under
certain conditions, when f, — f pointwise, we have [ f,d\ — [ fdA.

More precisely we will use one simple ingredient and one more serious one. The simple
ingredient follows directly from the definition of the integral.

Lemma 2.29. Let 0 < g < f be measurable. Then if f is integrable, so is g and moreover
[ fax > [ gdx.

The more substantial theorem is about approximating the integral of f via integrals of
approximations f,.

Theorem 2.30 (Monotone convergence theorem). Let 0 < f; < fo < ... be a sequence of
integrable functions converging pointwise to some f = lim,_,o fn.. Then f is integrable if
limy, o0 [ fudX < 00 and in this case

/ fd\ = lim [ f.d\.

n—o0

Before proving this, let us see how linearity follows.

Proof of Proposition[2.28 Let us just prove the more interesting case: that [(f + g)d\ =
[ fd\+ [ gd\. We saw that this linearity holds for simple functions on the exercise sheet.
We will now first show using Monotone convergence theorem that it holds for all integrable
non-negative functions, and then use the decomposition into positive and negative parts to

argue for the general case.
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Pick a sequence of simple functions f,, g, > 0 with f, < f,+1 and ¢, < g,41 and f,, — f,
gn — g pointwise from below. Then also f,, + g, — f + ¢g pointwise from below. On the one
hand by the linearity of simple functions for all n > 1

/(fn + gn)dX\ = /fndA + /gnd)\.

On the other hand by the Monotone convergence theorem

/fnd)\—>/fd)\; /gnd)\—>/gd)\.

In particular this means that

lim [ (fu + ga)dA = lim (/fnd/\Jr/gnd/\) :/fd)\+/gd)\

is finite and hence by Monotone convergence theorem f + ¢ is integrable and

tim [ (f gir= (74 i

J+aar= [sar+ [ gan
as desired.

For general integrable f, g let us write f = f, — f_,g=9g+ —¢g_and f+g=(f+9g)y —
(f + g)— and recall that all these positive and negative parts are non-negative measurable
functions.

Now, notice that (f+¢)+ < fy+gy and (f+¢g)- < f_+g_ and thus if f, g are integrable
then so are (f + g)4, (f + g)- by Lemma and hence also f + g.

Now we can rewrite the pointwise equality

So we obtain that

(f+9)+=(f+9)-=T s = [-+9+—9-,
as
(f+9)++f-+g9-=(—9)-+ [+ + 9+
But to this we can apply the first part of the proof on both sides to conclude that

/(f+g)+d)\+/f_d/\+/g_d/\:/(f+g)_d)\+/f+d/\+/g+d)\.

It now remains to recombine the terms and to use the definition of the integral to see that

/(f+g)d)\:/fd)\+/gd)\
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2.3.5  Convergence theorems

Let us now look more closely at the statement in the style
e if f, — f pointwise, then [ f,d\ — [ fdA.
We will first see some counterexamples, then prove the Monotone convergence theorem and
a few other useful convergence results.
The first failure could be that the limiting f is not integrable. Recall that the pointwise
limit of measurable functions is measurable. Thus we at least know that f is regular enough
to be potentially integrable. It could fail to be integrable because of "size":

Example 2.31. Consider the functions (fn)n>1 defined on R by f,(x) = 1pn—1—no. These
functions are all finite simple functions and their integral is equal to 0. But notice that their
pointwise limit f = 1jc0) — 1(—oo,0 5 measurable but not integrable.

But even if the limiting function is integrable, it’s integral is not necessarily equal to the
limit of integrals.

Example 2.32. Consider the functions (fn)n>1 defined on R by f.(x) = nlwim). They are
finite simple functions and satisfy [ fnd\ =1 by definition. But notice that f,(x) converge
to the constant 0 function pointwise, as for every x € R, there is some n, € N such that
fn(x) =0 for all n > n,. But the integral of the constant O function is just 0 and thus the
integrals of f, do not converge to the integral of their pointwise limit.

In this example the functions concentrate the mass on a smaller and smaller region, keeping
area under the graph equal to 1. Eventually this tiny vertical box somehow moves out of
the interval (0,1) and disappears. But suppose we ask all of the f,, to be bounded?

Example 2.33. Consider the functions (f,)n>1 defined on R by f,(x) = n"'1j,. Again
they are measurable and bounded, thus integrable with [ f,d\ = 1. Also f,(x) converge to
the constant 0 function pointwise too, as for every x € R, there is some n, € N such that
fn(z) <€ for all n > n,. But the integral of the constant 0 function is just 0 and thus the
integrals of f, do not converge to the integral of their pointwise limit either.

In this case the area is kept constant by keeping the box horisontally. But suppose,
A(fn # 0) < C for some constant C?

Example 2.34. Consider the functions (fn)n>1 defined on R by fu(z) = ljnt1). Again
they are measurable and bounded, thus integrable with [ f,d\ = 1. Also f,(x) converge to
the constant 0 function pointwise too, as for every x € R, there is some n, € N such that
fulz) =0 for all n > n,. But the integral of the constant 0 function is just 0 and thus the
integrals of f, do not converge to the integral of their pointwise limit either.

Now the functions remain bounded but all of the mass moves away to infinity. In some
sense these are the counterexamples to keep in mind and the conditions given in the Monotone
convergence theorem rule those cases out. Recall the statement:

Theorem 2.35 (Monotone convergence theorem). Let 0 < f; < fo < ... be a sequence of
integrable functions converging pointwise to some f = lim,_,o fn. Then f is integrable if
limy, o0 [ fndX < o0 and in this case

/ fd\ = lim | f,d\.

n—o0
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And here is the proof.

Proof of the Monotone convergence theorem, Theorem[2.35. First, as 0 < f,, < f, it is clear
that
lim | fod\ < /fd)\.

n—0o0

The question is why does the other inequality (and thus also the claim on integrability) hold.
So we can now assume [ fd\ < oo.

Let us start with the case where the limit f = lim,,_, f, itself is a simple finite function.
In particular it can be represented by f = > ¢;1p, for some disjoint Borel sets E; and
distinct ¢; > 0 and its integral equals [ fd\ = Y7, ¢;A\(E;). As the integral is finite by
assumption, we have that A(F;) < oo for every i =1...m.

For each ¢ > 0 and n > 1 we can then define the sets F,, := {z : f,(z) > (1 —¢)f(x)}
and further F,; = F, N E;. These sets are increasing and pointwise convergence of f,
to f guarantees that U,>1F,; = E; for all ¢+ = 1...m. But then the properties of the
measure A imply that A\(F,;) — A(E;); here we use that A(E;) < co. But now by definition

fa(z) > (1 —€) 3", cilp,, and thus by Lemma
/fnd)\ > (1=€)>  cMF)
i=1

and we conclude that
lim [ f.d) > (1—e) / Fdx.
n—oo

As e was arbitrary the claim follows for simple limiting functions f.

But now for general f we can pick any simple function g < f and repeat the argument.
Even though f,, do not converge to g, they converge to f > ¢ and this suffices to conclude
that U,>1F,; = E;. Hence we obtain similarly that

lim [ fod\ > / gdA.
n—oo

As this holds for any simple function g that is bounded above by f, we conclude the claims of
the theorem from the definition of the integral: if lim,, [ f,d\ < 0o, then f is integrable
and its integral equals that limit. O

The theorem is usually stated for non-negative functions, but notice that if f; < fo... is
an increasing sequence of integrable functions, then we could consider fn = fn — f1 to get
a sequence of non-negative functions converging to f — f; and by linearity also conclude a
statement for such functions. Also of course one can obtain a similar statement for increasing
functions too (see the exercise sheet).

There is a very useful corollary saying that even if the functions f; are not increasing, we
can still say something about the integral:

Corollary 2.36 (Fatou’s lemma). Let f1, fa,... be non-negative integrable functions. Then
liminf/fnd)\ > /liminf fndX,
n—oo n—oo

where we allow both sides also to be equal to infinity.
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Notice that in particular if the non-negative functions f,, converge, we see the limit of
their integrals is larger than the integral of their limit. To remember the direction of the
inequality, just think of the example of the travelling interval!

Proof. Observe that g, := inf,,>, f; is non-negative, non-decreasing and by definition con-
verges to liminf,, .. f,.

Thus by Monotone convergence theorem if lim,, f gnd is finite then liminf, . f, is
integrable and

n—oo n—oo

/lim inf f,d\ = lim [ g,dX\.

But now f,, > g, for all m > n and hence
ir;f /fmd/\ > /gnd)\.

liminf/fnd/\ > lim [ g,d\ = /liminf fnd\
n—oo

n—oo n—oo

We conclude that

as desired. 0

The other useful convergence theorem deals with an arbitrary convergent sequence f,, of
integrable functions. Here the counterexamples from above are avoided by asking there to
be a dominating function - an integrable non-negative function g such that g > |f,| for all
n > 1. We will admit this result for the sake of time.

Theorem 2.37 (Dominated convergence theorem). Let fi, fo,... be a sequence of integrable
functions converging pointwise to some f = lim,,_.,, f,. Suppose also that there is some g > 0
that is integrable and such that |f,| < g for alln > 1. Then f is integrable and

n—oo

/ fd\ = lim | f,d\.

2.3.6 Almost sure / almost everywhere equality

We saw that [ fd\ = [ gd\ whenever \(f # g) = 0. This is rather interesting and turns
out to be quite important! It says explicitly that the integral is insensitive to changing the
function on sets of measure 0 - in particular even modifying the value of the function on any
countable set leaves the integral unchanged!

