

Reminder sheet

1 \mathbb{R}^n as a Euclidean and metric space

Definition 1 (Distance). Let X be a set. A distance on X is a function $d : X \times X \rightarrow \mathbb{R}$ satisfying:

- (Positiveness) $\forall x, y \in X, d(x, y) \geq 0$, and $d(x, y) = 0$ if and only if $x = y$.
- (Symmetry) $\forall x, y \in X, d(x, y) = d(y, x)$.
- (Triangular inequality) $\forall x, y, z \in X, d(x, z) \leq d(x, y) + d(y, z)$.

Definition 2 (Norm). Let V be a vector space over \mathbb{R} or \mathbb{C} . A norm on X is a function $\|\cdot\| : X \rightarrow \mathbb{R}^+$ satisfying:

- (Positivity) $\forall v \in V, \|v\| = 0$ implies $v = 0$.
- (Absolute homogeneity) $\forall v \in V$ and $\lambda \in \mathbb{R}$ or $\mathbb{C}, \|\lambda v\| = |\lambda| \|v\|$.
- (Triangular inequality) $\forall x, y \in V, \|x + y\| \leq \|x\| + \|y\|$.

Notice that the first and second properties imply that $\|x\| = 0 \iff x = 0$.

Euclidean space: \mathbb{R}^n is an Euclidean space (over \mathbb{R}) of dimension n , of basis $(\mathbf{e}_1, \dots, \mathbf{e}_n)$. It is equipped with a norm, called the Euclidean norm $\|\cdot\|_2$:

$$\left\| \sum_{i=1}^n \alpha_i \mathbf{e}_i \right\|_2 = \sqrt{\sum_{i=1}^n \alpha_i^2}.$$

This norm belongs to a larger family, called the p -norms:

$$\left\| \sum_{i=1}^n \alpha_i \mathbf{e}_i \right\|_p = \left(\sum_{i=1}^n \alpha_i^p \right)^{1/p}.$$

It is, however, the only norm of this family that is induced by a scalar product, given by

$$\left\langle \sum_{i=1}^n \alpha_i \mathbf{e}_i, \sum_{j=1}^n \beta_j \mathbf{e}_j \right\rangle = \sum_{i=1}^n \alpha_i \beta_i.$$

Theorem 1. All norms on \mathbb{R}^n are equivalent, i.e. for $\|\cdot\|, \|\cdot\|, \|\cdot\|$ two norms on \mathbb{R}^n , there exists $c, C > 0$ such that for all $x \in \mathbb{R}^n$,

$$c\|x\| \leq \|\cdot x\| \leq C\|x\|.$$

2 Sequences

Definition 3 (Convergent sequences). A sequence $(x_n)_{n \geq 1}$ in $(\mathbb{R}^n, \|\cdot\|)$ converges to $x \in \mathbb{R}$ if for all $\epsilon > 0$, there exists $N \geq 1$ such that for all $n \geq N$, $\|x_n - x\| \leq \epsilon$. We denote $x_n \xrightarrow[n \rightarrow \infty]{} x$.

Definition 4 (Cauchy sequences). A sequence $(x_n)_{n \geq 1}$ in $(\mathbb{R}^n, \|\cdot\|)$ is Cauchy if for all $\epsilon > 0$, there exists $N \geq 1$ such that for all $n, m \geq N$, $\|x_n - x_m\| \leq \epsilon$.

Theorem 2 (Completeness of \mathbb{R}^n). A sequence $(x_n)_{n \geq 1}$ in $(\mathbb{R}^n, \|\cdot\|)$ is Cauchy if and only if it converges.

3 Reminders of topology in \mathbb{R}^n

Definition 5 (Open sets). For all $x \in \mathbb{R}^n$ equipped with a norm $\|\cdot\|$ and $r > 0$, we denote

$$B(x, r) := \{y \in \mathbb{R}^n : \|x - y\| < r\}.$$

A subset $U \subset \mathbb{R}^n$ is open if for all $x \in U$, there exists $r > 0$ such that $B(x, r) \subset U$. Notice that \emptyset and \mathbb{R}^n are open, that an arbitrary union of open sets is open, and that a finite intersection of open sets is open.

