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Reminder sheet

1 Rn as a Euclidean and metric space

Definition 1 (Distance). Let X be a set. A distance on X is a function d : X × X → R
satisfying:

• (Positiveness) ∀x, y ∈ X, d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

• (Symmetry) ∀x, y ∈ X, d(x, y) = d(y, x).

• (Triangular inequality) ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

Definition 2 (Norm). Let V be a vector space over R or C. A norm on X is a function
∥·∥ : X → R+ satisfying:

• (Positivity) ∀v ∈ V , ∥v∥ = 0 implies v = 0.

• (Absolute homogeneity) ∀v ∈ V and λ ∈ R or C, ∥λv∥ = |λ|∥v∥.

• (Triangular inequality) ∀x, y ∈ V , ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Notice that the first and second properties imply that ∥x∥ = 0 ⇐⇒ x = 0.
Euclidean space: Rn is an Euclidean space (over R) of dimension n, of basis (e1, . . . , en).
It is equipped with a norm, called the Euclidean norm ∥·∥2:∥∥∥∥∥
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This norm belongs to a larger family, called the p-norms:∥∥∥∥∥
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It is, however, the only norm of this family that is induced by a scalar product, given by〈
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Theorem 1. All norms on Rn are equivalent, i.e. for ∥·∥, ||| · ||| two norms on Rn, there
exists c, C > 0 such that for all x ∈ Rn,

c∥x∥ ≤ |||x||| ≤ C∥x∥.



2 Sequences

Definition 3 (Convergent sequences). A sequence (xn)n≥1 in (Rn, ∥·∥) converges to x ∈ R
if for all ϵ > 0, there exists N ≥ 1 such that for all n ≥ N , ∥xn − x∥ ≤ ϵ. We denote
xn −−−→

n→∞
x.

Definition 4 (Cauchy sequences). A sequence (xn)n≥1 in (Rn, ∥·∥ is Cauchy if for all ϵ > 0,
there exists N ≥ 1 such that for all n,m ≥ N , ∥xn − xm∥ ≤ ϵ.

Theorem 2 (Completeness of Rn). A sequence (xn)n≥1 in (Rn, ∥·∥ is Cauchy if and only if
it converges.

3 Reminders of topology in Rn

Definition 5 (Open sets). For all x ∈ Rn equipped with a norm ∥·∥ and r > 0, we denote

B(x, r) := {y ∈ Rn : ∥x− y∥ < r} .

A subset U ⊂ Rn is open if for all x ∈ S, there exists r > 0 such that B(x, r) ⊂ S. Notice that
∅ and Rn are open, that an arbitrary union of open sets is open, and that a finite intersection
of open sets is open.

A subset S ⊂ Rn is closed if and only if Sc is open. In particular, ∅ and Rn are closed,
an arbitrary intersection of closed sets is closed, and a finite union of closed sets is closed.

Remark 3 (Terminology is unfortunate). A subset U ⊂ Rn can be: open, closed, open and
closed, neither open nor closed.

Proposition 4 (Characterization via sequences). A subset S ⊂ Rn is closed if and only if
for every sequence (xn)n≥1 that converges, the limit belongs to S.

Theorem 5 (Bolzano Weierstrass – Sequential compactness in Rn). A subset S ⊂ Rn is
sequentially compact, i.e. with the property that every sequence (xn)n≥1 ⊂ S admits a subse-
quence converging in S, if and only if S is bounded and closed. See the reminders sheet for
a proof.

4 Continuous functions

Definition 6. A function f : (Rn, ||| · |||) → (Rm, ∥·∥) is continuous at x ∈ Rn if for all
ϵ > 0, there exists δ > 0 such that for all y ∈ B(x, δ), ∥f(x)− f(y)∥ ≤ ϵ.

Equivalently, f is continuous at x if and only if for all (xn)n≥1 ⊂ Rn converging to x,
f(xn) converges to f(x) in (Rm, ∥·∥).

f is said continuous if it is continuous at every x ∈ Rn.

Definition 7. A function f : (Rn, |||·|||) → (Rm, ∥·∥) is uniformly continuous if for all ϵ > 0,
there exists δ > 0 such that for all x, y ∈ Rn such that |||x− y||| < δ, ∥f(x)− f(y)∥ ≤ ϵ.



Both definitions above can trivially be adapted when f takes value from a subset E ⊂ Rn.