This offers a new perspective on why [ 1gdA = 0 and motivates the following vocabulary
that will be helpful to use.

Definition 2.38 (Almost everywhere / almost sure equality). We say that two measurable
functions f,g are equal almost surely or almost everywhere if N(f # g) := \{z : f(x) #
9(f)}) =0.

More generally we say that some property or condition E € Fg holds almost everywhere
(a.e.) or almost surely (a.s.) if \(E<) = 0[]

Tt is called almost everywhere in analysis, almost surely in probability, we will probably not be able to
avoid using both simultaneously.
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The fact that the integral does not change when we change the function on a zero measure
set means that, in the context of integration, when we ask for a property of the function to
hold, we should be able to ask it to hold only almost everywhere.

For example, let us look at Lemma[2.29] We should be able to replace 0 < g < f pointwise
by an almost everywhere statement: if A({x : g(z) > f(z)} U{z : g(x) < 0}) =0 and f is
integrable, then g is integrable and [ gd\ < [ fd\. This is now a different mathematical

statement! But one can easily argue it by just considering f g defined by setting f (x) =
g(z) := 0 in the complement of the set {z : 0 < g(z) < f(z)}. Then the inequality holds
pointwise, one can apply Lemma [2.29 - 9to f,§ and conclude using Corollary [2.27] -

I will leave it on the example sheet to verify that all the other statements we have seen
about the integral hold only under hypothesis given in the form of almost sure properties.
In particular all the convergence theorems - Monotone convergence theorem, Fatou’s lemma
and the Dominated convergence theorem hold under these milder conditions using similar
little tricks. [J

2.3.7 Comparison to the Riemann integral

As an application of convergence theorems let us see how to compare the Lebesgue integral
with the Riemann integral.

Recall first that there are many functions that are Lebesgue integrable but not Riemann
integrable even on [0, 1].

e The function 1gnyp,1) or say f + lgnp,1) for any Riemann integrable function f
e All Riemann integrable functions on [0, 1] are bounded, but for example the function
f(x) :=27%1,¢(0, is Lebesgue integrable

However, philosophically all Riemann integrable functions are Lebesgue integrable. This
statement would be completely true had we used the Lebesgue o-algebra instead of the
Borel one; in our case we have to add a little extra assumption of measurability, but as
mentioned finding non-measurable functions is already not so easy!

Proposition 2.39. Suppose f : [a,b] — R is measurable and Riemann integrable. Then f
15 also Lebesgue integrable and both integrals agree. ﬂ

In particular this means that to calculate the Lebesgue integral of any reasonable function
f you can use the same tricks you have learned for the Riemann integral as you are calculating
the same numbers! Just a few more functions are Lebesgue integrable and importantly the
structure of the space of Lebesgue integrable is much nicer - a point that will be illustrated
even better with the next section.

The proposition is not entirely straightforward because the piecewise approximations of f
used to define the approximate Riemann integrals converge to f only in the sense that the

8For enthusiasts. There is only one little crux that comes rather from measurability - when fi, fo, . ..
converge almost everywhere, then their pointwise limit is not necessarily measurable (might not even ex-
ist!)...yet there exists always a measurable function f that is an almost everywhere limit of f1, fo,.... I will
leave this confusion for the enthusiasts and the rest can just think that everything works well.

9For enthusiasts. In fact one does not need to assume the measurability. It also holds that for each
Riemann integrable function f there is a measurable function f such that for some Borel set E of zero
measure {f # f} C F and such that the Lebesgue integral of f agrees with that of f.
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limits of upper and lower Riemann integrals will agree. But to apply any of our convergence
theorems we would need to have almost everywhere convergence.

Proof. For simplicity let’s take [a, b] = [0, 1]. We use the fact that for a Riemann-integrable
f on [0,1] we know that the upper and lower approximations of the integral over dyadics
both converge to the integral.
More precisely, if we set
an—1
L, =27" inf T
(7) ; xe[i2—”,(i+l)2—"}f( )
and
on—1
Ud(f):=2")Y_  sup  f(x)
o wEli2—n (i+1)2"]
then Riemann integrability implies that L, is increasing and U, is decreasing both to the
same limit that is equal to the Riemann integral fol f(z)dz.
But now L, is also the Lebesgue integral of the simple function
m—1
n xXr) .= 133 i2—"n (3 -n lnf xXr
9n() ZZ; el ()2 )ze[iQ*",(i+1)2*"] /(@)

and U,, the Lebesgue integral of the simple function

an—1

hn(fl?) = Z 19&6[1‘2*”,(2’-{-1)2*”) sup f(x)

=0 $€[i2_n,(i+1)2_n}
Further g, is pointwise increasing and bounded from above by f, and h,, is pointwise decreas-
ing and bounded from below by f. Thus both converge pointwise to measurable functions
denoted fr, fy and satisfying fy > fr pointwise. But now by Monotone Convergence The-
orem and its cousin proved on the example sheet we see that

1
fr= [ foir= [ s
[0,1] [0,1] 0

and thus f[o 1](fU — fr)dXA = 0. As fy — fr is non-negative we conclude that A\(fy # fr) = 0.
But also fy > f > fr pointwise, so in particular A(f; # f) = 0, where we use the fact that
f is measurable by assumption to see that this event is measurable. Hence also the Lebesgue

integral of f agrees with fol f(z)dz as desired.
0

2.3.8 Fubini’s theorem

To finish off the chapter on Lebesgue integral, we still have to see one key result which is
the integration analogue to the following result on infinite double sums:

Proposition 2.40. Let (a;;)ij>1 be an array of real numbers. If Y71 Y77 a; ;| converges
as n — oo, then for alli > 1, 377 |a; ;| converges and for all j > 1, 377, |a; ;| converges.
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Moreover, then

n n N N
! Y —h .
Jim > Y aig=tm DD an = lim DD ai
i=1 j=1 n=1 j>1 n=1 i>1
The result for integrals that we state properly in a bit is very similar - we assume that
f: Ey x E5 — R is integrable, and we want to say that for all fixed x; € FE;, the function
f(z1,y) is integrable over FEjy; that the function x; — ng f(x1,y)d\(y) is then integrable
over /1 and that finally by doing these two integrations we obtain the Lebesgue integral of
f.
Now there are some extra questions that pose themselves in comparison to sums:
(1) First, why is the function f(x,y) : Es — R for every fixed x; measurable?
(2) Second, why is the integral for every x; well-defined?
(3) Third, why is the function x; — sz f(x1,y)d\(y) measurable, integrable?

All these aspects require some thought, although it comes out that in our setting where
we work with Borel measurable functions the first one is simple to verify (on the sheet).
Both the second and the third property do require thought: whereas in the case of sums the
finiteness of the double sum clearly implies the those of all individual sums, in the case of
integrals this is actually not the case!

Example 2.41. Consider the function f: (—1,1)? — R defined by

1
f(%y) = 1@0(—1,1)(95);1(—171)(9)-

Then A(f # 0) = 0 and thus f is integrable with integral equal to 0. However for x €
QN (=1,1), the function f.(y) := f(z,y) = il(—l,l)@) is measurable but not integrable.

Theorem 2.42 (Fubini). Let Ey, Es be Borel sets of non-zero measure and suppose that
f i E1 X Ey — R is Lebesque integrable. Then

e for almost every xl € by, the function f(xy1,y) is integrable over Es;
e the function F(xy) : fE (x1,y)d\(y) if the integral is finite, and F(x1) = 0 other-
wise 18 measurable and mtegmble over El,

fE w1 (@ y)dN(z,y) = fE (z1)dA(z1) fE sz (z,y)d\(y))d\(x);
) and the same holds if we swap the order of integration.

Conwversely, if either for almost every xy the function |f(x1,y)| is integrable over Ey and
further the function F(x1) = [, |f(z1,9)|d\(y) is integrable over Ey or the same holds

when x1 and xo are swapped, then f(x,y) is integrable over Ey X Ej.

We will not prove this theorem, but we will see several applications very soon. For now
let us mention that it can actually even just help to do some calculations.
A simple example of that would be

Example 2.43. Calculate f[o 1x[0.1] xyd\(x,y). Here we don’t really have good means to
directly calculate the 2d integral, but using Fubini we can write

/ rydA(z,y) = / ( / xydA(y)) dA(z)
[0,1]%[0,1] [0,1] [0,1]
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and now we can easily first calculate f[o | rydhy = x/2 and then calculate f[o 1 x/2d\(z) =
1/4 to obtain [ ryd\(z,y) = 1/4.

x[0,1]

sin?(z)

Exercise 2.6. The aim is to calculate I = / exp(—x) d\(z). To do this, we define

0,00 z
f(z,y) = exp(—x)sin(2zy) and use Fubim':( )
e Show that f(x,y) is integrable over (0,00) x [0, 1]
e Show that when first integrating y over [0, 1] we obtain exactly I.
e On the other hand, calculate explicitly the integral by first integrating over x. Inte-
gration by parts might be useful.
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SECTION 3

The spaces of integrable and square-integrable functions

The aim of this section is to define the spaces of integrable functions and square-integrable
functions on some Borel set F, typically either a box [0, 1] C R™ or R" itself. Heuristically,
these spaces contain respectively all measurable functions f with either |, 2| fld\ < oo or
Il elf |?d\ < oo. However, to make them into nice Banach spaces we will in fact need to be
a bit careful.

