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Section 0

Introduction and motivation
As motivation, let us consider the mathematical description of heat transmission on a

homogeneous circular rod: the heat equation.
The heat equation on an interval [0, 1) (describing the rod) is given by describing the

evolution of the temperature profile
∂u(t, x)

∂t
= D∆u(t, x)

together with some initial condition u0(x) = u(0, x) and the boundary condition u(t, 0) =
u(t, 1) for all t ≥ 0 to express that the ends of the rod are connected. Recall that in the 1D
case ∆f := ∂2f

∂x2 and D > 0 is the diffusion coefficient.
The revolutionary idea of Fourier was as follows. He noticed empirically that the heat

profile over time shows spatially oscillatory behaviour, and thus also motivated by the so-
lution of the wave equation using waves, he proposed to write any solution using spatially
oscillating functions like fn(x) = sin(2πx) and gn(x) = cos(2πnx). More precisely, one could
try to find a solution of the form

u(t, x) =
∑
n≥1

sn(t) sin(2πnx) +
∑
n≥0

cn(t) cos(2πnx).

But now notice that ∆fn = −4Dπ2n2fn and thus if we try a solution of the form un(x, t) =
fn(x)sn(t) with fn as above, we obtain an equation

∂sn(t)

∂t
= −4Dπ2n2sn(t).

This is a well-known ODE that is easily solved: sn(t) = exp(−4Dπ2n2t)sn(0). Similarly for
the cos terms we get cn(t) = exp(−4Dπ2n2t)cn(0).

We conclude that it would make sense to propose a solution of the form

u(t, x) =
∑
n≥1

sn(0) exp(−D4πn2t) sin(2πnx) +
∑
n≥0

cn(0) exp(−D4πn2t) cos(2πnx).

Notice that the initial condition then translates to the condition:

u0 =
∑
n≥1

sn(0) sin(2πnx) +
∑
n≥0

cn(0) cos(2πnx).

If we do find such (sn(0), cn(0))n≥0, then we may have found at least one solution to the heat
equation on the circular rod.

Now, this may sound very convincing, but on a closer look there are several questions
here:

(1) We have infinite sums - do they even converge? When do they converge and in which
sense?

(2) For which functions u0 does the above-given expansion hold? In other words for
which initial conditions can we find a solution by this method?

(3) Are such expansions unique? Are the solutions we find unique?
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(4) Can one approximate solutions? For example this is relevant when trying to numer-
ically solve the equation. This is a question about convergence - and further, how
does the notion of convergence relate to the coefficients sn, cn?

(5) More generally, how should one measure closesness of different initial conditions,
different solutions?

(6) What happens for non-circular rods, e.g. rods with endpoints in heat-baths? Or in
higher dimensions?

(7) What about more non-homogeneous case where D is no longer a constant in space?
Or when we replace ∆ with more general (linear) operators, including for example
also some outside influences?

The aim of this course is to study the right mathematical framework to ask and answer such
questions. This will bring us to study function spaces, the Lebesgue integral and spectral
theory of linear operators. To see why some of those aspects might enter let us further
consider a simplified model.

0.1 A discrete model
To understand what we may hope to achieve, let us consider the same problem of heat

diffusion but on a discretised space. For example we think that the rod instead is decomposed
of n small containers which can exchange heat between its neighbours.

The temperature profile is now given by u(x, t) : {0, 1, . . . , n} → R, with the periodicity
condition u(0, t) = u(n, t) for all t ≥ 0.

The evolution is still given by
∂u(t, x)

∂t
= K∆du(t, x)

together with some initial condition u0(x) = u(0, x), only instead of the real Laplacian,
we have the discrete Laplacian ∆df(x) := 1

dx

∑
y∼x f(y) − f(x), where y ∼ x means that

y, x are neighbours in the underlying discrete graph and dx is the number of neighbours
of the vertex x. In our concrete case we have a circular graph with n vertices and thus
∆df(x) :=

f(y)+f(z)−2f(x)
2

, where y, z denote the neighbouring vertices.
Now notice that now the problem is really a system of n coupled ordinary differential

equations of second degree and ∆d is just a linear operator on Rn → Rn. So how do we solve
it?

Let use the same steps as above but see that they have a very simple and concrete meaning
here:

• Notice that each ut can be seen as a vector in Rn with coordinates and ∆d can be
seen as a symmetric linear operator on Rn(check it!)

• As such ∆d can be diagonalized: there is an orthonormal basis ϕ1, . . . , ϕn and eigen-
values λ1, . . . , λn such that ∆dϕi = λiϕi. In particular any function u : Rn → Rn can
be uniqueley written as

∑n
i=1 ciϕi.

