Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 1

An appetizer to Fourier

Exercise 1. Consider G the graph given by a cycle of length n, i.e. G is the graph with vertices
V:={1,...,n} and edges E := {(i,i +1),i =1,...,n} where we identify n + 1 to the vertez 1.
Let f: V — R and consider the discrete heat equation on G with initial data given by f:

Qult) = KAqul(t, o)

u(0,z) = f(x) 7

where K > 0 is the diffusion constant and Ay the discrete Laplaciavﬂ on G:

(Baf)(@) = 5 (Fw + 1)+ Fla— 1)~ 2f(x)).

Ezxpress Ay as a matriz and diagonalize it explicitly (by finding the eigenvectors and eigenvalues).
Ezxplain how this gives you a solution to the heat equation with the given initial data. What about
uniqueness? Check with the example of one initial heat source (f : © — 1,-1) that your solution
makes sense physically.

Consider now the same setup on an arbitrary homogeneous graph G, i.e. such that the number of
neighbors of any vertex x € G is a constant d € N, and with the Laplacian given by

(Baf)(w) = 2 S (F0) ~ 7))

where the sum is over the neighbors of x in G. Can you rigorously extend the previous argument
to this more general framework?

Proof. The Laplacian can be written as a square n X n matrix:

-1 1/2 0 ... 0 1/2
A_ |2 -1 y2 o0 0
/2 0 ... 0 1/2 -1

If w = exp(27mi/n) denotes the fundamental n-th root of unity, then a basis of eigenvectors of A is
given by
v = [1wk ... WFO]

with associated eigenvalue
Me = —(1 —cos(2mi/k)) = —(1 —w*/2 —w™%/2), 1<k <n.

A direct computation shows that (v;,v;) = nd;;: in particular, we can write A = P*DP, where
D = diag(\y, ..., \n), and P = [v1/\/n,...,v,/+/n]. The heat equation can then be rewritten

8,(Pu(t)) = KD - Pu, (1)

1For an intuitive explanation of the definition and meaning of this operator, see https://math.stackexchange.
com/questions/50274/intuitive-interpretation-of-the-laplacian-operator.


https://math.stackexchange.com/questions/50274/intuitive-interpretation-of-the-laplacian-operator
https://math.stackexchange.com/questions/50274/intuitive-interpretation-of-the-laplacian-operator

which admits the (unique) solution
(Pu)(t) = diag[eM ... e EY(Pu)(0), (2)
and with the initial condition (Pu)(0) = f we finally find that

u(t) = P*diag[eM 5. . KPS, (3)

In other words, f can be uniquely written as f = >, a;v;/+/n for some coefficients (a;)?;,
and if a solution u exists at time ¢, it can also be written uniquely as u(t) = Y ., u;(t)v;//n. But
since in this basis A is diagonal,

n
iy
Aut) = 3" hus(r) =,
i=1 vn
and u being a solution together with uniqueness of the basis expansion once again requires that

each coefficient u;(-) solves the equation

dui
dt

with unique global solution wu;(t) = exp(A;t)u;(0). The initial condition «(0) = f and uniqueness
of the basis expansion once again implies that u;(0) = «;, and we obtain the final solution

u(t) = Z a; exp(K\;t) :;%

This shows that the solution exists and is unique. Alternatively, note that Equation is the
unique solution to the matrix equation (this can be checked for instance with the Cauchy-
Lipschitz theorem, seen in Analysis II).

If f = 01, then notice that

f=> =
i=1 Vin
so that

u(t) = Z exp(K)\it)%

In the case when G is an arbitrary homogeneous graph G, the Laplacian can be written as a
following square n X n matrix:
-1, ifi=j
(Aa)ij=1q g ifi~g
0, otherwise

It’s clear that Ag is symmetric. Let’s check that it’s negative definite. For all z € RIG!,
TAz = ! 2 <
x x——ZE(SUi—%') 0

i~ g

Hence, by the spectral theorem, there exists an orthonormal eigenbasis of Ay, and Ay is diagonal-
izable. Namely, A = P*DP with D = diag(—X1,...,—\,), and P = [w;,...,w,], where A > 0’s
are eigenvalues and w’s is an ONB of eigenvectors. Therefore, Equation is the unique solution



to the heat equation in this case as well. Alternatively, the solution for f = Y7 | a;w; can be
written as

n
= Z (677 exp(fK)\it)wl-,
i=1
and the derivation and proof of uniqueness can be checked replicating what is argued in the

paragraph between the horizontal lines as above, replacing v;/v/n with w;.
O

Exercise 2 (Fourier, approximated in frequency space). Consider now the heat equation on the
circle S

ulba) - — FAu(t,x)
U(07 ZC) = f(:E) |

where the initial heat configuration f is given by a trigonometric polynomiaEI:

P P
flx)=bg+ Z an sin(2wnz) + Z b, cos(2mnz), by, (an)?_1, (bn)?_; C R.

n=1 n=1

Prove rigorously that in this case the heat equation reduces to a finite system of ODEs. Solve them
explicitly to find a solution with initial condition f (without worrying about uniqueness).
What is missing to obtain a solution for any initial f : S* — R?

Proof. Suppose that at any time ¢ > 0 a solution u(t,z) can be written as

P

u(t,x) = bo(t) + Z ay(t) sin(2mnx) + Z by, (t) cos(2mnx).
n=1
We can compute
P P
Au(z,t) = Z( —4m*n?a,(t)) sin(27nz) Z —47%n2b, (1)) cos(2mnz),
n=1 n=1

du L

P
T (t,x) = by(t) + Z ! (t) sin(2mn) Z ) cos(2mn).
n=1

For the heat equation to be satisfied and the two expressions above to coincide, the coefficients
behind the sine and cosine terms must agree. Indeed, for any 1 < n < p, since

1 1 1
/ sin(2rna) sin(2rma)dz = 5mn/27/ sin(2mnx) cos(2rma)dr = O,/ sin(2rnx)dz = 0,
0 0 0
in order for the equality
1 1
/ Au(z, t) sin(2rnz)dx = / Opu(zx,t) sin(2rnz)dx
0 0

to be satisfied it is necessary that the coefficient a,,(t) satisfy the following ODE:
Oay,(t)

= —4AKn?n%a,(t
a ),
2Which here we understand as [0, 1], with all functions defined with periodic boundary conditions
3Equivalently, one may write f(z) = Zﬁzip eine (Cn)n——p cC.



and similarly
by, (t)
ot
This admits the unique global solution a,, (t) = exp(—4Km>n%t)a,(0), b, (t) = exp(—4K7*n?t)b,(0).
Reasoning as above (integrating against sin(27n-), cos(2mn-)), we find that the coefficients (a,(0))i1<n<p, (bn(0))1<n<p
have to match the coefficients of f. Combining all together, the final expression is:

= —4K7*n2b,(t).

P P
u(t, ) = by + Z a; exp(—4Kn*n’t) sin(2mnz) + Z b; exp (—4K7°n’t) cos(2mnz).

i=1 i=1

For a general initial condition f, we hope to write

00 +00
f(z) =ao+ Z a; sin(2mnx) + Z b; cos(2mnx),
=1 i=1

for some set of coefficients by, (a;)?_;, (b;)¥_; C R. If we can make sense of this mathematically,
we hope to be able to replicate the steps above and write

+0o too
u(t,x) = by + Z a; exp(—4K7*n’t) sin(2mnz) + Z b; exp (—4K7?n’t) cos(2mnz).

=1 i=1

This should be the case if (sin(27n-),cos(2mn-)),>o would form an orthonormal basis of some
functional space in which we could take f.
O

Continuous functions

Exercise 3. Let D C R™ be a boaﬁ. Find a sequence of functions (fi)k>1 C C(D,R) that converges
pointwise to a function f that is not continuous.

Proof. One can take for instance f, : x — min(1,n - d(x,a)), where a = (aq,...,a,). For each
n > 1, this is a continuous function, as a minimum of continuous functions (see Exercise 6).
Furthermore, we claim that (f,),>1 converges to x — ly.a. Indeed, f,(a) = 0, while for x # a,
fu(x) =1for n > 1/d(x,a). O

Exercise 4. Find all functions f € C([0,1],R) such that the sequence of powers (f™)n>1 converges
in uniform norm, and characterize the possible limits.