3.1 The spaces of p-integrable functions LP(F)

Let us define two sets of functions mentioned above:

LYE) :={f : E — R measurable and / | fldA < oo}
E

L*(E) :={f : E — R measurable and / | f]?d\ < oo}
E

More generally one can define for any p > 1
LP(F) :={f: E — R measurable and / | fIPdN < o0}
E

As one can similarly define the sets of functions taking values in C, one sometimes makes
the notation more precise by using LP(E,R) and L*(E,C).

It is not hard to see that these sets come with linear structure - they are closed under
sums or multiplying by a constant.

Lemma 3.1. Let p > 1 and f, g be in the set LP(E). Then also for any a,b € R, the function
af +bg € LP(E).

Proof. For p = 1 it follows from pointwise triangle inequality. We have |f(z) + g(x)| <
|f(z)| + |g(x)| and thus |f + g| is integrable, i.e. in L

For p = 2 we have |f(x) + g(2)|> = f(2)* + g(x)? + 2f(x)g(x) and we use the pointwise
inequality 2f(z)g(z) < f(x)? + g(x)? to conclude f(z) + g(z) is square-interable.

For general p the result follows from the pointwise inequality, called the generalized means
inequality, which says that for all positive a,b and some constant ¢, > 0 we have (a + b)P <
cp(al 4 0P).

O

If we want to endow them with a norm, however, we encounter a problem. Indeed,
for example the natural norm for the set L'(E) would be || f[j; := [, |f|dA\. And indeed,
it is non-negative and one can check that it satisfies the linear scaling property and the
triangle inequality. However, recall Proposition - if [ |fld\ = 0 we only know that
A{z € E :|f(z)| #0}) = 0. Thus a priori there are many functions of norm zero!

This might sound unpleasant, but keeping in mind the context of Fourier series and the

fact that their limits don’t necessarily behave well pointwise, it might also be a blessing!
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3.1.1 The mathematical definition of LP(FE)

In order to turn L? into a Banach space (i.e. a complete normed vector space) we will
have to deal with this issue of many 0 norm functions. The simple and natural way to do
this is to just consider functions that are almost everywhere equal as equal! Mathematically
this means that we define the space of equivalence classes of functions where two functions
f, g are considered equivalent when f = g almost everywhere.

Lemma 3.2. Let f,g € LP(FE). Then the relation f ~ g if f = g almost everywhere, is an
equivalence relation.

Proof. One has to just recall and verify the properties of an equivalence relation:
o reflexivity: f ~ f is clear
e symmetry: f ~ ¢ if and only if g ~ f is also clear
e transitivity: if f ~ g, g ~ h, then f ~ h follows from the fact that A(f # h) < A(f #
g) + Mg # h) by the union bound.

O

Definition 3.3 (The space LP(E)). For allp > 1 we define LP(E) as the set of all equivalence
classes of LP(E)/ ~ . We denote the points in LP(E), i.e. equivalence classes of functions

by [f1,1g], - -

For example the functions f(z) = 0 or f(x) = 1g belong to the same equivalence class are
both representatives of [0]. To be crystal clear:

o We write LP(E) for the set of measurable functions with finite integral [}, |f|Pd\ < oo
e and we write LP(E) for the quotient space modulo almost-everywhere equality.
We want to see that £P(F) has a nice vector space structure, and in fact can be turned

into a normed vector space. But we first need to redefine addition and multiplication by
constant.

o We define [f]+[g] := [f+¢], i.e. by taking two representatives f, g of the equivalence
classes [f], [¢], adding them up and then our sum is defined as the equivalence class
of this sum. Huh! This may sound a bit complicated but really is the natural thing
to do and importantly the result does not depend on the representative s that we
choose: if f = f a.e. and g = g a.e. then also f 4+ ¢ = f—f— g a.e.

e Similarly we set c[f] := [¢f].

Second, we need to define the norm. We first define

e For any function f € LP(E) we set

1/p
1l = ( / |f|”dA>

e And by a slight abuse of notation we set

LA = 1 f 1l

where we have picked some representative f of the equivalence class. It is again clear
that the choice of the representative of the equivalence class plays no role in the
definition of the norm as if f = g almost everywhere, then also |f|? = |g|? almost

everywhere.
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These two definitions reflect a general principle: although the elements of the spaces £P(E)
are equivalence classes of functions, we can and will usually work directly with representa-
tives. In fact we will go as far as sometimes to also use f to denote the equivalence class [f].
This comes out to be completely harmnless as long as one is careful that our questions are
well-defined in the context of equivalence classes.

Yet some care is needed! For instance, it does not make sense to ask for the value of an
element of LP(FE) at a specific point z, because changing the value of a function on a set
of measure zero—including just one point—does not change its equivalence class. At first
this may seem unnatural, but in fact £P spaces are the natural mathematical setting for
quantum mechanics, where the state of a particle is described by a wavefunction in £?(R").
And crucially, no experiment contradicts this modeling choice: we do not—and in practice
cannot—observe the value of a wavefunction at a single point.

We are now ready to state the first proposition

Proposition 3.4. For every p > 1, for every Borel set E C R", we have that LP(E) with
addition defined above and the norm given by ||[f]|l, is a normed vector space.

Here, the 1/p-th power is somehow necessary to make the norm scale linearly. The triangle
inequality is clear for p = 1 from the usual triangle inequality for the absolute value, but
needs some work for the general p. As we are only interested in p = 1,2, let us argue it in
the case p = 2. Again, as above it suffices to argue it for concrete representatives of the
equivalence classes.

Lemma 3.5 (Triangle inequality for p = 2). For any f,g € L*(E), we have that

1f 4+ gll2 < N1 Fll2 + llgll2-
Proof. By writing out the definitions and squaring both sides we are left to prove

1/2
2d\ 2 2)d\ 2d\ 2d\ .
[ gPars [ e +lo) +2(/E|f| [ )

By opening the square on the left hand side this reduces to

/E Fgdx < ( /E R /E |g|2dA)1/2

This is the Cauchy-Schwarz inequality for square-integrable functions. O
Theorem 3.6 (Cauchy-Schwarz inequality). Let f, g € LQ(E). Then

/ | fgldX < (/ |f] dA/ ] d)\)

There are tens of proofs of this inequality, which is the cousin of the same inequality in
R™ and has similar interpretations too - the product of the lengths of two vectors is always
larger than the length of their inner product. We will also give a proof in this style.

Proof. By multiplying f, g by a constant we can suppose [, |f|*d\ =1 and [, |g|*d\.
Now for each z € E, we have that |f(z)g(z)] < i(f(2)* + g(z)*) by the arithmetic-
geometric mean inequality. Hence

[ irglar < 5 [+ gy = =(/ g [Liorar)



where we used the normalization choice in the last equality. 0

3.2 The Banach space structure of LP(F)

As we saw with the space of continuous functions, as soon as we have a norm we can start
talking about the limits of the elements in the space and about properties like completeness.
The key theorem of this section is the following.

Theorem 3.7. For every p > 1, for every Borel set E C R™, we have that (LP(E),| - ||,) is
a Banach space.

Recall that the additional point here was completeness - the fact that every Cauchy se-
quence converges.

We will not prove this theorem, but let us discuss some ingredients that are interesting
and important also on their own. The first obvious question that required already a bit of
thought in the case of C([0,1],R) was: given a Cauchy sequence how do we identify the
limiting function?

As a first naive thought, one could imagine that maybe being Cauchy w.rt. || -||; will tell
us something about convergence pointwise or at least convergence almost everywhere. This
is unfortunately not the case.

e First, recall that pointwise convergence does not imply convergence of integrals and in
particular does not imply convergence in L”. For example, the sequence f, = nl(gi/n)
converges pointwise to f = 0 but || f, — f||1 = 1 for all n and thus f,, does not converge
to f w.r.t the norm || - ||;.

e Conversely, it is clear that if f,, converges to f w.r.t. ||-||1, then we can at most hope
for almost everywhere convergence of f,(z) to f(x). Indeed, if f, to f w.rt. | -],
then also f, to g w.r.t. || - ||y for any g that is only almost everywhere equal to f.

e However, what is maybe a bit surprising is that we can find a sequence of functions
converging w.r.t. ||-||1 but converging nowhere pointwise - i.e. a sequence of functions
fn such that || f, — f|l1 = 0 and yet f,(x) does not converge for any x!

Let us look at an example illustrating this second point.

Example 3.8. The idea is to construct a ’‘travelling diminishing interval’ that firstly visits
each point of the domain infinitely many times, such that the values of f,(z) keep on fluctu-
ating as n changes, and that secondly gets smaller and smaller to obtain convergence w.r.t.
I- .

Let us formalise this idea. For n € N let k, be such that 2¥» < n < 28+ We define
on [0,1] a sequence of functions by fn(z) 1= lp-tn(n_okn)2kn(nir1—2tn). Then fn are all
integrable and observe that || f,|| = 27%, which goes to zero as n — oo. On the other hand
for every x € [0,1] there are infinitely many n such that f,(x) = 0 and infinitely many n
such that f,(x) =1 and hence f,(x) cannot converge.

Next time we will see why L£P(FE) is nevertheless complete.

To understand why LP(FE) still has changes to be complete despite this failure, let us first
look at a very useful lemma, which says that functions that are close in the || - ||; norm are
still also close pointwise in the sense of measure.
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Lemma 3.9 (Markov inequality). Suppose f is integrable and non-negative. Then \({z
f@) > e} < L2
In particular, if f,g € LP(E) satisfy ||f —gll, <€, then A\({z : |f(x) —g(z)| > c}) < (¢/c)P.

