
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 9
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1. Recall that a finite simple function is a function f : Rn → R that may be written

f =

n∑
i=1

ci1Ei

where n ≥ 1, (ci)ni=1 ⊂ R and (Ei)
n
i=1 ⊂ Rn are disjoint Borel sets.

Show that for any measurable function g : Rn → R, there exists a sequence of finite simple
functions converging pointwise to g.

Proof. We begin first with a non-negative measurable function g. The general case is obtained by
applying the following approximation on the positive and negative part of g.

To construct the sequence (fn)n≥1 approximating g, we define the sets Ek,n ⊂ Rn by

Ek,n = g−1

([
k

2n
,
k + 1

2n

))
which are measurable since g is. We then define fn by

fn(x) =

n2n∑
k=1

k

2n
1Ek,n

By construction, we have fn ≤ fn+1 ≤ g(x) and for all n > g(x), 0 ≤ g(x) − fn(x) ≤ 2−n.
Therefore, fn(x) → g(x).

Exercise 2. Show that x 7→ exp(−|x|) is integrable over R, but the constant function c for example
is not integrable for c ̸= 0. Is f : x 7→ x integrable over R?

Proof. First, note that the function f : x 7→ exp(−|x|) is continuous and therefore measurable.
Moreover, it is non-negative, so to check integrability we only need to show that its integral is
finite.

Consider the simple functions

gn(x) :=

∞∑
k=0

exp

(
−k

n

)
1[k/n,(k+1)/n)(x)

for x ≥ 0, and observe that the sequence (gn) is increasing with gn(x) ≥ exp(−x) for x ≥ 0. These
essentially approximate exp(−| · |) from above over the positive real line. Observe that they are
integrable, as

∞∑
k=0

exp

(
−k

n

)
λ[k/n, (k + 1)/n) ≤

∫ ∞

−1

exp(−x)dx = e < ∞

where the integral here denotes the Riemann integral. Therefore, by monotonicity of the Lebesgue
integral, it follows that f1R+

is integrable, and by additivity that f is integrable (since the same
argument shows that f1R− is integrable). We also have in particular that∫

R
exp(−|x|)dλ ≤ 2e < ∞.



Next, we consider the constant function g : x 7→ c with c ̸= 0, which is itself a simple function.
Over all of R, the Lebesgue measure is infinite. Hence,∫

Rn

c λ(dx) := sup

{∫
Rn

g(x)λ(dx)

∣∣∣∣ 0 ≤ g ≤ c, g simple
}

≥ sup
n≥1

∫
c1[−n,n](x)λ(dx) = sup

n≥1
2cn = +∞.

Thus, the constant function c ̸= 0 is not integrable1 over R.
Similarly, ∫

Rn

|x|λ(dx) := sup

{∫
Rn

g(x)λ(dx)

∣∣∣∣ 0 ≤ g(x) ≤ |x| ∀x ∈ R, g simple
}

≥ sup
n≥1

∫
1[1,n](x)λ(dx) = sup

n≥0
n = +∞.

so that f : x 7→ x is not integrable (since |f | is not).

Exercise 3. Let f, g : R → R be measurable and integrable. Is fg necessarily integrable? What if
|g(x)| ≤ 1 for all x ∈ R?

Proof. That is not true in general: let f, h equal the first function in the correction of Exercise
4, sheet 8 (denoted f there). Then both are integrable, but their product fh is the function g of
the correction, which is not integrable.2 If |h(x)| ≤ 1 for all x ∈ R, then |fh| ≤ |f | from which it
follows by monotonicity of the integral that |fh| is integrable, and so is fh as well.

Exercise 4. In probability/statistics you have seen the notion of a random variable X. Suppose X
takes values in the set C = {c1, c2, . . . } each value with probability P(ci). What is the expectation
(or mean value) of this random variable? Compare this to the Lebesgue integral of a simple function
that takes values in the set C.

Proof. The random variable X is a measurable function Ω → C, for some probability space Ω.
When C is countable, the expectation is defined as

+∞∑
n=1

cnP[X = cn].

More generally, this is actually equal to the integral∫
Ω

XdP,

in the sense of Lebesgue. This is akin to the definition of the integral of a simple function.

Exercise 5. Let f : Rn → R be integrable and a ∈ R. Verify that af is integrable and show that∫
afdλ = a

∫
fdλ (homogeneity).

The mapping x 7→ a is measurable, and so is f by the integrability assumption. Therefore, af
is measurable.

Note we have already shown the homogeneity property claimed for simple functions in sheet 8,
exercise 6 (set g = 0 or b = 0). Take a non-negative integrable function f and a ≥ 0. In particular,

1In fact, the definition of the integral of a simple function readily implies that it is not integrable. We detail the
argument here a bit differently, to avoid confusion.

2This essentially amounts to taking f, h : x 7→ 1/
√
x, except that choosing simple functions from the start allow

for an immediate computation of the integral.



f is measurable. By exercise 1, we can approximate it from below using a sequence (fn) of finite
simple functions. Observe that (afn) approximates af from below. Thus, using the monotone
convergence theorem (MCT), we get that af is integrable with∫

afdλ = lim
n

∫
afndλ = a lim

n

∫
fndλ = a

∫
fdλ

where we used sheet 8, exercise 6 in the second equality.
To see that homogeneity of the integral also holds for any integrable f and a ∈ R, we split

af = (af)+−(af)−, where (af)± denotes the positive and negative part of af , respectively. Noting
that both (af)± ≥ 0 are non-negative and integrable, the claim follows from the previous step.

Remark: The above procedure is fairly standard: One shows an integral property for (often non-
negative) finite simple functions, and extends it to a larger class of functions using an approximation
argument (here: exercise 1) together with an integral convergence theorem (here: MCT).

Remark: in fact here the definition of the Lebesgue integral with the supremum allows for a
direct and easier proof.

Exercise 6. Let f1 ≥ f2 ≥ . . . be a decreasing sequence of integrable functions, converging point-
wise to an integrable function f . Show that

∫
fndλ −−−−→

n→∞

∫
fdλ.

Proof. The idea is to use the MCT. Define

gn = f1 − fn.

Since f1 ≥ fn, we have that gn ≥ 0 for all n. Moreover, as (fn) is decreasing in n,

gn = f1 − fn ≤ f1 − fn+1 = gn+1,

the sequence (gn) is increasing and

lim
n→∞

gn = lim
n→∞

(f1 − fn) = f1 − f,

which is integrable since f1 and f are, and a linear combination of integrable functions remains
integrable.

Therefore, (gn) satisfies the assumptions of the MCT and hence, together with the linearity of
the integral: ∫

f1 dλ−
∫

f dλ = lim
n→∞

(∫
f1 dλ−

∫
fn dλ

)
= lim

n→∞

∫
gn dλ =

∫
lim

n→∞
gn dλ =

∫
(f1 − f) dλ.

Subtracting
∫
f1dλ ∈ R on both sides and using linearity again yields the desired claim.


