
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 1

Exercise 1. Find a sequence (fn)n≥1 of continuous functions on [0, 1] that converges pointwise to
a function which is not continuous.

Proof. Consider for n ≥ 1, fn : x 7→ xn. It is clear that this sequence of functions converges
pointwise to the function f : x 7→ 1x=1, which is not continuous at 1. Note that in particular the
convergence of (fn)n≥1 to f cannot be uniform, as otherwise f would be continuous by Proposition
1.3.

Exercise 2. Find sequences (fn)n≥1 ⊂ R[0,1] of Riemann-integrable functions converging pointwise
to f : [0, 1] → R such that

1. (Limits of Riemann-integrable functions need not be Riemann-integrable) f is not Riemann
integrable.

2. (Limits of integrals doesn’t equal the integral of the limit) f is Riemann integrable, but∫ 1

0
fn(x)dx does not converge to

∫ 1

0
f(x)dx.

Proof. 1. Consider {qn}n≥1 = Q∩[0, 1] an enumeration of the rationals and fn = 1{q1,...,qn}. For
each fixed n ≥ 1, the function fn is Riemann integrable as it is continuous except on the finite
number of points {q1, . . . , qn} (we refer to Analysis I for that result). However, fn −−−−→

n→∞
f = 1Q, which is not Riemann-integrable. Indeed, for each partition P = {a0, a1, . . . , an} of
[0, 1], by density we have that U(P, f) = 1, L(P, f) = 0, so Riemann’s criterion (Theorem 8
in the reminders sheet) cannot be verified for ε < 1.

2. Define for n ≥ 1 the function

fn : x 7→


4n2x : 0 ≤ x ≤ 1

2n

4n− 4n2x : 1
2n ≤ x ≤ 1

n

0 : 1
n ≤ x ≤ 1.

It is straighforward to check that it is integrable with
∫ 1

0
fn = 1, but we also have that

fn −−−−→
n→∞

f ≡ 0 pointwise, which is Riemann integrable with integral 0.

Exercise 3 (Sequences, I). Prove the Bolzano-Weierstrass theorem: for any N ≥ 1 and K ⊂ RN

closed and bounded, every sequence (xn)n≥1 ⊂ K admits a subsequence (xnk
) that converges in K.

Proof. Let us consider (xn)n≥1 ⊂ K as in the statement and construct a convergent subsequence.
For all k ≥ 0, one can write K =

⋃
i∈Λk

K ∩ Ck
i , where Ck

i is a cube of dimensions 2−k with
center 2−ki and with edges parallel to the axes, and Λk =

{
i ∈ Zn : K ∩ Ck

i ̸= ∅
}

is finite since K
is bounded. In particular for k = 1, because there are only finitely many cubes with i ∈ Λ1, there
must exist i1 ∈ Λ1 such that K ∩Ck

i1
contains infinitely many terms of (xn)n≥1: take an arbitrary

one xi1 . We can now repeat the argument inductively: writing K ∩ C1
i1

=
⋃

i∈Λ2
(K ∩ C1

i1
) ∩ C2

i ,
there is a cube C2

i2
that contains infinitely many terms of (xn)n≥1, so that we can choose any term

xi2 with i2 > i1.
Doing so we obtain a subsequence (xik)k≥1, that is Cauchy by construction: indeed for ε > 0,

picking M such that 2−M < ε/
√
n, we see that for all k1, k2 ≥ M , xik1

and xik2
belong to CM

iM
,



so that
∥∥xik1

− xik2

∥∥ <
√
n2−M < ε. By completeness of (Rn, ∥·∥), there exists x ∈ Rn such that

(xik)k≥1 converges to x. But since K is closed, the limit x must also be in K, and this concludes
the proof.

Exercise 4 (Sequences, II). Let K ⊂ RN be closed and bounded and f ∈ C(K,R). Prove that
there exist x, x ∈ K such that

f(x) = inf
x∈K

f(x), f(x) = sup
x∈K

f(x).

Proof. Consider M = supx∈K f(x) and a sequence (xn)n≥1 such that f(xn) −−−−→
n→∞

M by definition
of the supremum. Because K is compact, there exists x ∈ K and a subsequence (xnk

)k≥1 such that
xnk

−−−−→
k→∞

x. By continuity of f at x, we must have that f(xnk
) −−−−→

k→∞
f(x), enforcing f(x) = M .

For counterexamples, one can consider f : x 7→ ∥x∥ when K is not bounded, where supx∈K f(x) =
+∞. When K is not closed, Rn \K is not open, so there is a point x ∈ Rn \K such that for all
ε > 0, B(x, ε) ∩K ̸= ∅. We can define the function f : y 7→ 1/d(x, y): it is continuous on K but
unbounded near x, as for y ∈ B(x, ε) ∩K we have f(y) ≥ 1/ε, for arbitrary ε > 0.