• But now if we write ui(t) := ci(t)ϕi, then again each ci(t) satisfies now a decoupled
ODE

∂ci(t)

∂t
= Kλisn(t)

and thus has a solution ci(0) exp(Kλit).
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• We conclude a solution by finding ci(0) by determining the unique expansion u0 :=∑n
i=1 ci(0)ϕi.

• Given the uniqueness of the expansion, this solution is also unique.
• And finally, we can easily compare solutions just using for example the Euclidean

norm. For example conclude that if the initial conditions are close, then so will be
the solutions at all times t > 0. We also know that this distance is equivalently
measured using the distances between two sets of coefficients (ci)i=1...n, (c̃i)i=1...n -
and here using the Euclidean norm instead of some other norm is important.

Hence in this set-up all works super well and would work equally well as long as we have a
symmetric linear operator L instead of ∆d.

What did we use here?
• We used the fact that Rn is finite-dimensional and thus there exist basis that give

unique expansions for each vector
• We used the fact that ∆d is linear and symmetric and by the spectral theorem can

be diagonalised and we can find a basis of eigenvectors
• We used implicitly the linearity of the equation

None of these facts are clear in our original set-up as the space of functions from [0, 1] to
R is no longer finite-dimensional!

To address those we will have to look at spaces of functions and try to first see which
such spaces have a nice structure. For example, which spaces of functions satisfy linearity?
Which can be define a norm and talk about orthonormality? For which spaces do we have
orthonormal expansions? Looking for such nice properties brings us for example to also
introduce the Lebesgue integral to construct nice basis of functions.

After that, having spent some time understanding function spaces, we briefly at the study
of linear operators on such spaces and in particular find some set-ups where there are similar
orthonormal decompositions using eigenfunctions. We then put all this together to rigorously
explain solving the inhomogeneous heat equation and other similar problems.

But this is already enough of introduction, let us get going!
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Section 1

The space of continuous functions
Let us start with maybe the most intuitive of function spaces - the space of continuous

functions. This is partly a recap, as you have been working with continuous functions in
Analysis I-III, and we are just putting things in a wider context.

To start off the functions will be taking values on closed boxrd D ⊆ Rn, i.e. rectangles
[a1, b1] × · · · × [an, bn]) and taking values in R. At the end of the section we will discuss
to what extent we can (and may want to) generalize both of these choices. You may safely
just suppose D = [0, 1], as no actual extra difficulty comes from choosing other closed and
bounded domains.

The set of all continuous functions from D → R will be denoted by C(D,R):
C(D,R) := {f : D → R, f continuous}.

In what follows we will try to understand the structure of this space.

1.1 Vector space structure of C(D,R)
The first observation we can make about the space C(D,R) is that it has a linear structure

like for example the vector space (Rn,+): if f, g ∈ C(D,R), then also the function h(x) :=
f(x) + g(x) is in C(D,R), as is λf(x) where λ ∈ R.

Let us quickly check this for the first statement: for every x ∈ D, by continuity of f, g
we can choose δf , δg such that if y ∈ D, ∥x − y∥ < δf then |f(x) − f(y)| ≤ ϵ

2
and if

y ∈ D, ∥x − y∥ < δg, then |g(x) − g(y)| ≤ ϵ
2
. But this means that if ∥x − y∥ < min(δf , δg),

we have that |h(x)− h(y)| < ϵ by the triangle inequality.

Exercise 1.1. Show that in fact C(D,R) has also multiplicative structure: i.e. if f, g ∈
C(D,R), then also the product h(x) := f(x)g(x) is in C(D,R). What about the function
max(f, g)?

In fact, the space C(D,R) with addition satisfies all the axioms of a vector space! Indeed,
the identity element would be just the constant zero function, the inverse element of f the
function −f and all conditions are nicely met, as you can easily and patiently check.

Exercise 1.2. Recall the axioms of a vector space and verify them in the case of (C(D,R),+).

In what follows we will often also call the vector space just C(D,R).
Now we might be also interested in summing infinitely many functions, i.e. looking at

sums
∑

n≥1 fn. But in what sense can we talk about it? More generally, given a sequence of
(gn)n≥1 in which sense can we talk about its convergence and limit?

The first idea might be to define limits pointwise: for each x ∈ D the sequence (gn(x))n≥1

is just a sequence of real numbers and thus we know what its convergence means. Thus
we may want to define the convergence of (gn)n≥1 as functions to mean the convergence of
(gn(x))n≥1 for all x ∈ D. This is called pointwise convergence and as you have already seen
it suffers a small drawback:

Exercise 1.3. For D a closed box in Rn, find a sequence of functions in C(D,R) that
converges pointwise to a function that is not continuous.
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It is a good idea to start from the case D = [0, 1] (which we discussed in class), but then
think how to do it in general.
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