
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 1
An appetizer to Fourier
Exercise 1. Consider G the graph given by a cycle of length n, i.e. G is the graph with vertices
V := {1, . . . , n} and edges E := {(i, i+ 1), i = 1, . . . , n} where we identify n + 1 to the vertex 1.
Let f : V → R and consider the discrete heat equation on G with initial data given by f :{

∂u(t,x)
∂t = K∆du(t, x)

u(0, x) = f(x)
,

where K > 0 is the diffusion constant and ∆d the discrete Laplacian1 on G:

(∆df)(x) =
1

2
(f(x+ 1) + f(x− 1)− 2f(x)).

Express ∆d as a matrix and diagonalize it explicitly (by finding the eigenvectors and eigenvalues).
Explain how this gives you a solution to the heat equation with the given initial data. What about
uniqueness? Check with the example of one initial heat source (f : x 7→ 1x=1) that your solution
makes sense physically.

Consider now the same setup on an arbitrary homogeneous graph G, i.e. such that the number of
neighbors of any vertex x ∈ G is a constant d ∈ N, and with the Laplacian given by

(∆df)(x) =
1

d

∑
y∼x

(f(y)− f(x)),

where the sum is over the neighbors of x in G. Can you rigorously extend the previous argument
to this more general framework?

Proof. The Laplacian can be written as a square n× n matrix:

∆ =


−1 1/2 0 . . . 0 1/2
1/2 −1 1/2 . . . 0 0
. . .
1/2 0 . . . 0 1/2 −1


If ω = exp(2πi/n) denotes the fundamental n-th root of unity, then a basis of eigenvectors of ∆ is
given by

vk = [1 ωk . . . ωk(n−1)]

with associated eigenvalue

λk = −(1− cos(2πi/k)) = −(1− ωk/2− ω−k/2), 1 ≤ k ≤ n.

A direct computation shows that ⟨vi, vj⟩ = nδij : in particular, we can write ∆ = P ∗DP , where
D = diag(λ1, . . . , λn), and P = [v1/

√
n, . . . , vn/

√
n]. The heat equation can then be rewritten

∂t(Pu(t)) = KD · Pu, (1)
1For an intuitive explanation of the definition and meaning of this operator, see https://math.stackexchange.

com/questions/50274/intuitive-interpretation-of-the-laplacian-operator.

https://math.stackexchange.com/questions/50274/intuitive-interpretation-of-the-laplacian-operator
https://math.stackexchange.com/questions/50274/intuitive-interpretation-of-the-laplacian-operator


which admits the (unique) solution

(Pu)(t) = diag[eλ1Kt . . . eλnKt](Pu)(0), (2)

and with the initial condition (Pu)(0) = f we finally find that

u(t) = P ∗diag[eλ1Kt . . . eλnKt]Pf. (3)

In other words, f can be uniquely written as f =
∑n

i=1 αivi/
√
n for some coefficients (αi)

n
i=1,

and if a solution u exists at time t, it can also be written uniquely as u(t) =
∑n

i=1 ui(t)vi/
√
n. But

since in this basis ∆ is diagonal,

∆u(t) =

n∑
i=1

λiui(t)
vi√
n
,

and u being a solution together with uniqueness of the basis expansion once again requires that
each coefficient ui(·) solves the equation

dui

dt
= λiui(t),

with unique global solution ui(t) = exp(λit)ui(0). The initial condition u(0) = f and uniqueness
of the basis expansion once again implies that ui(0) = αi, and we obtain the final solution

u(t) =

n∑
i=1

αi exp(Kλit)
vi√
n
.

This shows that the solution exists and is unique. Alternatively, note that Equation (2) is the
unique solution to the matrix equation (1) (this can be checked for instance with the Cauchy-
Lipschitz theorem, seen in Analysis II).

If f = δ1, then notice that

f =

n∑
i=1

vi√
n

so that

u(t) =
n∑

i=1

exp(Kλit)
vi√
n

In the case when G is an arbitrary homogeneous graph G, the Laplacian can be written as a
following square n× n matrix:

(∆d)ij =


−1, if i = j
1
d , if i ∼ j

0, otherwise

It’s clear that ∆d is symmetric. Let’s check that it’s negative definite. For all x ∈ R|G|,

xT∆x = −
∑
i∼j

1

d
(xi − xj)

2 ≤ 0

Hence, by the spectral theorem, there exists an orthonormal eigenbasis of ∆d, and ∆d is diagonal-
izable. Namely, ∆ = P ∗DP with D = diag(−λ1, . . . ,−λn), and P = [wi, . . . , wn], where λ ≥ 0’s
are eigenvalues and w’s is an ONB of eigenvectors. Therefore, Equation (3) is the unique solution



to the heat equation in this case as well. Alternatively, the solution for f =
∑n

i=1 αiwi can be
written as

u(t) =

n∑
i=1

αi exp(−Kλit)wi,

and the derivation and proof of uniqueness can be checked replicating what is argued in the
paragraph between the horizontal lines as above, replacing vi/

√
n with wi.

