Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 9

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1. Recall that a finite simple function is a function f : R™ — R that may be written

n
f= Z cilg,
i=1

where n > 1, (¢;)7—; C R and (E;)7—; C R™ are disjoint Borel sets.
Show that for any measurable function g : R® — R, there exists a sequence of finite simple
functions converging pointwise to g.

Proof. We begin first with a non-negative measurable function g. The general case is obtained by
applying the following approximation on the positive and negative part of g.
To construct the sequence (f,)n>1 approximating g, we define the sets Ej , C R™ by

_ kE k+1
)

which are measurable since g is. We then define f,, by

n2™

fn(z) = z%jﬂ‘Ekm,

k=1

By construction, we have f, < fn,41 < g(x) and for all n > g(x), 0 < g(z) — fn(x) < 27
Therefore, f,(x) — g(x). O

Exercise 2. Show that x — exp(—|x|) is integrable over R, but the constant function ¢ for example
is not integrable for ¢ # 0. Is f : x — x integrable over R?

Proof. First, note that the function f : z — exp(—|z|) is continuous and therefore measurable.
Moreover, it is non-negative, so to check integrability we only need to show that its integral is
finite.

Consider the simple functions

o k
gn(@) =) exp <—n> Lk /n, (k+1)/n) (@)
k=0

for > 0, and observe that the sequence (g,,) is increasing with g, (x) > exp(—=z) for © > 0. These
essentially approximate exp(—|-|) from above over the positive real line. Observe that they are

integrable, as
oo

gexp (_z))‘[k/”v (k+1)/n) < / exp(—z)dr = e < 00

-1

where the integral here denotes the Riemann integral. Therefore, by monotonicity of the Lebesgue
integral, it follows that flg, is integrable, and by additivity that f is integrable (since the same
argument shows that flg_ is integrable). We also have in particular that

/exp(—|x\)d/\ < 2e < o0.
R



Next, we consider the constant function g : x — ¢ with ¢ # 0, which is itself a simple function.
Over all of R, the Lebesgue measure is infinite. Hence,

/n cA(dx) :==sup {/n g(x) A(dx)

> sup / cl—p n)(z)A(dz) = sup 2en = +o0.
n>1 n>1

0<g<cyg simple}

Thus, the constant function ¢ # 0 is not integrableﬂ over R.

Similarly,
/ |z| A(dx) :==sup {/ g(x)A(dz) |0 < g(z) <|z|Vx €R, g simple}
n Rﬂ.
> Sup/ 1j1,n)(z)A(d2) = supn = +oo.
n>1 n>0
so that f : x +— 2 is not integrable (since |f| is not). O

Exercise 3. Let f,g: R — R be measurable and integrable. Is fg necessarily integrable? What if
lg(z)| <1 for all x € R?

Proof. That is not true in general: let f, h equal the first function in the correction of Exercise
4, sheet 8 (denoted f there). Then both are integrable, but their product fh is the function g of
the correction, which is not integrable[’] If [h(z)| < 1 for all # € R, then |fh| < |f| from which it
follows by monotonicity of the integral that |fh| is integrable, and so is fh as well. O

Exercise 4. In probability/statistics you have seen the notion of a random variable X. Suppose X
takes values in the set C = {c1,ca,...} each value with probability P(c;). What is the expectation
(or mean value) of this random variable? Compare this to the Lebesque integral of a simple function
that takes values in the set C'.

Proof. The random variable X is a measurable function Q@ — C', for some probability space (2.
When C' is countable, the expectation is defined as

+oo
> enPX =cy.

n=1

More generally, this is actually equal to the integral

/ XdP,
Q

in the sense of Lebesgue. This is akin to the definition of the integral of a simple function. O

Exercise 5. Let f : R™ — R be integrable and a € R. Verify that af is integrable and show that
[afd\=a [ fd\ (homogeneity).

The mapping x — a is measurable, and so is f by the integrability assumption. Therefore, a f
is measurable.

Note we have already shown the homogeneity property claimed for simple functions in sheet 8,
exercise 6 (set g = 0 or b = 0). Take a non-negative integrable function f and a > 0. In particular,

1In fact, the definition of the integral of a simple function readily implies that it is not integrable. We detail the
argument here a bit differently, to avoid confusion.

2This essentially amounts to taking f,h : x — 1/4/, except that choosing simple functions from the start allow
for an immediate computation of the integral.



f is measurable. By exercise 1, we can approximate it from below using a sequence (f,,) of finite
simple functions. Observe that (af,) approximates af from below. Thus, using the monotone
convergence theorem (MCT), we get that af is integrable with

/afd)\:lirrbn/afnd)\:ali}ln/fnd)\:a/fd)\

where we used sheet 8, exercise 6 in the second equality.

To see that homogeneity of the integral also holds for any integrable f and a € R, we split
af = (af)y+—(af)—, where (af)+ denotes the positive and negative part of af, respectively. Noting
that both (af)+ > 0 are non-negative and integrable, the claim follows from the previous step.

Remark: The above procedure is fairly standard: One shows an integral property for (often non-
negative) finite simple functions, and extends it to a larger class of functions using an approximation
argument (here: exercise 1) together with an integral convergence theorem (here: MCT).

Remark: in fact here the definition of the Lebesgue integral with the supremum allows for a
direct and easier proof.

Exercise 6. Let f1 > fo > ... be a decreasing sequence of integrable functions, converging point-
wise to an integrable function f. Show that [ fod\ —— [ fdA.
n—oo

Proof. The idea is to use the MCT. Define
gn = J1 — [fn-
Since f1 > f,, we have that g,, > 0 for all n. Moreover, as (f,) is decreasing in n,
gn = J1 = [n < 1= fot1 = g1,

the sequence (g,,) is increasing and

lim ¢, = nli_>lrolo(f1 —f)=h—-1

n—0o0

which is integrable since f; and f are, and a linear combination of integrable functions remains
integrable.
Therefore, (g,,) satisfies the assumptions of the MCT and hence, together with the linearity of

the integral:
/ﬁﬁ—/ﬁmigﬂ/ﬁw—/ﬁw)

= lim %w:/hm%ﬁz/m—ﬂﬁ
n—oo

n— oo

Subtracting [ fid\ € R on both sides and using linearity again yields the desired claim. O