A subset $S \subset \mathbb{R}^n$ is closed if and only if S^c is open. In particular, \emptyset and \mathbb{R}^n are closed, an arbitrary intersection of closed sets is closed, and a finite union of closed sets is closed.

Remark 3 (Terminology is unfortunate). A subset $U \subset \mathbb{R}^n$ can be: open, closed, open and closed, neither open nor closed.

Proposition 4 (Characterization via sequences). A subset $S \subset \mathbb{R}^n$ is closed if and only if for every sequence $(x_n)_{n \geq 1}$ that converges, the limit belongs to S .

Theorem 5 (Bolzano Weierstrass – Sequential compactness in \mathbb{R}^n). A subset $S \subset \mathbb{R}^n$ is sequentially compact, i.e. with the property that every sequence $(x_n)_{n \geq 1} \subset S$ admits a subsequence converging in S , if and only if S is bounded and closed. *See the reminders sheet for a proof.*

4 Continuous functions

Definition 6. A function $f : (\mathbb{R}^n, \|\cdot\|) \rightarrow (\mathbb{R}^m, \|\cdot\|)$ is continuous at $x \in \mathbb{R}^n$ if for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $y \in B(x, \delta)$, $\|f(x) - f(y)\| \leq \epsilon$.

Equivalently, f is continuous at x if and only if for all $(x_n)_{n \geq 1} \subset \mathbb{R}^n$ converging to x , $f(x_n)$ converges to $f(x)$ in $(\mathbb{R}^m, \|\cdot\|)$.

f is said continuous if it is continuous at every $x \in \mathbb{R}^n$.

Definition 7. A function $f : (\mathbb{R}^n, \|\cdot\|) \rightarrow (\mathbb{R}^m, \|\cdot\|)$ is uniformly continuous if for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in \mathbb{R}^n$ such that $\|x - y\| < \delta$, $\|f(x) - f(y)\| \leq \epsilon$.

Both definitions above can trivially be adapted when f takes value from a subset $E \subset \mathbb{R}^n$.

Proposition 6. *Let $K \subset \mathbb{R}^n$ be non-empty, closed and bounded, and $f : K \rightarrow \mathbb{R}^m$ be continuous. Then f is uniformly continuous.*

Proposition 7 (Maximum principle). *Let $K \subset \mathbb{R}^n$ be non-empty, closed and bounded, and $f : K \rightarrow \mathbb{R}^m$ continuous. Then there exist $\underline{x}, \bar{x} \in K$ such that*

$$f(\underline{x}) = \inf_{x \in K} f(x), \quad f(\bar{x}) = \sup_{x \in K} f(x).$$

See the reminders sheet for a proof.

Proposition 8 (Intermediate value theorem). *Let $K \subset \mathbb{R}^n$ be non-empty and path-connected, and $f : K \rightarrow \mathbb{R}^m$ continuous. Then for all $y \in (\inf_{x \in K} f(x), \sup_{x \in K} f(x))$, there exists $x \in K$ such that $f(x) = y$.*

5 Riemann integral

Definition 8. *Let $a < b \in \mathbb{R}$. A partition of $[a, b]$ is a finite set $P = \{a_0, a_1, \dots, a_n\}$ with*

$$a = a_0 < a_1 < \dots < a_n = b.$$

For $f : [a, b] \rightarrow \mathbb{R}$ bounded, we define the upper and lower Riemann sums

$$U(P, f) = \sum_{i=1}^n \left(\sup_{a_{i-1} \leq x \leq a_i} f(x) \right) (a_i - a_{i-1}), \quad L(P, f) = \sum_{i=1}^n \left(\inf_{a_{i-1} \leq x \leq a_i} f(x) \right) (a_i - a_{i-1})$$

f is said to be Riemann-integrable if

$$\inf_P U(P, f) = \sup_P L(P, f),$$

(where the sup and inf are taken over all partitions of $[a, b]$) and this value is denoted $\int_a^b f$.

