

Exercise sheet 7

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Reminders

Exercise 1 (f^{-1} is very nice). Let $f : A \rightarrow B$, I_A, I_B some sets of indices, and $(B_i)_{i \in I_B}$ any collection of subsets of B . Recall that the preimage $f^{-1}(B_i)$ is defined as

$$f^{-1}(B_i) = \{x \in A : f(x) \in B_i\}.$$

Check that when f is bijective, f^{-1} is actually a function. What if f is not injective or not surjective?

Then prove the following identities:

- $f^{-1}(\bigcup_{i \in I_B} B_i) = \bigcup_{i \in I_B} f^{-1}(B_i)$;
- $f^{-1}(\bigcap_{i \in I_B} B_i) = \bigcap_{i \in I_B} f^{-1}(B_i)$.

Proof. If f is bijective, for any $y \in B$, by surjectivity there exists $x \in A$ such that $f(x) = y$, and by injectivity any $x' \in A$ satisfying $f(x') = y$ must be such that $x' = x$. We can therefore define $f^{-1}(y) := x$, so that f^{-1} is a well-defined function $B \rightarrow A$. When f is not injective or surjective, f^{-1} is not a well-defined function (consider for example $x \mapsto x^2$ from $[-1, +1]$ to $[0, +1]$ not injective, $x \mapsto x^2$ from $[0, +1]$ to $[-1, +1]$ not surjective), and the preimage is only defined as a mapping from sets to sets (of potentially different cardinality).

The identities then follow directly from the definition of the preimage:

$$x \in f^{-1}\left(\bigcup_{i \in I} B_i\right) \iff f(x) \in \bigcup_{i \in I} B_i \iff \exists i \in I : f(x) \in B_i \iff \exists i \in I : x \in f^{-1}(B_i).$$

$$x \in f^{-1}\left(\bigcap_{i \in I} B_i\right) \iff f(x) \in \bigcap_{i \in I} B_i \iff \forall i \in I : f(x) \in B_i \iff \forall i \in I : x \in f^{-1}(B_i).$$

□

Measurable functions

Exercise 2 (Other definitions of measurability). Prove that a function f is measurable if and only if for all $a < b \in \mathbb{R}$, $f^{-1}((a, b))$ is Borel-measurable. Also prove that the same works if one replaces (a, b) with $[a, b]$.¹

Proof. The proof of these statements boils down to the following simple equalities: for all $a, b \in \mathbb{R}$ with $a < b$, we have

$$[a, b) = \bigcap_{n \in \mathbb{N}} (a - 1/n, b)$$

and

$$(a, b) = \bigcup_{n \in \mathbb{N}} [a + 1/n, b).$$

¹Actually, replacing (a, b) , $a, b \in \mathbb{R}$ by $(-\infty, b)$, $b \in \mathbb{R}$, or $(a, +\infty)$, $a \in \mathbb{R}$, or $(a, b]$, $a < b \in \mathbb{R}$, etc... lead to all equivalent definitions.

For instance, suppose that $f^{-1}((a, b))$ is measurable for all $a, b \in \mathbb{R}$. Then,

$$f^{-1}([a, b]) = \bigcap_{n \in \mathbb{N}} f^{-1}((a - 1/n, b))$$

is also measurable, as the right-hand side is a countable intersection of measurable sets. Reciprocally, if $f^{-1}([a, b])$ is measurable for all $a, b \in \mathbb{R}$, then

$$f^{-1}((a, b)) = \bigcup_{n \in \mathbb{N}} f^{-1}([a + 1/n, b))$$

is again measurable. The other equivalences are shown under the same principle, using that

$$[a, b] = \bigcap_{n \in \mathbb{N}} [a, b + 1/n] = \bigcap_{n \in \mathbb{N}} (a - 1/n, b + 1/n), \quad (a, b) = \bigcup_{n \in \mathbb{N}} [a + 1/n, b - 1/n],$$

et caetera.

Similarly, the claim in the footnote follows from the fact that

$$(-\infty, a) = \bigcup_{n \in \mathbb{N}} (-n, a), \quad (b, a) = (-\infty, a) \setminus \bigcap_{n=1}^{\infty} (-\infty, b + \frac{1}{n})$$

□

Exercise 3. Show that if f, g are measurable, then so are $f + g$ and fg .

Proof. We have seen two different definitions of measurability: h is measurable iff it is the pointwise limit of simple functions, and if and only if $h^{-1}([a, b])$ is a Borel set for all $a, b \in \mathbb{R}$. We present a solution for each definition.