Proposition 6. Let K ⊂ Rn be non-empty, closed and bounded, and f : K → Rm be
continuous. Then f is uniformly continuous.

Proposition 7 (Maximum principle). Let K ⊂ Rn be non-empty, closed and bounded, and
f : K → Rm continuous. Then there exist x, x ∈ K such that

f(x) = inf
x∈K

f(x), f(x) = sup
x∈K

f(x).

See the reminders sheet for a proof.

Proposition 8 (Intermediate value theorem). Let K ⊂ Rn be non-empty and path-connected,
and f : K → Rm continuous. Then for all y ∈ (infx∈K f(x), supx∈K f(x)), there exists x ∈ K
such that f(x) = y.

5 Riemann integral

Definition 8. Let a < b ∈ R. A partition of [a, b] is a finite set P = {a0, a1, . . . , an} with

a = a0 < a1 < · · · < an = b.

For f : [a, b] → R bounded, we define the upper and lower Riemann sums
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)
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f is said to be Riemann-integrable if

inf
P

U(P, f) = sup
P

L(P, f),

(where the sup and inf are taken over all partitions of [a, b]) and this value is denoted
∫ b

a
f .

Theorem 9. f : [a, b] → R is Riemann integrable if and only if for every ϵ > 0 there exists
a partition Pϵ such that U(Pϵ, f)− L(Pϵ, f) < ϵ.

Theorem 10. Let a < b ∈ R and (fn)n≥1 ⊂ C([a, b],R) converging uniformly to f . Then∫ b

a

fn(x)dx −−−→
n→∞

∫ b

a

f(x)dx.



6 Derivatives

6.1 In R

Definition 9. Let a < b ∈ R. We say that f : (a, b) → R is differentiable at x ∈ (a, b) if the
following limit

lim
x→a

f(x)− f(a)

x− a
.

exists, in which case we write it f ′(a). We further write f ∈ C1((a, b),R) if f is differentiable
at every point of (a, b) and f ′ : x 7→ f ′(x) is continuous on (a, b).

The spaces Ck((a, b),R) are defined analogously.

Theorem 11 (Mean value theorem). Let f ∈ C0([a, b],R) be differentiable on (a, b). There
exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Theorem 12 (Fundamental theorem of calculus). Let f ∈ C0([a, b],R) and consider

F : x 7→
∫ x

a

f(y)dy, x ∈ [a, b].

Then F ∈ C1((a, b),R) and for all x ∈ (a, b), F ′(x) = f(x).

Note that the converse of this theorem is not true, in that differentiability of F need not
imply continuity of f .

6.2 In Rn

Definition 10. Let U ⊂ Rn be open. A function f : U → Rm is said to be differentiable at
x0 ∈ U if there exists a linear map Df(x0) ∈ Rm×n such that for all x ∈ Rn,

f(x) = f(x0) +Df(x0)(x− x0) + o(∥x− x0∥).
Theorem 13. Let U ⊂ Rn be open. If f : U → Rm is differentiable at x0 ∈ U , then Df(x0)
is unique and is given by

(Df(x0))ij = lim
t→0

fi(x0 + tej)− fi(x0)

t
=:

∂fi
∂xj

(x0)

Furthermore, f is continuous at x0.

We write that f ∈ C1(U,Rm) if f is differentiable at every x ∈ U and the function
Df : U → Rm×n, Df : x 7→ Df(x) is continuous. Inductively, we say that f ∈ Ck(U,Rm) if
for 0 ≤ i ≤ k− 1, D(i)f is differentiable with differential D(i+1)f , with the latter continuous.

Proposition 14. Let U ⊂ Rn be open, f : U → Rm and x0 ∈ U be such that there exists
δ > 0 such that for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, ∂fi

∂xj
(x) exists for all x ∈ B(x0, δ) and is

continuous at x0. Then f is differentiable at x0.

Recall that the condition in the proposition is sufficient for differentiability, but not
necessary.



7 Miscellaneous

Theorem 15 (Banach fixed point theorem). Let (X, d) be a complete metric space, f : X →
X and 0 ≤ L < 1 such that for all x, y ∈ X,

d(f(x), f(y)) < Ld(x, y).

Then f admits a unique fixed point, i.e. there exists a unique x ∈ X such that f(x) = x.

Note that the theorem does not hold for L = 1: consider for example X = R and
f : x 7→ π/2 + arctan(x).
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