
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 7
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Reminders
Exercise 1 (f−1 is very nice). Let f : A → B, IA, IB some sets of indices, and (Bi)i∈IB any
collection of subsets of B. Recall that the preimage f−1(Bi) is defined as

f−1(Bi) = {x ∈ A : f(x) ∈ Bi} .

Check that when f is bijective, f−1 is actually a function. What if f is not injective or not
surjective?

Then prove the following identities:

• f−1(∪i∈IBBi) = ∪i∈IBf
−1(Bi);

• f−1(∩i∈IBBi) = ∩i∈IBf
−1(Bi).

Proof. If f is bijective, for any y ∈ B, by surjectivity there exists x ∈ A such that f(x) = y,
and by injectivity any x′ ∈ A satisfying f(x′) = y must be such that x′ = x. We can therefore
define f−1(y) := x, so that f−1 is a well-defined function B → A. When f is not injective or
surjective, f−1 is not a well-defined function (consider for example x 7→ x2 from [−1,+1] to [0,+1]
not injective, x 7→ x2 from [0,+1] to [−1,+1] not surjective), and the preimage is only defined as
a mapping from sets to sets (of potentially different cardinality).

The identities then follow directly from the definition of the preimage:

x ∈ f−1
(⋃
i∈I

Bi

)
⇐⇒ f(x) ∈

⋃
i∈I

Bi ⇐⇒ ∃ i ∈ I : f(x) ∈ Bi ⇐⇒ ∃ i ∈ I : x ∈ f−1(Bi).

x ∈ f−1
(⋂
i∈I

Bi

)
⇐⇒ f(x) ∈

⋂
i∈I

Bi ⇐⇒ ∀ i ∈ I : f(x) ∈ Bi ⇐⇒ ∀ i ∈ I : x ∈ f−1(Bi).

Measurable functions
Exercise 2 (Other definitions of measurability). Prove that a function f is measurable if and only
if for all a < b ∈ R, f−1((a, b)) is Borel-measurable. Also prove that the same works if one replaces
(a, b) with [a, b].1

Proof. The proof of these statements boils down to the following simple equalities: for all a, b ∈ R
with a < b, we have

[a, b) =
⋂
n∈N

(a− 1/n, b)

and
(a, b) =

⋃
n∈N

[a+ 1/n, b).

1Actually, replacing (a, b), a, b ∈ R by (−∞, b), b ∈ R, or (a,+∞), a ∈ R, or (a, b], a < b ∈ R, etc... lead to all
equivalent definitions.



For instance, suppose that f−1((a, b)) is measurable for all a, b ∈ R. Then,

f−1([a, b)) =
⋂
n∈N

f−1((a− 1/n, b))

is also measurable, as the right-hand side is a countable intersection of measurable set. Reciprocally,
if f−1([a, b)) is measurable for all a, b ∈ R, then

f−1((a, b)) =
⋃
n∈N

f−1([a+ 1/n, b))

is again measurable. The other equivalences are shown under the same principle, using that

[a, b] =
⋂
n∈N

[a, b+ 1/n) =
⋂
n∈N

(a− 1/n, b+ 1/n), (a, b) =
⋃
n∈N

[a+ 1/n, b− 1/n],

et caetera.
Similarly, the claim in the footnote follows from the fact that

(−∞, a) =
⋃
n∈N

(−n, a), (b, a) = (−∞, a) \
∞⋂

n=1

(
−∞, b+ 1

n

)

Exercise 3. Show that if f, g are measurable, then so are f + g and fg.

Proof. We have seen two different definitions of measurability: h is measurable iff it is the pointwise
limit of simple functions, and if and only if h−1([a, b)) is a Borel set for all a, b ∈ R. We present a
solution for each definition.