Proof. On the exercise sheet 0J
In particular, if two functions are close in the sense of || - ||; they can differ pointwise even
macroscopically, but only on a small set.
This helps us prove the following key observation, which says that if a sequence of functions

converges sufficiently fast to its limit w.r.t. || - ||,, then it does converge almost everywhere!
The theorem is thereafter a simple exercise that I leave for the very motivated.

Lemma 3.10. Let p > 1 and f, be a sequence in LP(E) converging to f € LP(E) w.r.t| |,
such that || fn — fll, < € with ), o, €h < oo. Then f, converges to f almost everywhere.

Remark 3.11. This is a very close cousin of a result called the Borel-Cantelli lemma in
probability theory.

Proof. We write
{z: ful2) U ﬂ U{x [ fulz) = f(2)] > 1/k}

From the union bound

AU N Ule fn@) = f@)l 2 17k < 3N U L 1 ale) = f(2)] 2 1/k).

k>1m>1m>n k> m>1n>m

Further for each k

MO ULz (@) = f@)] = 1/k} <M {z 2 1fulz) = f(2)] > 1/k}D),

m>1n>m n>my

which we can again by union bound }_ ., A({z : [f.(z) — f(x)] > 1/k}). By the Lemma
and the hypothesis we have that for any fixed n, k:

Az | fulz) = f(2)] = 1/k}) < kel
Fix § > 0. As }_ ., € < oo, we can for each k choose my such that the tail is as small as

we wish:
> kel < ok,

n>mg
Putting all together this gives us

Mz : fule) » f)}) <6 K2,

k>1

which can be made arbitrarily small by taking 6 > 0 arbitrarily small. This means that in

fact A\({z : fu(x) - f(z)}) = 0 and we have proved the lemma. O
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3.3 The space of square-integrable functions

So far everything we did was true for £P(F) with any p > 1. But in fact the spaces do
not behave equivalently as comparing the following two results, stated informally, shows:

e Kolmogorov, when he was 19 years old, showed that there exists a function f €
L*([0, 1]) such that its Fourier series diverges everywhere and in particular does not
converge w.r.t. || - ;.

e However, for every p > 1 and every f € LP(]0, 1]), the Fourier series converges almost
everywhere and w.r.t. L?([0,1]).

Both are highly non-trivial results, hinting at potential subtle differences between LP spaces.

We will only prove a part of the second result, in particular that for every f € L?([0,1]) its
Fourier series converges w.r.t. L.

3.3.1 The scalar product on £?(E)

Recall the following facts that are common to all LP(FE) spaces:
o [*(E):={f:F — R: f? integrable}
e L2(E) the set of equivalence classes L*(E)/ ~ under f ~ g iff f = g almost every-

where
I£12:= 1/ [ Ifax
E
L?(E) is a Banach space.

e With the norm:

Now, compared to L'(E) (or indeed any LP(E) with p # 2), the space L2(E) has even
more structure. In addition to a norm, one can also define a notion of an inner product /
angle, very much similar to the inner product on R™. This works as follows.

For any f,g € L*(E) we set

<fag>2 :/Efgd>H

M This assumes that fg is integrable, which is clear from |f(z)g(z)| < |f(z)|* + |g(z)|* or
from Cauchy-Schwartz.

One can verify that on L*(F) (and also £L2(E), the definition of {f, g)» above satisfies the
axioms of an inner product:

Definition 3.12 (Inner product). Let V' be a vector space. We call (v,w) a real inner
product if the following conditions hold:

e Real-valued: (v,w) € R

o Symmetry: (v,w) = (w,v)

e Linearity: for all a,b € R, we have (av + bu,w) = a{v, w) + b(u, w)

e Non-negativity: (v,v) > 0 with equality if and only if v = 0.
We call it a complex inner product if it is real-valued, conjugate symmetric and linearity
holds only for a,b € C. A vector space V endowed with an inner product is called an inner
product space.

Opor L?*(E,C) the inner product is | g JgdA, where g denotes the complex conjugate
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In fact each inner product gives rise to a norm.

Exercise 3.1. Consider an inner product (-,-) defined on a vector space V. Then ||v|| :=
(v, v) defines a norm.

The key is to notice that the Cauchy-Schwartz inequality holds for every norm that stems
from an inner product: (v, w)? < (v,v){w,w)!

By our definitions for f € L*(E) we have that ||f||3 = (f, f), i.e. the inner product gives
rise to our previously defined norm.

An important thing to notice is that not every norm can stem from an inner product.
Indeed, coming from an inner product forces some algebraic conditions on the norm. For
example, the so called parallelogram law has to be always satisfied for a norm compatible
with a real inner product:

Lemma 3.13 (Parallelogram law). Suppose on a vector space the norm || - || is compatible
with a real inner product || f||*> = (f, f)2. Then

lv+wl? + lv = wl* = 2([v]|* + [lw]]*).
Proof. This comes from a direct computation using the linearity of (f, f)s. U

Now we can test this for |- ||, on say L*([0,1]). Consider v = 1jg;/9 and w = 1f/21). Then
we get for the LHS 2 and for RHS 272/7*2 These are equal if and only if p = 2! This shows
that no other || - ||, on [0,1] can stem from an inner product.

3.3.2  Orthonormal bases of £2([0,1]) and Fourier series

The key result that makes Fourier series work so nicely for functions in L?([0,1]) is the
following statement. Informally we could just say:

Theorem 3.14. The set of functions (v/2sin(27n2))ns1, (V2 cos(2mnz))ns>1 together with
the constant function 1 form an orthonormal basis of L*([0,1]).

This would be philosophically correct, just one would need to just interpret everything
under the flag of almost surely. A formally precise statement is:

Theorem 3.15. The set of equivalence classes ([v/2sin(27mnz)])n>1, ([V2 cos(2mnz)])n>1 to-
gether with the equivalence class of the constant function [1] form an orthonormal basis of
the vector space (L2([0,1]), (-, )2).

Here, the orthonormal basis for a (potentially infinite-dimensional) inner product space is
a direct generalisation from the finite-dimensional case.

Definition 3.16 (Orthonormal basis). Let (V,(-,-,)) be an inner product space. We call
(v:)i>1 an orthonormal basis of V' if the following two conditions hold
e Orthogonality: for all i,5 > 1 we have that(v;,v;) = 1;—;
e Basis condition: Fach w € V can be written as 2121 c;v;, where ¢; € R and the
convergence is w.r.t. the norm ||v|| == (v,v)'/2.

Orthogonal basis have several useful properties mirroring those of the finite-dimensional
setting:
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Lemma 3.17. Let (V,(-,-)) be an inner product space and (v;);>1 an orthonormal basis.
Then

o Ifw eV has a writing w = 3,5, a;v;, then |w|]* = 37,5, af.
o The writing w =}, a;v; is unique and each coefficient is given by a; = (w, v;).

Proof. For the first property, let wy = Zf\il a;v;. Then

N
HwnH U)N,U)N Z Zazvz —Z a;,
=1 =1

i>1
where in the last equality we used linearity and orthogonality. But now |w,|]* — ||w]||? -
indeed,
[lJwall® = [l = [lwall = [lwlll(Jwall + [lw])),
which goes to zero as ||w, —w|| — 0 by assumption.
In particular, the first part directly implies that if > .. a;v; = 0 then a; = 0 for all ¢ > 1.
The uniqueness is on the exercise sheet. - O

Notice that in particular this means that Theorem rather directly implies the follow-
ing!

Theorem 3.18 (Fourier series in L?). Let f € L*([0,1]. If we define the partial Fourier
series by

Sn(f) = (f, )2+ Z 2(f,sin(2mnz))q sin(2mnz) + Z 2(f, cos(2mnz))s cos(2mnz),

then || f — Sx(f)]l2 = 0 as N — oo, i.e. the partial Fourier series of f converge to f w.r.t.
to the L?-norm.

Let us now discuss the proof of Theorem[3.15] First, notice that all of sin(27nz), cos(2rma)
are continuous and bounded on [0, 1] and thus in L*([0, 1]) for all p > 1.

Second, orthogonality follows from Lemma as firstly it suffices to show it for chosen
representatives of the equivalence classes and second, everything is Riemann integrable and
we can thus use the computation we did also for the Lebesgue integral.

To make use of this orthogonality one further needs the following, that mirrors the lemma
above about complete orthogonal systems. The proof of this is on the exercise sheet

Lemma 3.19. Let vy,vy,... be orthonormal vectors in a complete inner product space V.
Then for any w € V, we have that W := ), (v, w) is well-defined and satisfies 1) ||w[| <
|w|| and 2) (w — w,v;) =0 for all i > 1.

What we obtain from this lemma is the following. Let w € L?([0,1]) and set
w = (w,1) + Z 2(w, sin(2mnx)) sin(2mnx) + Z 2(w, cos(2mnx)) cos(2mnx).

n>1 n>1

Then by the lemma above this is well defined and w—w is orthogonal to all the sin(27nx), cos(2mnz)
and the constant function. If we are able to show that in fact w — @ is zero almost every-
where, then have proved the completeness of the basis, i.e. the spanning property of the

basis. Thus it remains to show the following lemma.
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Lemma 3.20. Suppose w € L*([0,1]) is orthogonal to all the sin(2rnz), cos(2rnx) and the
constant function w.r.t. (-,-)s, then w is the zero function.