For the first proof, assume that $f, g : \mathbb{R}^n \rightarrow \mathbb{R}$ are measurable and let $f_n, g_n : \mathbb{R}^n \rightarrow \mathbb{R}$ be simple functions converging pointwise to f and g respectively, admitting the following expression

$$f_n = \sum_{i=1}^{s_n} a_i^n \mathbf{1}_{F_i^n},$$

$$g_n = \sum_{j=1}^{t_n} b_j^n \mathbf{1}_{G_j^n},$$

with $(a_i^n)_{i=1}^{s_n}, (b_j^n)_{j=1}^{t_n} \subset \mathbb{R}$ and $(F_i^n)_{i=1}^{s_n}$ (resp. $(G_j^n)_{j=1}^{t_n}$) forming a disjoint partition of \mathbb{R}^n by Borel sets. Using that

$$\sum_{i=1}^{s_n} \mathbf{1}_{F_i^n} \equiv \sum_{j=1}^{t_n} \mathbf{1}_{G_j^n} \equiv 1$$

and $\mathbf{1}_{F_i^n} \cdot \mathbf{1}_{G_j^n} = \mathbf{1}_{F_i^n \cap G_j^n}$, we find that

$$f_n + g_n = \sum_{i=1}^{s_n} \sum_{j=1}^{t_n} (a_i^n + b_j^n) \mathbf{1}_{F_i^n \cap G_j^n}$$

$$f_n \cdot g_n = \sum_{i=1}^{s_n} \sum_{j=1}^{t_n} (a_i^n b_j^n) \mathbf{1}_{F_i^n \cap G_j^n},$$

which are simple functions since the intersection of Borel sets is Borel. Since additionally $(f_n g_n)_{n \geq 1}, (f_n + g_n)_{n \geq 1}$ converge pointwise to fg and $f + g$ respectively, we find that the latter functions are measurable.

We now go over the other proof: in virtue of Exercise 2, we check that $(f+g)^{-1}((a, b)), (fg)^{-1}((a, b))$ are measurable for all $a, b \in \mathbb{R}$. For $f+g$ first, note that $a < f(x) + g(x) < b \Leftrightarrow a - g(x) < f(x) < b - g(x)$ and this holds if and only if there exist $q, r \in \mathbb{Q}$ with $a - g(x) < q < f(x) < r < b - g(x)$, i.e. $q < f(x) < r$ and $a - q < g(x) < b - r$. Hence, we can write

$$(f+g)^{-1}((a, b)) = \bigcup_{q, r \in \mathbb{Q}} f^{-1}((q, r)) \cap g^{-1}((a - q, b - r)),$$

which is a countable union of intersections of measurable sets and hence measurable.

For fg let us first consider the case where $f \geq 0, g \geq 0$. If $b < 0$ we have $(fg)^{-1}((a, b)) = \emptyset$ which is measurable. If $b \geq 0$, denote a^+ the maximum of a and 0. We have similar to before $a^+ < f(x)g(x) < b$ if and only if there exist $q, r \in \mathbb{Q}$ such that $q < f(x) < r$ and $a^+/q < g(x) < b/r$. Hence we have

$$(fg)^{-1}((a, b)) = (fg)^{-1}((a^+, b)) = \bigcup_{q, r \in \mathbb{Q}} f^{-1}((q, r)) \cap g^{-1}((a^+/q, b/r)),$$

which is a countable union of intersections of measurable sets and hence measurable.

For the general case, we can write $f = f^+ - f^-$ where $f^+ = \max\{f, 0\}$ and $f^- = -\min\{f, 0\}$. Similar to above, one can check all cases for $a, b \in \mathbb{R}$ in order to see that $\max\{f, 0\}^{-1}((a, b))$ is a measurable set, showing that f^+ is measurable and in a similar way we can show that f^- is measurable. It is straightforward to show that if a function h is measurable, then so is $-h$. We have $fg = f^+g^+ + f^-g^- - f^+g^- - g^+f^-$ which is a sum of measurable functions and hence measurable by the first part of the exercise. \square

Exercise 4. *Show that continuous functions are measurable.*

Proof. Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be continuous: let us show that the sequence of approximations

$$f_n = \sum_{i \in \mathbb{Z}} f(i2^{-n}) \mathbf{1}_{[i2^{-n}, (i+1)2^{-n})}$$

converge pointwise to f . Note that f_n is well-defined for all $n \geq 1$ as all but one term in the sum are non-zero when applied to any $x \in \mathbb{R}$, and it is a simple function as the intervals $[i2^{-n}, (i+1)2^{-n})$ are Borel. Now for $x \in \mathbb{R}$ fixed and $\varepsilon > 0$, by continuity there is $\delta > 0$ such that $|f(x) - f(y)| \leq \varepsilon$ whenever $|x - y| \leq \delta$, so that taking n big enough (larger than $-\log_2 \delta$) one gets that

$$|f_n(x) - f(x)| = |f(2^{-n} \lfloor 2^n x \rfloor) - f(x)| \leq \varepsilon$$

which shows that $(f_n(x))_{n \geq 1}$ converges to $f(x)$, hence $(f_n)_{n \geq 1}$ converges pointwise to f , which is therefore measurable.