For the first proof, assume that f, g : Rn → R are measurable and let fn, gn : Rn → R be simple
functions converging pointwise to f and g respectively, admitting the following expression

fn =

sn∑
i=1

ani 1Fn
i
,

gn =

tn∑
j=1

bnj 1Gn
j
,

with (ani )
sn
i=1, (b

n
j )

tn
j=1 ⊂ R and (Fn

i )
sn
i=1 (resp. (Gn

j )
tn
j=1) forming a disjoint partition of Rn by Borel

sets. Using that
sn∑
i=1

1Fn
i
≡

tn∑
j=1

1Gn
j
≡ 1

and 1Fn
i
· 1Gn

j
= 1Fn

i ∩Gn
j
, we find that

fn + gn =

sn∑
i=1

tn∑
j=1

(ani + bnj )1Fn
i ∩Gn

j

fn · gn =

sn∑
i=1

tn∑
j=1

(ani b
n
j )1Fn

i ∩Gn
j
,

which are simple functions since the intersection of Borel sets is Borel. Since additionally (fngn)n≥1, (fn+
gn)n≥1 converge pointwise to fg and f + g respectively, we find that the latter functions are mea-
surable.



We now go over the other proof: in virtue of Exercise 2, we check that (f+g)−1((a, b)), (fg)−1((a, b))
are measurable for all a, b ∈ R. For f + g first, note that a < f(x)+ g(x) < b ⇔ a− g(x) < f(x) <
b− g(x) and this holds if and only if there exist q, r ∈ Q with a− g(x) < q < f(x) < r < b− g(x),
i.e. q < f(x) < r and a− q < g(x) < b− r. Hence, we can write

(f + g)−1((a, b)) =
⋃

q,r∈Q
f−1((q, r)) ∩ g−1((a− q, b− r)),

which is a countable union of intersections of measurable sets and hence measurable.
For fg let us first consider the case where f ≥ 0, g ≥ 0. If b < 0 we have (fg)−1((a, b)) = ∅

which is measurable. If b ≥ 0, denote a+ the maximum of a and 0. We have similar to before
a+ < f(x)g(x) < b if and only if there exist q, r ∈ Q such that q < f(x) < r and a+/q < g(x) < b/r.
Hence we have

(fg)−1((a, b)) = (fg)−1((a+, b)) =
⋃

q,r∈Q
f−1((q, r)) ∩ g−1((a+/q, b/r)),

which is a countable union of intersections of measurable sets and hence measurable.
For the general case, we can write f = f+ − f− where f+ = max{f, 0} and f− = −min{f, 0}.

Similar to above, one can check all cases for a, b ∈ R in order to see that max{f, 0}−1((a, b)) is
a measurable set, showing that f+ is measurable and in a similar way we can show that f− is
measurable. It is straightforward to show that if a function h is measurable, then so is −h. We have
fg = f+g++ f−g−− f+g−− g+f− which is a sum of measurable functions and hence measurable
by the first part of the exercise.

Exercise 4. Show that continuous functions are measurable.

Proof. Let f : Rn → R be continuous: let us show that the sequence of approximations

fn =
∑
i∈Z

f(i2−n)1[i2−n,(i+1)2−n)

converge pointwise to f . Note that fn is well-defined for all n ≥ 1 as all but one term in the sum are
non-zero when applied to any x ∈ R, and it is a simple function as the intervals [i2−n, (i+ 1)2−n)
are Borel. Now for x ∈ R fixed and ε > 0, by continuity there is δ > 0 such that |f(x)− f(y)| ≤ ε
whenever |x− y| ≤ δ, so that taking n big enough (larger than − log2 δ) one gets that

|fn(x)− f(x)| =
∣∣f(2−n⌊2nx⌋)− f(x)

∣∣ ≤ ε

which shows that (fn(x))n≥1 converges to f(x), hence (fn)n≥1 converges pointwise to f , which is
therefore measurable.