Recall that we already proved such a result in case f was a continuous function! So this
is a generalisation, but one can again use the Féjer kernel to conclude (we leave it in the
non-examinable part of the example sheet).

In fact there are many useful orthonormal bases on [0, 1]. For example:

Lemma 3.21. The set of functions (v/2sin(mnx))n>1 forms an orthonormal basis of L*([0, 1])
as does the set of functions (v/2cos(mnz)),>1 together with the constant function 1.

This might look a bit odd - we had a basis using both sin and cos functions, and now we
say that we can use just one of the two. But observe that we are now using more of them -
instead of 27rnx we now have in the argument mnzx.

To see the link between the two clearly let us first observe that by scaling and translation
we have that:

Lemma 3.22. Let L € N, then an orthonormal basis of L*([—L/2, L/2)) is given by the set

of functions: (y/%sin(37nx))n>1, (\/%cos(%wna:))nzl together with the constant function

1

\/_E.
For the complex L*([—L/2, L/2], C) they are given in a nice compact form by (% exp(2minz/L)pez.

Then looking at the functions over [—1, 1] gives us the link between the different basis and
proves the lemma.

Proof of Lemma[3.21. We have that (sin(mnx)),>1, (cos(mnz)),>1 together with the function
1/2 form an orthonormal basis of L*([—1,1]).

But each f € L?([—1,1]) can be written as a sum f = f, + f. of an odd function f,(x) =
—fo(—x) and even function f.(x) = f.(—z). Concretely, f,(z) = w and f.(x) =
Iy

Now, notice that each even function is orthogonal to an odd function over L?*([—1,1])!
Moreover, for each n, sin(mnx) is odd and cos(mnz) is even. Thus any even function in
L?([—1,1]) can be expanded only using cos and the constant function, and every odd function
just using sin.

On the other hand, every g € L?([0,1]) can be extended to either an even function on
[—1,1] by defining g.(x) defined as g(z) on [0, 1] and as g(—z) on [—1, 0], or an odd function
if we define g,(z) as g(x) on [0,1] and as —g(—x) on [—1,0]. Their expansions in L*([-1,1])
then descend to the sin or cos expansions on [0, 1]. O

A nice consequence is that we can now fully solve the heat equation on [0, 1].

Theorem 3.23. The heat equation
ou(t, )
ot
on [0, 1] with the initial condition u(0,z) = ug(z) € L*([0,1]) has a unique solution when we
either fix:
e Periodic boundary conditions: u;(0) = u(1) and u}(0) = uj(1)

e Dirchlet boundary conditions: uy(0) = uy(1) =0,
a1

= DAu(t, x)



e Neumann boundary conditions: u;(0) = uy(1) = 0.

In each cases the solution is explicit and is given by

u(t,z) = (uy, 1)+Z exp(—D4r*n?t) (sin(2mnx) (ug, 2 sin(27n)) + cos(2mna)(ug, 2 cos(2rnz)))

n>1

in the case of periodic conditions. By

u(t,x) = Z exp(—Dn?n’t) sin(mnz) (ug, 2 sin(rnz))

n>1

in the case of Dirichlet conditions. And by

u(t,z) = (ug, 1) + Z exp(—Dn?n?t) cos(mnzx) {ug, 2 cos(rnz))

n>1

wn the case of Neumann boundary conditions.

Proof. As uy € L*([0,1]) we know that any of the given expansions is true at ¢t = 0 by the
fact that that all three series form ON basis.

Also as exp(—D4n*n?t) < 1 or exp(—m?n?t) < 1 we also see that in all cases u;(z) in
the statement is in L%([0, 1]) for every ¢ > 0. It is then easy to check that every proposed
solution is twice-differentiable in x and satisfies the equation.

Thus it just remains to argue that the solution is unique. To do this suppose there are two
solutions u(t, x) and v(t, z) from the same initial condition and same boundary conditions.
Then also w(t, x) = u(t,x) — v(t,z) is a solution starting from the zero function at ¢t = 0.

Now observe that ||us(x)||? is decreasing in time. Indeed, we write

O _ [, 00
2 ot [O’l]ut(x) o A@)

which using heat equation can be written as

D o w(z)Auy(z) = =D - (Vg (2) ] + (1) u)(1) — u, (0)u)(0).

Using one of the three boundary conditions we conclude that %8”"3—(:)”2 < 0 and thus indeed
|us(2)||? is decreasing in time.

This is called an energy estimate and here the justification of all the steps will be left
for the exercises sheet, but in the first step we just changed the order of integration and
derivation and wrote out the time-derivative of wu;(x)? and thereafter we used integration
by parts. This in particular means that if uy(z) = 0 then w,(x) = 0 for all t > 0 giving
uniqueness. 0

Remark 3.24. In fact one can solve also the heat equation using so called mixed or Robin
boundary conditions, we will try to find a more general conceptual framework that also fits

those soon enough.
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3.4  Fourier transform

We have now seen how to solve the heat equation on any interval using the Fourier series,
that gave us a convenient orthonormal basis. This generalises nicely to boxes of the form
[—L/2,L/2]" C R". But what about R and R™?

First notice that when we considered Fourier basis on [—L/2, L/2] then in the complex
form they were given by (\%L exp(2minz/L)pez. So in some sense as L — oo the set of
frequencies we consider becomes more and more dense. And indeed, over R the Fourier
series becomes an integral, called the Fourier transform:

Definition 3.25 (Fourier transform). Let f be a real or complex-valued function f € L*(R).
We can define the Fourier transform F(f)(k): R — C by

fk) =F(f)(k) = /Rf(ac) exp(—i2mkz)d\(x).

This is well defined for each k again as f(z) is integrable and |f(z) exp(—i2nkz)| = | f(z)].
We would hope that the Fourier transform would work as nicely on L?(R) as the Fourier
series on L?(]0, 1]), but notice some differences:

e First, there is a question question of integrability. Whereas on [0,1 each square-
integrable function is also integrable, its Fourier series is well-defined because f(z) exp(—2wikz)
is integrable for any k. But L?(R) is not a subset of L'(R): there are functions in
L?(R) that are not integrable (for example the function f(z) = (|z|+1)!) and hence
there is no reason that f(z)exp(—2mikz) should be integrable for f € L*(R).

e Second, contrary to the case of intervals, we are using a non-countable number of
waves over R. Moreover notice that none of the wave functions exp(i2rzk) itself is
square-integrable over R (or integrable for that sake!)

Still, things work again nicely for £2 spaces, explaining why they are so important:

Theorem 3.26 (Fourier transform on square-integrable functions). The Fourier transform

FUF) k) = f(k) = /R F(z) exp(—2mika)dA(x)

defined on L2(R) N LY(R) has a unique extensions to an operator F on the whole of £L2(R)
such that F : L2(R) — L2(R) is an isomorphism of complete vector spaces with an inner
product.

Moreover, the inverse operator is given similarly by an extension of

FUf) () = /R (k) exp(2rika)dA(k)

from the subset f € L2(R) N LY (R).
We will often abuse the notation and denote the-above mentioned extensions also by F

and F L.

Already the statement of this result looks a bit unpleasant with this extension and so! But
this is necessary as for a general function f € £L*(R) the integral just doesn’t make directly

sense.
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There are several ways to prove this theorem, We will discuss a way that goes via approxi-
mations from larger and larger intervals and thus also helps to connect the Fourier transform
back to the Fourier series.

In fact we will start checking that everything works well for a subset of functions.

Proposition 3.27. Let f € L2(R) N LY(R) be such that f has a decay |f(k)| < Ck™2 for
some constant C' and f(x) = 0 outside some interval [—M, M|. Then we have the following
Fourier inverse transform: for almost every xr € R we can write

(3.1) f(z) = /Rf(k) exp(2mizk)d\(k).
Moreover, we have the Plancherel formula:
118 = [ 1f@)Paxa) = [ 17®Ra® = 1715
First, using the orthonormal basis (\/g exp(2miL~nx)) ez We can write
(3.2) fl@) =LY fu(n/L)exp(2mil ™ "nx),

nez

where the summing is absolute for any x € [—L/2, L/2] and in the sense L?, and
(3.3) fo(n/L) = / fr(z) exp(—2mi L nx)d\(z).
[-L/2,L/2)

Further, this Fourier series can be extended to a function on R by setting f,(z) := f(L~'[xL]).

Proof. Consider f as in the statement and let L > 2M. Notice that f,(n/L) = f(n/L)
for all n € Z. Further, as |f(z)exp(—2nL~'nz)| < |f(z)] we can first use the Dominated
convergence theorem to show that in fact for every k € R we have that f,(k) — f(k) as
L — oo, and thus the Fourier coefficient on R corresponds to the approximated Fourier
coeflicients.

We will now check that under our conditions becomes in the limit L — oo the inverse

Fourier transform (3.1). First, given the decay of f we can write the RHS of (3.2) as the
Lebesgue integral of the f; extended to R, i.e.

L~ ZfL (n/L) exp(2miL 'nzx) /fL Yexp(2miL ' kL |x)d\(k).
nez
Now fi(k)exp(2miL = |kL|z) — f(k)exp(2mikz) pointwise, and we can use the Domi-
nated convergence theorem and the assumed decay of f to conclude that
/ Fr(k) exp(2mil~ kL] z)dA(k) — / F(k) exp(2mikz)dA(k).
R R
Finally, the Plancherel identity for f on the interval [—L/2, L/2] implies that

I3 =LY 1 feln/D)P

neEL
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It remains to notice that the RHS converges to || f||2 - to do this we can argue like above using
pointwise convergence and then dominated convergence that we obtain from the assumed

decay of f(k). O
To finish the proof of Theorem [3.26] it remains to do two things:

(1)

Check that this special set of functions we consider in the proposition is dense in
L%(R) w.r.t. the || - || norm meaning that for every f € L*(R) we can find some
sequence f, such that f, — f w.r.t. the || - || norm and f, satisfies the conditions of
the proposition.