Exercise 5. In this exercise, we try to generalise the definition of sums that you have already
seen:

1. Recall the definition of a converging and absolutely converging sequence, and the relevant
results.

2. Consider a convergent series
∑+∞

n=1 an, i.e. such that limN→∞
∑N

n=1 an exists. Is it true that

+∞∑
n=1

an =

+∞∑
n=1

a2n +

+∞∑
n=1

a2n−1,

i.e. can you sum the even and odd terms separately? (this writing implicitly requires to check
if the series converge) If not, what condition can you add to make it true?

3. Suppose now that for each n ∈ Z we have some number an ∈ R, and we want to define
something like ∑

n∈Z
an.

How would you make sense of this? And if you can think of different ways to define it, can
you find sufficient conditions so that they agree?

4. In particular, is it true that if
∑

n∈Z an converges, then
∑+∞

n=1 an (and
∑+∞

n=1 a−n) does too,
and ∑

n∈Z
an = a0 +

+∞∑
n=1

an +

+∞∑
n=1

a−n.

Proof. 2. In general, such an identity does not hold: for instance, the series of general term
an = (−1)n/n converges (by the alternated series criterion, see Analysis I), but

∑+∞
n=1 a2n

corresponds to the harmonic series and diverges to +∞ (similarly,
∑+∞

n=1 a2n−1 = −∞). On
the other hand, if the series

∑+∞
n=1 an converges absolutely, i.e. if

∑+∞
n=1 |an| converges, then

it is correct. Indeed, we first note that by definition of absolute convergence, for all ε > 0,
there exists N > 0 such that for all n,m ≥ N ,∣∣∣∣∣∣

n∑
k=1

|ak| −
m∑
j=1

|aj |

∣∣∣∣∣∣ ≤ ε



(since
∑n

k=1 |an| converges, it is Cauchy), so that in particular taking m = N it holds that
n∑

k=N

|ak| ≤ ε.

Then, for all n,m ≥ N/2,∣∣∣∣∣∣
n∑

k=1

a2k −
m∑
j=1

a2j

∣∣∣∣∣∣ ≤
max(2n,2m+1)∑

k=N

|a2k| ≤ ε,

which means that (
∑n

k=1 a2k)n≥1 is Cauchy and therefore converges. Similarly, we argue
that (

∑n
k=1 a2k+1)n≥1 converges. To prove the identity it is now sufficient to see that1∣∣∣∣∣

N∑
n=1

an −
N∑

n=1

a2n −
N∑

n=1

a2n−1

∣∣∣∣∣ ≤
2N∑

n=N+1

|an| ≤ ε.

3-4. It is natural to define
∑

n∈Z an as the limit of the sequence (
∑+N

n=−N an)N≥1, if it exists.
However, this definition suffers from the same problems as ‘simple’ convergence of a series
(compared to absolute convergence), in that it doesn’t imply convergence of the series in a
different summation order. For this reason, it is sometimes called the ‘principal value’ of the
series

∑
n∈Z an. For instance, if an = sign(n) (with the convention sign(0) = 0), then with the

definition above
∑

n∈Z an exists and is equal to 0. On the other hand, neither
∑+∞

n=1 an nor∑+∞
n=1 a−n exist. To obtain a better-behaved definition, we must ask that

∑
n∈Z an converges

absolutely, i.e. that (
∑+N

n=−N |an|)N≥1 converges. This implies again that (
∑+N

n=−N an)N≥1

converges (check it!), so that this notion of convergence is stronger than the previous one,
and the proof of the identity in the statement is almost identical to that of item 2: for all
ε > 0 there exists N > 0 such that for all n ≥ N ,∑

N≤|k|≤n

|ak| ≤ ε,

implying that for all n,m ≥ N ,∣∣∣∣∣∣
n∑

k=1

ak −
m∑
j=1

aj

∣∣∣∣∣∣ ≤
max(n,m)∑

k=N

|ak| ≤ ε,

∣∣∣∣∣∣
n∑

k=1

a−k −
m∑
j=1

a−j

∣∣∣∣∣∣ ≤
max(n,m)∑

k=N

|a−k| ≤ ε,

so that both
∑+∞

n=1 an and
∑+∞

n=1 a−n converge (actually absolutely). Then,∣∣∣∣∣
N∑

n=−N

an −
N∑

n=1

an −
N∑

n=1

a−n − a0

∣∣∣∣∣ = 0 ≤ ε

achieves to prove the identity.

1For (an)n≥1, (bn)n≥1, (cn)n≥1 sequences of real numbers, to prove that

lim
n→∞

an = lim
n→∞

bn + lim
n→∞

cn

it is enough to prove that the limits exist (otherwise the statement is vacuous!) and that for all ε > 0, there exists
N ≥ 1 such that for all n ≥ N , |an − bn − cn| ≤ ε.