Another proof would rely on observing the important fact that the preimage of an interval of
the form (a, b) by a continuous function f is not only measurable, but actually an open set. Let
(a, b) be an arbitrary open interval in R and suppose that x ∈ f−1((a, b)); that is, f(x) ∈ (a, b).
Since (a, b) is open, there exists an ϵ > 0 such that (f(x) − ϵ, f(x) + ϵ) ⊂ (a, b). By continuity,
there exists δ > 0 such that for every y ∈ R with |y − x| < δ, we have f(y) ∈ (a, b). This shows
that B(x, δ) ⊂ f−1((a, b)) and therefore that f−1((a, b)) is open by definition: in particular, it is
Borel, and we get that f is measurable.

Exercise 5. Let f : R → R be a measurable function and fn : R → R its dyadic approximations
given by fn(x) = 2−n⌊2nf(x)⌋. For m ≥ n ≥ 1, show the bound

f(x)− 2−n < fn(x) ≤ fm(x) ≤ f(x).



Proof. By definition

⌊2nf(x)⌋ ≤ 2nf(x) and ⌊2nf(x)⌋ > 2nf(x)− 1.

So,
2−n⌊2nf(x)⌋ ≤ f(x) and 2−n⌊2nf(x)⌋ > f(x)− 2−n.

from which we conclude
f(x)− 2−n < fn(x) ≤ f(x).

For the monotonicity in n ∈ N, we take m ≥ n. Observe that

2nf(x)− 1 < ⌊2nf(x)⌋ ≤ 2nf(x).

Multiplying by 2m−n gives

2m−n
(
2nf(x)− 1

)
< 2m−n⌊2nf(x)⌋ ≤ 2mf(x).

Now, since 2m−n⌊2nf(x)⌋ is an integer and ⌊2mf(x)⌋ is the largest integer smaller or equal to
2mf(x), we must have

2m−n⌊2nf(x)⌋ ≤ ⌊2mf(x)⌋.

Dividing by 2m, we get
2−n⌊2nf(x)⌋ ≤ 2−m⌊2mf(x)⌋,

in other words,
fn(x) ≤ fm(x).

Exercise 6. Prove Lemma 2.14 from the class, by showing first that

f−1([a, b)) =
⋂
j≥1

⋃
k≥1

⋃
n≥1

⋂
m≥n

f−1
m ([a− 1/j, b− 1/k))

Proof. A good trick to keep in mind when showing equalities of sets whenever unions and intersec-
tions appear, is to translate these operators into logical quantifiers. What we mean is the following:
let us denote by A the left-hand side and B the right-hand side.

Suppose x ∈ A. Then f(x) ∈ [a, b). By definition,

x ∈ B ⇐⇒ ∀j ∈ N,∃ k ∈ N,∃n ∈ N,∀m ≥ n : x ∈ f−1
m

(
[ a− 1

j , b−
1
k

))
.

On the other hand, we know from pointwise convergence of (fn)n≥1 to f that for all j ≥ 1,
there exists n ∈ N such that for all m ≥ n, |f(x)− fm(x)| ≤ 1/j. If x ∈ f−1([a, b)), we can take j
large enough such that 2/j < b−f(x), so that in fact x ∈ f−1([a, b−2/j)). But by the convergence
stated above, it means that for m ≥ n, x ∈ f−1

m ([a− 1/j, b− 1/j)), which shows that x ∈ B.
Conversely, let x ∈ B. Then,

∀ j ∈ N,∃ k ∈ N,∃n ∈ N,∀m ≥ n : fm(x) ∈
[
a− 1

j
, b− 1

k

)
.

By convergence of (fn)n≥1 to f again, for all ε > 0, there exists N ∈ N such that for all m ≥ N ,
|f(x)− fm(x)| ≤ ε. In particular, for m ≥ max(n,N), it holds that f(x) ∈ [a− 1

j − ε, b− 1
k + ε).

If we choose 1/ε < min(1/j, 1/k), we obtain that a− 2/j < f(x) < b, and since this is true for all
j, it follows that x ∈ A.