Proof. Let f € C([0,1],R) be arbitrary and M = sup,¢(o 1) | ()], which is finite as f is continuous
on a compact subset of R, and attained at a point y € [0,1] (i.e. M = max e |f(z)] = [f(¥)])-
In particular, if M > 1, then (f"(y))n>1 diverges to +00 so (f™),>1 cannot converge in C([0, 1], R)
as it doesn’t even converge pointwise. If M < 1, then (f"),>1 converges to the function that is
identically zero w.r.t. to the infinite norm, since || f™| < M™ — 0. If M =1, there are three

cases: either f = 1 in which cases the sequence of powers clearly converges to 1, either f = —1 in
which case it does not, either |f(y)| = 1 and |f(z)| < 1 for some other z € [0,1]. We claim that
(f™)n>1 cannot converge in C([0, 1], R): suppose it did to a function g € C([0,1],R). We would
have g = lim,, o0 f™ = lim, 00 f2" = g? so that g can only take the values 0, —1 or 1. But on the
other hand, it is clear that g(y) = 1,¢(z) = 0. By the intermediate value theorem, g would have
to take the value 1/2 on [y, z], which is the desired contradiction. This exhausts all the cases. 0

Exercise 5. Show that in fact C(D,R) has also a multiplicative structure: if f,g € C(D,R), then
also the product h(x) := f(x)g(x) is in C(D,R). What about the function max(f,g)?

4i.e. there exist (a;)T,, (b;)",a; < b; V1 < i < n such that D =T[" | [a;,b;].




Proof. 1t is clear that h: D — R. We show that h is continuous at x € D. Define C¢ = || f|loc + 1
and C; = ||g|lcc + 1, which are finite since D is closed and bounded. By continuity of f and g,
given € > 0 we can find §f > 0 and 4 > 0 such that |z —y| < ds, |z —y| <6, = |f(y) — f(z)| <
ﬁ, lg(y) — g(x) Let 6 = min{dy,d,}. We have that | — y| < ¢ implies

€
2C, "

|f(x)g(z) = fF(y)gy)] = |f(x)g(x) + f(2)g(y) — f(x)g(y) — f(y)g(y)]
<I[f(x)g(z) = f(x)g()| + |f(@)g(y) — f(y)g9(y)]
If( )| g(z) — (y)IH()IIf() f)l<e

—— ——— \—,_./

<C;  <z& <C, <3

\

Now let h = max(f,g). Again it is clear that h : D — R. By a straightforward case analysis it is
easy to see that h = 1(f 4+ g+ |f — g|). We show that h is continuous at = € D. Given € > 0,
by continuity of f and g we can find 6 > 0 and ¢, > 0 such that |z —y| < dy, |z —y| < §;, =
If(y) — f(z)] < §,19(y) — g(x)] < §. For § = min{dy,d,} we have that |z — y| < ¢ implies

Ih@) = hy)| = 21 () + 9(2) + | £(z) — 9(@)] — £) — 9(3) — |FW) — 9]

17(@) ~ £ + lo() — o)l + 5117() — )] = 17(w) ~ o)l

< 17 — F@)|+ 5lo@) — 9] + 517 @)~ F)] + o) — o) <.

<

=N =N

where in the last inequality we used the reverse triangle inequality ||a| —|b|| < |a —b| and |a —b| <
lal + 0. O

Exercise 6. Recall the axioms of a vector space and verify them in the case of (C(D,R),+).
Proof.

1. Closure under addition: If f and g are continuous functions from D to R, then f + g is also
a continuous function from D to R.

2. Closure under scalar multiplication: For any scalar o and continuous function f from D to
R, the function af is also continuous from D to R.

3. Commutativity of addition: Addition of functions is commutative because addition of real
numbers is commutative.

4. Associativity of addition: Addition of functions is associative because addition of real numbers
is associative.

5. Identity element of addition: The constant function 0(z) = 0 for all z € D satisfies f+0 = f
for any continuous function f from D to R. This holds because 0 acts as the additive identity
for real numbers.

6. Inverse elements of addition: For every continuous function f from D to R, there exists a
function, denoted by —f, such that f + (—f) = 0. This function is given by (—1) - f. This
holds because — f acts as the additive inverse for real numbers.

7. Distributivity of scalar multiplication with respect to vector addition: a(f + g) = af + ag
for any scalar « and continuous functions f and g from D to R. This holds due to the
distributive property of real numbers.

8. Distributivity of scalar multiplication with respect to field addition: (a+ B)f = af + 8f for
any scalars « and 8 and continuous function f from D to R. This also holds due to the
distributive property of real numbers.



9. Compatibility of scalar multiplication with field multiplication: (af)f = a(Bf) for any scalars
« and 8 and continuous function f from D to R. This holds due to the associative property

of real numbers.
10. Identity element of scalar multiplication: 1f = f for any continuous function f from D to R,
where 1 is the multiplicative identity in the field of real numbers.
O