Theorem 9. *$f : [a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if for every $\epsilon > 0$ there exists a partition P_ϵ such that $U(P_\epsilon, f) - L(P_\epsilon, f) < \epsilon$.*

Theorem 10. *Let $a < b \in \mathbb{R}$ and $(f_n)_{n \geq 1} \subset C([a, b], \mathbb{R})$ converging uniformly to f . Then*

$$\int_a^b f_n(x) dx \xrightarrow{n \rightarrow \infty} \int_a^b f(x) dx.$$

6 Derivatives

6.1 In \mathbb{R}

Definition 9. Let $a < b \in \mathbb{R}$. We say that $f : (a, b) \rightarrow \mathbb{R}$ is differentiable at $x \in (a, b)$ if the following limit

$$\lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a}.$$

exists, in which case we write it $f'(a)$. We further write $f \in C^1((a, b), \mathbb{R})$ if f is differentiable at every point of (a, b) and $f' : x \mapsto f'(x)$ is continuous on (a, b) .

The spaces $C^k((a, b), \mathbb{R})$ are defined analogously.

Theorem 11 (Mean value theorem). Let $f \in C^0([a, b], \mathbb{R})$ be differentiable on (a, b) . There exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Theorem 12 (Fundamental theorem of calculus). Let $f \in C^0([a, b], \mathbb{R})$ and consider

$$F : x \mapsto \int_a^x f(y) dy, \quad x \in [a, b].$$

Then $F \in C^1((a, b), \mathbb{R})$ and for all $x \in (a, b)$, $F'(x) = f(x)$.

Note that the converse of this theorem is not true, in that differentiability of F need not imply continuity of f .

6.2 In \mathbb{R}^n

Definition 10. Let $U \subset \mathbb{R}^n$ be open. A function $f : U \rightarrow \mathbb{R}^m$ is said to be differentiable at $x_0 \in U$ if there exists a linear map $Df(x_0) \in \mathbb{R}^{m \times n}$ such that for all $x \in \mathbb{R}^n$,

$$f(x) = f(x_0) + Df(x_0)(x - x_0) + o(\|x - x_0\|).$$

Theorem 13. Let $U \subset \mathbb{R}^n$ be open. If $f : U \rightarrow \mathbb{R}^m$ is differentiable at $x_0 \in U$, then $Df(x_0)$ is unique and is given by

$$(Df(x_0))_{ij} = \lim_{t \rightarrow 0} \frac{f_i(x_0 + te_j) - f_i(x_0)}{t} =: \frac{\partial f_i}{\partial x_j}(x_0)$$

Furthermore, f is continuous at x_0 .

We write that $f \in C^1(U, \mathbb{R}^m)$ if f is differentiable at every $x \in U$ and the function $Df : U \rightarrow \mathbb{R}^{m \times n}$, $Df : x \mapsto Df(x)$ is continuous. Inductively, we say that $f \in C^k(U, \mathbb{R}^m)$ if for $0 \leq i \leq k-1$, $D^{(i)}f$ is differentiable with differential $D^{(i+1)}f$, with the latter continuous.

Proposition 14. Let $U \subset \mathbb{R}^n$ be open, $f : U \rightarrow \mathbb{R}^m$ and $x_0 \in U$ be such that there exists $\delta > 0$ such that for all $1 \leq i \leq n, 1 \leq j \leq m$, $\frac{\partial f_i}{\partial x_j}(x)$ exists for all $x \in B(x_0, \delta)$ and is continuous at x_0 . Then f is differentiable at x_0 .

Recall that the condition in the proposition is sufficient for differentiability, but not necessary.

7 Miscellaneous

Theorem 15 (Banach fixed point theorem). *Let (X, d) be a complete metric space, $f : X \rightarrow X$ and $0 \leq L < 1$ such that for all $x, y \in X$,*

$$d(f(x), f(y)) < Ld(x, y).$$

Then f admits a unique fixed point, i.e. there exists a unique $x \in X$ such that $f(x) = x$.

Note that the theorem does not hold for $L = 1$: consider for example $X = \mathbb{R}$ and $f : x \mapsto \pi/2 + \arctan(x)$.