This can be argued as follows. First, observe that we can always approximate f
by f1_,, arbitrarily well.

Thus it suffices to show that we can approximate each f1_,, arbitrarily well by
some functions whose Fourier transforms behave well, i.e. decay like Ck=2. But
actually we have seen such functions! We just consider the heat equation on the
interval [—n,n] starting from uo := f1_,,) - we saw both that u; — u in L? norm
but also that u; has a very rapidly decreasing Fourier transform! The details of this
second part of the argument are non-examinable and are on non-examinable part of
the exercise sheet.

Find an argument to extend the Fourier transform using this density. We will see
this argument in a more general set-up in the following section.
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SECTION 4

Hilbert spaces and linear operators

We will now try to put the theory of L? spaces, their nice interplay with Fourier series and
its helpfulness to solve PDEs into a more general and abstract setting. This will allow in
particular to generalise our method of solving the heat equation to a wider range of equations.

4.1 Hilbert spaces

The spaces £? are a prime example of what one calls Hilbert spaces. A Hilbert space is
an inner product space that is complete, or in other words a Banach space with an inner
product.

Definition 4.1 (Hilbert space). Let (H, ||-||) be a Banach space. If H can be endowed with a
compatible inner product (f, g), i.e. such that || f||* = (f, f), then we call H a Hilbert space.

Mostly one encounters only certain class of nice Hilbert spaces that have countably dense
subset in the following sense.

Definition 4.2 (Separable Hilbert space). Let H be a Hilbert space. We call H separable if
there is some countable set S such that for every h € H and every € > 0 there is some s € S
with ||h — s|| < e.

What makes these Hilbert spaces extremely nice is the fact that they admit a countable
basis.

Theorem 4.3. A Hilbert space H is separable if and only if there exists an orthonormal
basis (hy)n>1 of H.

For the space £%([0,1]) we showed that the trigonometric functions form an orthonormal
basis and thus we know that it is also separable. We could concretely find this countable
dense set by looking at all L? functions with rational Fourier coefficients.

It then follows that £2([a,b]) is also separable for any ¢ < b € R. From there one
can conclude that £2(R) is separable and also that £*([a,b1] X ...[an,b,]) and L*(R") are
separable. Some of these considerations are on the example sheet.

Let us argue how to prove the theorem. One part is relatively easy. Namely, given a
countable orthonormal basis (h,,),>1, we can consider expansions » . ., a,h, with a, € Q
and " a? < oo. There are counatbly many such functions and they are dense in H.

The other part follows from Gram-Schmidt orthogonalization in two steps as we will ex-
plain now.

Step 1: As a first step, one extracts from our dense countable set S, a subset S that is
linearly independent.
So consider the countable set S = {hq, hy, ...} whose closure is equal to H. We can now

make it a bit smaller as follows:

(1) we set S := {h};

(2) at step m we include h,, in S if and only if there is no linear combination of elements

in Pt U {h,,} that gives 0;
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(3) we define SB = UiEISiB-
This is called a linearly independent spanning set: linearly independent because we can-
not find any hq,...,h, € Sp and numbers ay,...,a, such that > ", a;h; = 0; spanning
because for any h € H and any ¢ > 0, we can find hq,...,h,, and ay,...,a, such that
12232 aihi = bl <e.

Step 2: The next step is to filter out an orthonormal set. This is done by revisiting an old
friend of yours - the Gram-Schmidt orthogonalization procedure.

Proposition 4.4 (Gram-Schmidt orthogonalization). Suppose we have a linearly indepen-
dent spanningset Sg = {h1, he,...}. Consider the following recursive procedure:
(1) We set Hyy := {hy/||h1||} . .
(2) Given HY ', we set HY% := H}y ' U{h,} where h,, is defined by normalizing the vector
h, — Z?:_f hi{hn, hi) to have unit norm.
(3) We define Hg = U;>1 H,.
Then Hp is an orthonormal basis of H.

Proof. By construction Hpg is orthonormal. So it remains to check that it indeed satisfies
the basis condition.

Consider any h € H. Then as Sp is a spanning set, and each s € Sp is a finite combination
of some hy,...,h, in Hg, we can for any m > 0 find hy,...h, and ci,...,c,,, € R such
that [|[h — >0 ¢;h|| < 1/m. Tt is important here to make consistent choices of ¢; and this
can be done by considering explicitly the orthogonal projection g,, :== Y™ h;{h;, h), which
satisfies ||h — g|| < 1/m as the projection minimizes the distance. We conclude that

h="> hi(h;,h)
i=1
as desired. 0

4.2 Bounded and unbounded linear operators on Hilbert spaces

Linear operators on R™ are both extremely useful and very well behaved - they can be
always nicely represented using a matrix, and they are continuous.

When we go to infinite-dimensional vector spaces, things get more tricky. Linear operators
are still easy to define.

Definition 4.5 (Linear operator on a Hilbert space). Let (H,| - ||) be a separable Hilbert
space. A linear map T : H — H, i.e. a map that satisfies T'(af + bg) = aT(f) + 0T (g) for
all a,b € C (or inR) and f,g € H is called a linear operator on H.

However, not all of them behave very nicely. We are used to the fact that all linear maps
from R" to R™ are continuous, even Lipschitz continuous. This is no longer the case - only
so called bounded operators are continuous.

Definition 4.6 (Bounded linear operator). Let (H, ||-||) be a separable Hilbert space and T a
linear operator. We call T bounded if sup| s <1 [|Tf|| < oo. Further, we define this supremum
itself as the operator norm of T': || T := supyp<i |Tf]|-

HHere 2?2—11 hi{hn, h;) is the projection of h, onto the subspace spanned by hq, ..., hy_1.
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A key result says that continuity and boundedness are the same thing. We are more
interested in the part bounded implies continuous, which is on the example sheet.

Theorem 4.7. A linear operator T' : H — H is continuous if and only if it is bounded.

Here are some examples of bounded linear operators.
Example 4.8 (Bounded linear operators).

e The identity operator Id : H — H defined by Id(f) := f. It has norm equal to 1
e Finite rank operators that are the equivalent of linear operators on finite spaces: pick

fiooosJn €M, g1y 90 € Hoand define T(f) = >0 (f, fi)gi-

e Fourier transform on L*(R) is bounded and has unit norm as we have that || F(f)||2 =
1/ l2-

e Position operator from quantum mechanics on L*([a,b]) defined by T(f) := xf is
bounded: indeed

HT(f)H§=/[b} [2*f (z)[*dA(x) < max(|al, [b])*]f15.

But there are natural unbounded ones too!

Exercise 4.1. Show that the following operators are not bounded:

o The position operator on L%(R) defined by T(f) := xf is not defined on the whole of
L2(R) and is not bounded;

e The momentum operator on L*(R) defined by T(f) := —i% is neither defined on the
whole of L2(R) and is not bounded.

The mathematical theory of unbounded operators is more subtle and not touched upon
here - as we saw natural properties like continuity get lost and in fact one cannot even define
the operator on the whole space. This is contrast with bounded operators that can always
be nicely extended to the whole space, even if sometimes we manage to directly define them
only on a subspace. The following theorem in particular fills in the remaining part of the
proof for the Fourier transform - it shows that the Fourier transform that we defined using
the Lebesgue integral for a subclass of nice functions can be extended to all of L2(R).

Theorem 4.9 (Extension of bounded operators). Let T' be a bounded operator on a subspace
D C H of a separable Hilbert space H. Then there is a extension of the operator T to an
operator T : H — H such that T = T when restricted to D and || T||op = ||T|op-

Moreover, if D is dense, this extension is unique.

Proof. Let us look at the proof in the case where D is dense. Then the extension works
using completeness: let h € H and suppose T'(H) not defined. As D is dense, we have
hy,hy,--- € D such that |h — h;|| — 0. But then ||T'(h, — hw)|| < |T]|opllhn — hml|| and in
particular as (hy),>1 18 Cauchy because it converges, so is (Thy)n>1. But H is complete, so
(Thy,)n>1 converges to some h. We then define Th := h. This gives a way to extend T to
the whole of H and one can verify that the norm of the extension doesn’t change.

To see uniqueness, consider two such extensions T and T both agreeing on D. Then
S =T —T is a bounded linear operator defined on H and equal to 0 on D. But then for
every h € H we have a sequence h, converging to h with Sh,, = 0, it follows that Sh =0

and thus T =T. O
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4.3 Compact operators and the spectral theorem

Among all bounded operators, the compact operators are the very well-behaved ones.
They behave very much like the friendly linear operators on R".

Definition 4.10 (Compact operator). Let (H, || - ||) be a Hilbert space and T a bounded
linear operator. We call T compact if for every sequence (fy)n>1 with || fn| < 1 there is a
subsequence (fp, )k>1 such that (T'(fn,))k>1 converges.

Remark 4.11. Another equivalent way to define compactness is just to say that the image
of the unit ball under T has to be compact. But often the criteria via sequences is what one
checks.