Another proof would rely on observing the important fact that the preimage of an interval of the form (a, b) by a continuous function f is not only measurable, but actually an open set. Let (a, b) be an arbitrary open interval in \mathbb{R} and suppose that $x \in f^{-1}((a, b))$; that is, $f(x) \in (a, b)$. Since (a, b) is open, there exists an $\epsilon > 0$ such that $(f(x) - \epsilon, f(x) + \epsilon) \subset (a, b)$. By continuity, there exists $\delta > 0$ such that for every $y \in \mathbb{R}$ with $|y - x| < \delta$, we have $f(y) \in (a, b)$. This shows that $B(x, \delta) \subset f^{-1}((a, b))$ and therefore that $f^{-1}((a, b))$ is open by definition: in particular, it is Borel, and we get that f is measurable. \square

Exercise 5. *Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function and $f_n : \mathbb{R} \rightarrow \mathbb{R}$ its dyadic approximations given by $f_n(x) = 2^{-n} \lfloor 2^n f(x) \rfloor$. For $m \geq n \geq 1$, show the bound*

$$f(x) - 2^{-n} < f_n(x) \leq f_m(x) \leq f(x).$$

Proof. By definition

$$\lfloor 2^n f(x) \rfloor \leq 2^n f(x) \quad \text{and} \quad \lfloor 2^n f(x) \rfloor > 2^n f(x) - 1.$$

So,

$$2^{-n} \lfloor 2^n f(x) \rfloor \leq f(x) \quad \text{and} \quad 2^{-n} \lfloor 2^n f(x) \rfloor > f(x) - 2^{-n}.$$

from which we conclude

$$f(x) - 2^{-n} < f_n(x) \leq f(x).$$

For the monotonicity in $n \in \mathbb{N}$, we take $m \geq n$. Observe that

$$2^n f(x) - 1 < \lfloor 2^n f(x) \rfloor \leq 2^n f(x).$$

Multiplying by 2^{m-n} gives

$$2^{m-n} (2^n f(x) - 1) < 2^{m-n} \lfloor 2^n f(x) \rfloor \leq 2^m f(x).$$

Now, since $2^{m-n} \lfloor 2^n f(x) \rfloor$ is an integer and $\lfloor 2^m f(x) \rfloor$ is the largest integer smaller or equal to $2^m f(x)$, we must have

$$2^{m-n} \lfloor 2^n f(x) \rfloor \leq \lfloor 2^m f(x) \rfloor.$$

Dividing by 2^m , we get

$$2^{-n} \lfloor 2^n f(x) \rfloor \leq 2^{-m} \lfloor 2^m f(x) \rfloor,$$

in other words,

$$f_n(x) \leq f_m(x).$$

□

Exercise 6. Prove Lemma 2.14 from the class, by showing first that

$$f^{-1}([a, b]) = \bigcap_{j \geq 1} \bigcup_{k \geq 1} \bigcup_{n \geq 1} \bigcap_{m \geq n} f_m^{-1}([a - 1/j, b - 1/k])$$

Proof. A good trick to keep in mind when showing equalities of sets whenever unions and intersections appear, is to translate these operators into logical quantifiers. What we mean is the following: let us denote by A the left-hand side and B the right-hand side.

Suppose $x \in A$. Then $f(x) \in [a, b]$. By definition,

$$x \in B \iff \forall j \in \mathbb{N}, \exists k \in \mathbb{N}, \exists n \in \mathbb{N}, \forall m \geq n : x \in f_m^{-1}([a - 1/j, b - 1/k]).$$

On the other hand, we know from pointwise convergence of $(f_n)_{n \geq 1}$ to f that for all $j \geq 1$, there exists $n \in \mathbb{N}$ such that for all $m \geq n$, $|f(x) - f_m(x)| \leq 1/j$. If $x \in f^{-1}([a, b])$, we can take j large enough such that $2/j < b - f(x)$, so that in fact $x \in f^{-1}([a, b - 2/j])$. But by the convergence stated above, it means that for $m \geq n$, $x \in f_m^{-1}([a - 1/j, b - 1/j])$, which shows that $x \in B$.

Conversely, let $x \in B$. Then,

$$\forall j \in \mathbb{N}, \exists k \in \mathbb{N}, \exists n \in \mathbb{N}, \forall m \geq n : f_m(x) \in [a - \frac{1}{j}, b - \frac{1}{k}).$$

By convergence of $(f_n)_{n \geq 1}$ to f again, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m \geq N$, $|f(x) - f_m(x)| \leq \varepsilon$. In particular, for $m \geq \max(n, N)$, it holds that $f(x) \in [a - \frac{1}{j} - \varepsilon, b - \frac{1}{k} + \varepsilon]$. If we choose $1/\varepsilon < \min(1/j, 1/k)$, we obtain that $a - 2/j < f(x) < b$, and since this is true for all j , it follows that $x \in A$.

□