Exercise 2 (Fourier, approximated in frequency space). Consider now the heat equation on the
circle S12 {

∂u(t,x)
∂t = K∆u(t, x)

u(0, x) = f(x)
,

where the initial heat configuration f is given by a trigonometric polynomial3:

f(x) = b0 +

p∑
n=1

an sin(2πnx) +

p∑
n=1

bn cos(2πnx), b0, (an)
p
n=1, (bn)

p
n=1 ⊂ R.

Prove rigorously that in this case the heat equation reduces to a finite system of ODEs. Solve them
explicitly to find a solution with initial condition f (without worrying about uniqueness).

What is missing to obtain a solution for any initial f : S1 → R?

Proof. Suppose that at any time t > 0 a solution u(t, x) can be written as

u(t, x) = b0(t) +

p∑
n=1

an(t) sin(2πnx) +

p∑
n=1

bn(t) cos(2πnx).

We can compute

∆u(x, t) =

p∑
n=1

(−4π2n2an(t)) sin(2πnx) +

p∑
n=1

(−4π2n2bn(t)) cos(2πnx),

du

dt
(t, x) = b′0(t) +

p∑
n=1

a′n(t) sin(2πnx) +

p∑
n=1

b′n(t) cos(2πnx).

For the heat equation to be satisfied and the two expressions above to coincide, the coefficients
behind the sine and cosine terms must agree. Indeed, for any 1 ≤ n ≤ p, since∫ 1

0

sin(2πnx) sin(2πmx)dx = δmn/2,

∫ 1

0

sin(2πnx) cos(2πmx)dx = 0,

∫ 1

0

sin(2πnx)dx = 0,

in order for the equality∫ 1

0

∆u(x, t) sin(2πnx)dx =

∫ 1

0

∂tu(x, t) sin(2πnx)dx

to be satisfied it is necessary that the coefficient an(t) satisfy the following ODE:

∂an(t)

∂t
= −4Kπ2n2an(t),

2Which here we understand as [0, 1], with all functions defined with periodic boundary conditions
3Equivalently, one may write f(x) =

∑p
n=−p cneinx, (cn)

p
n=−p ⊂ C.



and similarly
∂bn(t)

∂t
= −4Kπ2n2bn(t).

This admits the unique global solution an(t) = exp
(
−4Kπ2n2t

)
an(0), bn(t) = exp

(
−4Kπ2n2t

)
bn(0).

Reasoning as above (integrating against sin(2πn·), cos(2πn·)), we find that the coefficients (an(0))1≤n≤p, (bn(0))1≤n≤p

have to match the coefficients of f . Combining all together, the final expression is:

u(t, x) = b0 +

p∑
i=1

ai exp
(
−4Kπ2n2t

)
sin(2πnx) +

p∑
i=1

bi exp
(
−4Kπ2n2t

)
cos(2πnx).

For a general initial condition f , we hope to write

f(x) = a0 +

+∞∑
i=1

ai sin(2πnx) +

+∞∑
i=1

bi cos(2πnx),

for some set of coefficients b0, (ai)
p
i=1, (bi)

p
i=1 ⊂ R. If we can make sense of this mathematically,

we hope to be able to replicate the steps above and write

u(t, x) = b0 +

+∞∑
i=1

ai exp
(
−4Kπ2n2t

)
sin(2πnx) +

+∞∑
i=1

bi exp
(
−4Kπ2n2t

)
cos(2πnx).

This should be the case if (sin(2πn·), cos(2πn·))n≥0 would form an orthonormal basis of some
functional space in which we could take f .

Continuous functions
Exercise 3. Let D ⊂ Rn be a box4. Find a sequence of functions (fk)k≥1 ⊂ C(D,R) that converges
pointwise to a function f that is not continuous.

Proof. One can take for instance fn : x 7→ min(1, n · d(x,a)), where a = (a1, . . . , an). For each
n ≥ 1, this is a continuous function, as a minimum of continuous functions (see Exercise 6).
Furthermore, we claim that (fn)n≥1 converges to x 7→ 1x̸=a. Indeed, fn(a) = 0, while for x ̸= a,
fn(x) = 1 for n > 1/d(x,a).

Exercise 4. Find all functions f ∈ C([0, 1],R) such that the sequence of powers (fn)n≥1 converges
in uniform norm, and characterize the possible limits.