In particular, notice that compact operators are bounded by definition. Yet not all the
bounded operators that one would hope or expect to be compact are compact:

Example 4.12 (Non-compact and compact operators).

o The identity operator is compact if and only if the Hilbert space (H,|| - ||) is finite
dimensional (and hence isomorphic to (R™, ] - ||2).

Indeed, it is an application of Bolzano Weierstrass to see it is compact in case it
the dimension is finite.

In the infinite-dimensional case consider an orthonormal basis (¢n)n>1. But Id(¢,) =
On and ||¢n — dumll2 = V2 for all m # n. Hence (Id(¢p))n>1 has no subsequence that
1s Cauchy and hence no subsequence that is convergent.

e The Fourier operator F on L*(R) is bounded but not compact - indeed a orthonor-
mal sequence (¢n)n>1 is mapped to an orthonormal sequence (an)nzl which has no
convergent subsequence.

e However, finite rank operators are compact, again it is a matter of Bolzano Weier-
strass as you can verify on the example sheet.

In fact compact operators are close as one can get to finite-rank operators: they are given
by their limits.

Proposition 4.13. Let (H,|| - ||) be a Hilbert space. Then a bounded operator T : H — H
1s compact if and only if it is a limit of finite-rank operators in the operator norm, i.e. there
exist (T,)n>1 of finite rank with ||T,, — T||op — 0.

The key lemma is the following:

Lemma 4.14. Let (T,,),>1,T be bounded operators and suppose that | T, — T'||,, — 0. If
(T},)n>1 are compact, then so is T.

Proof idea. We need to prove that for any sequence (f,)n>1 in H with || f,|| < 1 we can find
a subsequence ( f,, )x>1 such that T'(f,, ) converges as k — oo.
To do this we use an iterative extraction procedure:

(1) As T} is compact, we can find a subsequence (fy, ,)x>1 such that (T1(fy, ,))r>1 con-
verges.

(2) As further T3 is compact, we can extract a further subsequence (fy,,)i>1 from the
previous one such that (T3(fn,,))r>1 also converges (notice that by definition the

convergence holds for T7.
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(3) we continue iteratively.

The claim is then that if we consider the diagonal subsequence (fy, , )r>1 then (T'(fn, ,))r>1
converges as k — o0o. To do this, it suffices to verify that the sequence is Cauchy, which one
can do by a 3¢ argument: we first take n large enough such that ||7;, —7'||,, is as small as we
wish and then go far enough in the sequence such that for ||7,,(fxx) — T.(f1.)|| is as small as
we wish for all k£, large enough. O

4.3.1 The spectral theorem for compact operators

Maybe the most important result about compact operators is the fact that when they are
symmetric, then they can be diagonalised in the very similar way as in the finite-dimensional
case, i.e. similary to say real symmetric matrices. The definition of Hermitian / symmetric
operator in this setting is as follows.

Definition 4.15 (Hermitian / symmetric operator). Let (H, | - ||) be a Hilbert space and
T a bounded operator. We call T' Hermitian or symmetric if for all f,g € H it holds that

(Tf,9)=(fTg).

The spectral theorem then says that any Hermitian compact operator can be diagonalized.
As mentioned, it is the generalisation of diagonalisation of symmetric / Hermitian matrices.

Theorem 4.16 (Spectral theorem for compact operators). Let H be a separable Hilbert space
and T : H — H a compact Hermitian operator.

Then we can find an orthonormal basis (¢n)n>1 and real numbers (A,)n>1, called eigen-
functions and eigenvalues such that

o T(f) = > 51 (fs Gu)Audn and in particular T(¢n) = Ay, for all n > 1
e For each € > 0, there are only finitely many eigenvalues \; with |A\;| > €.

We call this the diagonalization of the operator, because the basis of eigenfunctions (¢, ),>1
allows us to represent the operator 1" by a multiplication in each of the coordinates exactly
like in the finite-dimensional case: if f =) ., o, then T(f) =D o) cudn@n.

The proof of the spectral theorem is quite beautiful itself, but we have to skip it. I have
still given the argument in an appendix of the notes.

4.3.2 Heat equation / Fourier series from a compact operator

We will now connect this abstract theorem to the heat equation and its solution via the
Fourier series. Our aim is to find a way of solving the heat equation in a way that generalises
to the inhomogeneous case and to further PDEs.

So consider from the beginning the inhomogeneous heat equation
ou(t, x)
ot
with some boundary conditions to be determined. Here the inhomogeneity in space is given
by a positive continuous function k(x) - when it is constant we are back to the usual heat
equation.

When we solved the heat equation earlier for k& = const we observed that trigonometric

functions behave well with respect to A,. You can verify that this doesn’t help us much in
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the case k(z) non-constant, as multiplying a trigonometric function by k(x) mixes up all the
frequencies.

So instead, let us make another good guess to start off: we will look for solutions of the
form u(x,t) = v(x)w(t). Plugging this form into the heat equation we obtain

v(x)dfl—]@ = k(m)w(t)d;;(f).

Thus we obtain a solution u(z,t) = v(z)w(t) as soon as we find solutions to the two ODEs:

and

The second of these equations has a straightforward solution given by w(t) = cexp(—At).
The first equation is what is called a Sturm-Liouville type of equation and can be interpreted

as finding the eigenvalues and eigenfunctions of the operator (Lf)(x) := k(x)deJ; @

Let us see how this Sturm-Liouville type of equation can be solved in the earlier homoge-
neous case k = const and how it links to Fourier series. In this case the equation becomes
just

d*v(x
W) D o)
i.e. the equation for eigenfunctions of the Laplacian operator A times a constant.

Now the idea is that whereas A is a unbounded operator, its inverse - the Green’s operator
T - is actually a compact operator and one can use the spectral theorem for that!

You have already seen the Green’s operator, but let us recall it with our vocabulary and
mindset. Indeed, consider the Poisson equation —Af = u on say the unit ball B (O 1) C
R? with zero boundary conditions. This can be solved by f(z) := | BO.1) Yu(y)dy

where G(z,y) is the Green’s kernel of the Laplacian with zero boundary condltlons i.e. the
symmetric kernel given informally by (—=A)~! with zero boundary conditions. In d = 1,2
there is an explicit formula:

e given on [0,1] by G(z,y) :=xz(1 —y) for 0 <z <y <1

e and by G(z,y) := —log |z — y| +log |1 — zy| on B(0,1) C R

Definition 4. 17 (Green s operator of the Laplacian). We call the operator on L*(B) de-
fined by (Tef)(z) = [, G( (y)d\(y) the Green’s operator (of the Laplacian) with zero
boundary condztwns

Now consider the setting of the unit interval and let us admit for the moment that the
(zero boundary). We claim the following.

Claim 4.18. Green’s operator from L2([0,1]) to £2([0,1]) is compact and symmetric.

So in particular the spectral theorem applies and we can diagonalise the Green’s kernel.
What are the eigenfunctions / eigenvaues? IT comes out that we obtain exactly the sin-

Fourier series!
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Claim 4.19. The spectral theorem applied to the Green’s operator T on L2([0,1]) gives
the collection of eigenfunctions with zero boundary conditions: ¢, = sin(mnx) and A, =
—(nm)~2. Further, these are exactly all the zero boundary eigenfunctions of A with eigenval-
ues A\ L.

Proof. To see this observe that by definition every eigenfunction f; with eigenvalue \; of T
solves T (f;) = Aifi. But as T¢ is the inverse operator of —A, we know that T (f;) satisfies
—A(Te(fi)) = Mifi- Thus we see that every eigenfunction of T¢ is also an eigenfunction of
—A and vice-versa. Further the eigenvalues are related just by taking A, — A!. Moreover,
we observe that Tg(f)(0) = Te(f)(1) = 0 for any f € L*([0,1]).

But now we have already seen a collection of eigenfunctions of the Laplacian with zero
boundary conditions on (0, 1): the sine series sin(7mnx) for n > 1. We also saw that they form
an orthonormal basis, so they must be in fact exactly the complete set of eigenfunctions of
the Green’s operator, with eigenvalues ), := (nm)™?! O

This means that all solutions to the equation (1) are given by (sin(mnx)),>1, each with
A, = n*7?/k because of the extra k factor. You can think of it as follows: the spectral
theorem gives us the right orthonormal basis of £? that matches with the spatial equation
(1) and hence the initial PDE!

The nice thing is that this new strategy generalises! The only thing that remains to do is
to understand how and in which set-up we can solve the equation (1) that we obtained from
separation of time and space variables. This in turn reduces to being able to write down
the inverse operator and verifying this is compact. This in fact can be done in a very large
generality with no serious difficulty! This is achieved by the so-called Sturm-Liouville theory
discussed this year in the non-examinable section.

This way we obtain hand-crafted series expansions suitable to our initial PDE in a much
wider generality. So when in the beginning of the course we found the matching series -
Fourier series in the case of the heat equation - just by chance, then now we have a general
method for finding such a series, which I think is very nice!

4.4 Sturm-Liouville equations * non-examinable *

In this non-examinable section we discuss how to solve the equation (1) just above in a
general set-up. It fits in the framework of so-called Sturm-Liouville equations. They are
helpful to solve a large class of PDEs.

The form of the equation encompasses quite a large class of ODEs - in fact, any 2nd order
ODE of the form a(x)u”(z) + b(x)u'(z) + c(x)u(x) + Ad(z)u(z) = 0 with say positive a,d
can be brought into this form. Let us state a general (but not the most general) theorem
and then discuss how to connect it to the abstract theory developed above.

Theorem 4.20 (Sturm-Liouville problem). Consider a reqular Sturm-Liouville problem on
la,b], i.e. finding pairs u € C*([a,b],C) and \ € C such that

(4.1) 2 (M0 + d0ute) = ~uto)
52



where the functions p,p’,q : [a,b] — R are continuous and further p is positive throughout
la,b], and that the boundary conditions

(4.2) agu(a) + Byu'(a) =0
(4.3) apu(b) + Byu'(b) = 0,

hold for some oy, Ba, aw, By so that neiter both oy, B, nor both ay, By are zero.

Then there is countable sequence of real eigenvalues \y < Ao < ... and corresponding
solutions wuy, such that (A, uy,)i>1 are the only possible pairs of solutions and moreover
(uy,)i>1 form an orthonormal basis of L*([a,b]).

=

Let us see how to prove this theorem. First there are some consequences from the general
theory of ODEs:

e One can always find a unique solution for Equation with boundary conditions
only at one endpoint of the interval - i.e. either with u(a) = ug(a), v'(a) = ug(a) or
with u(b) = ug(b), u'(b) = ugy(b). In particular we can for any A € C find solutions
u1(x), us(x) that satisfy respectively either boundary conditions or ({£.3).

e Moreover for any A € C there is at most one solution up to multiplication: indeed, if
there were two solutions, one would be able to contradict the uniqueness of solutions
for ODEs with boundary conditions u(a) = ug(a), v'(a) = ug(a).

Second, notice that if we denote Tf := £ (p(z)%) + g(x)u(z) defined on the sub-
set C%([a,b],C) of L?*([a,b],\,C) then by an integration by parts identity for any f,g €
C?([a,b],C) we see that (T'f,g) = (T'g, f). Thus T is Hermitian, and in particular if \;, Ay
are two eigenvalues, then as we saw above the respective eigenfunctions are orthogonal w.r.t.
| - |l2- In particular there can be only countably many eigenvalues because our space is
separable. We can also infer already from here that all eigenvalues have to be real. Yet T is
not compact, so we cannot conclude just as yet.

But the trick is - exactly as above in the case of the Laplace operator - to construct an
inverse operator Tk of T that is compact and to which we can apply the spectral theorem to
get an orthonormal basis of eigenfunctions. Showing that every eigenfunction of T is also
an eigenfunction of 7" will then conclude the completeness of the eigenfunction basis and
thus the theorem exactly as in the case of Fourier.

To do this assume WLOG that 0 is not an eigenvalue of T' (otherwise we can take some
Ao that is not an eigenvalue and relabel A — XA — )¢ in the set-up).

Using the remarks above, we can then choose the solutions u; (x), us(x) satisfying boundary
conditions either only at a or b respectively to be linearly independent - otherwise they
would satisfy both boundary conditions and 0 would be an eigenvalue. Then we have that
W(z) := uy(x)ub(z) — uz(x)u) () is non-zero but by a direct computation (pWV)'(z) = 0 and
thus p(x)W (z) is a constant we denote by just pIV.

12y6u may notice that the inhomogenous heat equation doesn’t directly fit in this framework. However,
the general Sturm-Liouville theoryalso works when on the RHS one has —A\k(z)u(z) for a continuous positive
function k, it just changes a bit the orthogonality statements as one would need to look at weighted L? spaces
- the reason why we kept this coefficient equal to 1. One can also reduce the inhomogenous heat equation
to the form in the theorem via a change of variable and by a redefinition of the function u
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Now we define
—uy(z)ug(y)/pW  fora <z <y <b
—uy(Y)ua(z)/pW  fora<y <z <b

K(.T,y) = {

This gives a special type of operator:

Definition 4.21 (Hilbert-Schmidt integral operators). Let B(0, R) C R be the ball™| of
radius R > 0.
If K(z,y) : B(0, R)xB(0, R) — R is square integrable, i.e. fB(O R)x BO.R) |K (z,y)Pd\(z, y) <

00, the integral operator defined on L*(B(0, R)) and given by
Telf) = [ K f@)aaw)
B(0,R)

1s called the Hilbert-Schmidt integral operator.

For example it is easy to see that the Green’s operator in 1D, 2D, 3D is Hilbert-Schmidt.
The key claim now, stated a bit informally, is the following:

Lemma 4.22. Hilbert-Schmidt integral operators as defined just above and seen as operators
from L*([a,b]) — L*([a,b]) are compact.

In particular they can be diagonalised! As one can further verify that all eigenfunctions of
T will necessarily be eigenfunctions of Ty, and vice-versa, the solution to the Sturm-Liouville
problem follows!

I think it is quite elegant how this slightly abstract looking spectral theorem could help
us with such concrete problems. In fact, historically Sturm-Liouville problems were the
motivation and inspirations for a part of spectral theory, so the interplay of physics and
mathematics is most certainly a fruitful one. ;)

Thank you!

131t could also be anything else reasonable like a box of R? or similar
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SECTION 5

*non-examinable appendix: the proof of spectral
theorem for hermitian compact operators*ee

The proof of the spectral theorem relies on the following lemmas:

Lemma 5.1. Let T' be compact and Hermitian on a Hilbert space H. Then either ||T||op or
—||T||op is an eigenvalue, i.e. there is some f € H such that Tf = ||T||opf orTf = —||Topf-

Lemma 5.2. Let T be compact and Hermitian on a Hilbert space H. Then all the eigenvalues
A are real, and for each non-zero eigenvalue X\ the subspace of f € H with T f = \f is finite-
dimensional.

Lemma 5.3. Let T be compact and Hermitian on a Hilbert space (H,|| - ||). Then any
two eigenfunctions f, g corresponding to different eigenvalues are orthogonal. Moreover, for
every € > 0 there are only finitely many eigenvalues with |\;| > e.

Before proving them, let us see how to conclude the theorem.

Proof sketch of Theorem[{.16, Most of the statements in the theorem are given by the lem-
mas above. Indeed, by the first lemma the set of eigenvalues is non-empty, by the second
lemma we can for each eigenvalue A find orthonormal vectors ¢y 1, ... ¢x 4, With Hox; = Apy .
Further by the third lemma we can choose all the eigenfunctions to be orthonormal.

It just suffices to prove that this set of orthonormal eigenfunctions (¢,),>1 is complete:
i.e. that every f can be written in H as f =" -, (f, ®n)on.

Now one can verify that the linear span of all these eigenfunctions is a closed subspace of
‘H. Consider it’s orthogonal complement Hr C H that is itself a Hilbert space. Notice that
for any h € Hg we have that Th € Hg: indeed (Th, ¢,) = (h, T¢n) = (h, \n¢,,) = 0 for any
eigenfunction ¢,. If Hg is non-empty, then the restriction of T" to Hp is again a compact
Hermitian operator. But by Lemma 1, it always has an eigenvalue and an eigenfunction,
giving a contradiction with the fact that we already listed all of them. Thus Hpg is empty
and thus the set of orthonormal eigenfunctions indeed forms a basis. OJ

None of the lemmas is too tricky to prove and it is interesting to see how being Hermitian
really forces things to be work out.

Proof of Lemma[5.1. We can assume by scaling that ||T']|,, = 1 and thus we need to show
that either 1 or —1 is an eigenvalue.

First we claim that there is some unit norm function g with ||Tg|| = 1: indeed, by definition
of || T||op there is some sequence of unit norm functions g,, with || T'g,| — 1. As T"is compact,
|Tg,|| converges to some g. We claim that ||Tg|| = 1: indeed, T?g,, — T'g but

1729l 9nll = (T%9n: 9n) = (T9n, T9n) = I Tgnll* — 1
and hence as ||g,|| = 1, we see that || T?g,|| — 1, concluding that ||Tg|| = 1.
We will now show that either Tg = ¢ and thus —1 is an eigenvalue or T'g + ¢ is an
eigenfunction with eigenvalue 1. To do this write T'g = cg + df with f orthogonal to g and
¢,d € C with |c|*> + |d|* = 1. Then as

1= (Tg,Tg) = (T?g,9) < |Tg|lllgll = IT?gl,
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we conclude that T%g = g. But now we can conclude: either Tg+g = 0 or T(T'g+g) = g+Tg
as promised. 0

Proof of Lemmal[5.9 Let (f,\) be an eigenfunction, eiganvalue pair. Then
ML) = (T ) = (LT =M ),

and thus A is real.

Suppose for contradiction that A # 0 but the subspace of functions f with T'f = Af is not
finite-dimensional. Then we can find unit norm orthogonal functions fi, fo,... such that
Tf, = Af, and in particular |Tf, — T fm| > V2|A|. But this is a contradiction as T is
compact and thus 7' f, should admit a convergent subsequence, in particular a subsequence
that is Cauchy. O

Proof of Lemmal[5.5 First, let (f, A1), (g, A2) be two eigenfunction, eigenvalue pairs with
A1 # Ag. Like in the lemma above: A\i(f,q9) = (T'f,g9) = (f,Tg) = X2(f, g), which can only
hold when (f,g) =0, i.e. f, g are orthogonal.

Now suppose there are infinitely many eigenvalues with |A| > €. Then we can find or-
thonormal eigenfunctions (¢,),>1 with eigenvalues (A\,),>1 with |\,| > €. But we can now
replicate the proof of the lemma above to obtain a contradiction: as 71" is compact the se-
quence (T'¢y)n>1 should admit a convergent subsequence, yet | T¢, — Topn| > v/2¢ thus
there is no subsequence that is Cauchy. U
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