Proof. Let f ∈ C([0, 1],R) be arbitrary and M = supx∈[0,1] |f(x)|, which is finite as f is continuous
on a compact subset of R, and attained at a point y ∈ [0, 1] (i.e. M = maxx∈[0,1] |f(x)| = |f(y)|).
In particular, if M > 1, then (fn(y))n≥1 diverges to +∞ so (fn)n≥1 cannot converge in C([0, 1],R)
as it doesn’t even converge pointwise. If M < 1, then (fn)n≥1 converges to the function that is
identically zero w.r.t. to the infinite norm, since ∥fn∥ ≤ Mn −−−−→

n→∞
0. If M = 1, there are three

cases: either f ≡ 1 in which cases the sequence of powers clearly converges to 1, either f ≡ −1 in
which case it does not, either |f(y)| = 1 and |f(z)| < 1 for some other z ∈ [0, 1]. We claim that
(fn)n≥1 cannot converge in C([0, 1],R): suppose it did to a function g ∈ C([0, 1],R). We would
have g = limn→∞ fn = limn→∞ f2n = g2 so that g can only take the values 0,−1 or 1. But on the
other hand, it is clear that g(y) = 1, g(z) = 0. By the intermediate value theorem, g would have
to take the value 1/2 on [y, z], which is the desired contradiction. This exhausts all the cases.

Exercise 5. Show that in fact C(D,R) has also a multiplicative structure: if f, g ∈ C(D,R), then
also the product h(x) := f(x)g(x) is in C(D,R). What about the function max(f, g)?

4i.e. there exist (ai)
n
i=1, (bi)

n
i=1, ai < bi ∀1 ≤ i ≤ n such that D =

∏n
i=1[ai, bi].



Proof. It is clear that h : D → R. We show that h is continuous at x ∈ D. Define Cf = ∥f∥∞ + 1
and Cg = ∥g∥∞ + 1, which are finite since D is closed and bounded. By continuity of f and g,
given ϵ > 0 we can find δf > 0 and δg > 0 such that |x− y| < δf , |x− y| < δg =⇒ |f(y)− f(x)| <
ϵ

2Cf
, |g(y)− g(x)| < ϵ

2Cg
. Let δ = min{δf , δg}. We have that |x− y| < δ implies

|f(x)g(x)− f(y)g(y)| = |f(x)g(x) + f(x)g(y)− f(x)g(y)− f(y)g(y)|
≤ |f(x)g(x)− f(x)g(y)|+ |f(x)g(y)− f(y)g(y)|
= |f(x)|︸ ︷︷ ︸

≤Cf

|g(x)− g(y)|︸ ︷︷ ︸
< ϵ

2Cg

+ |g(y)|︸ ︷︷ ︸
≤Cg

|f(x)− f(y)|︸ ︷︷ ︸
< ϵ

2Cf

< ϵ.

Now let h = max(f, g). Again it is clear that h : D → R. By a straightforward case analysis it is
easy to see that h = 1

2 (f + g + |f − g|). We show that h is continuous at x ∈ D. Given ϵ > 0,
by continuity of f and g we can find δf > 0 and δg > 0 such that |x − y| < δf , |x − y| < δg =⇒
|f(y)− f(x)| < ϵ

2 , |g(y)− g(x)| < ϵ
2 . For δ = min{δf , δg} we have that |x− y| < δ implies

|h(x)− h(y)| = 1

2
|f(x) + g(x) + |f(x)− g(x)| − f(y)− g(y)− |f(y)− g(y)||

≤ 1

2
|f(x)− f(y)|+ 1

2
|g(x)− g(y)|+ 1

2
||f(x)− g(x)| − |f(y)− g(y)||

≤ 1

2
|f(x)− f(y)|+ 1

2
|g(x)− g(y)|+ 1

2
|f(x)− f(y)|+ 1

2
|g(x)− g(y)| < ϵ,

where in the last inequality we used the reverse triangle inequality ||a| − |b|| ≤ |a− b| and |a− b| ≤
|a|+ |b|.

Exercise 6. Recall the axioms of a vector space and verify them in the case of (C(D,R),+).

Proof.

1. Closure under addition: If f and g are continuous functions from D to R, then f + g is also
a continuous function from D to R.

2. Closure under scalar multiplication: For any scalar α and continuous function f from D to
R, the function αf is also continuous from D to R.

3. Commutativity of addition: Addition of functions is commutative because addition of real
numbers is commutative.

4. Associativity of addition: Addition of functions is associative because addition of real numbers
is associative.

5. Identity element of addition: The constant function 0(x) = 0 for all x ∈ D satisfies f +0 = f
for any continuous function f from D to R. This holds because 0 acts as the additive identity
for real numbers.

6. Inverse elements of addition: For every continuous function f from D to R, there exists a
function, denoted by −f , such that f + (−f) = 0. This function is given by (−1) · f . This
holds because −f acts as the additive inverse for real numbers.

7. Distributivity of scalar multiplication with respect to vector addition: α(f + g) = αf + αg
for any scalar α and continuous functions f and g from D to R. This holds due to the
distributive property of real numbers.

8. Distributivity of scalar multiplication with respect to field addition: (α + β)f = αf + βf for
any scalars α and β and continuous function f from D to R. This also holds due to the
distributive property of real numbers.



9. Compatibility of scalar multiplication with field multiplication: (αβ)f = α(βf) for any scalars
α and β and continuous function f from D to R. This holds due to the associative property
of real numbers.

10. Identity element of scalar multiplication: 1f = f for any continuous function f from D to R,
where 1 is the multiplicative identity in the field of real numbers.


