

Exercise sheet 9

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1. Recall that a finite simple function is a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ that may be written

$$f = \sum_{i=1}^n c_i \mathbf{1}_{E_i}$$

where $n \geq 1$, $(c_i)_{i=1}^n \subset \mathbb{R}$ and $(E_i)_{i=1}^n \subset \mathbb{R}^n$ are disjoint Borel sets.

Show that for any measurable function $g : \mathbb{R}^n \rightarrow \mathbb{R}$, there exists a sequence of finite simple functions converging pointwise to g .

Proof. We begin first with a non-negative measurable function g . The general case is obtained by applying the following approximation on the positive and negative part of g .

To construct the sequence $(f_n)_{n \geq 1}$ approximating g , we define the sets $E_{k,n} \subset \mathbb{R}^n$ by

$$E_{k,n} = g^{-1} \left(\left[\frac{k}{2^n}, \frac{k+1}{2^n} \right) \right)$$

which are measurable since g is. We then define f_n by

$$f_n(x) = \sum_{k=1}^{n2^n} \frac{k}{2^n} \mathbf{1}_{E_{k,n}}$$

By construction, we have $f_n \leq f_{n+1} \leq g(x)$ and for all $n > g(x)$, $0 \leq g(x) - f_n(x) \leq 2^{-n}$. Therefore, $f_n(x) \rightarrow g(x)$. \square

Exercise 2. Show that $x \mapsto \exp(-|x|)$ is integrable over \mathbb{R} , but the constant function c for example is not integrable for $c \neq 0$. Is $f : x \mapsto x$ integrable over \mathbb{R} ?

Proof. First, note that the function $f : x \mapsto \exp(-|x|)$ is continuous and therefore measurable. Moreover, it is non-negative, so to check integrability we only need to show that its integral is finite.

Consider the simple functions

$$g_n(x) := \sum_{k=0}^{\infty} \exp\left(-\frac{k}{n}\right) \mathbf{1}_{[k/n, (k+1)/n]}(x)$$

for $x \geq 0$, and observe that the sequence (g_n) is increasing with $g_n(x) \geq \exp(-x)$ for $x \geq 0$. These essentially approximate $\exp(-|\cdot|)$ from above over the positive real line. Observe that they are integrable, as

$$\sum_{k=0}^{\infty} \exp\left(-\frac{k}{n}\right) \lambda[k/n, (k+1)/n] \leq \int_{-1}^{\infty} \exp(-x) dx = e < \infty$$

where the integral here denotes the Riemann integral. Therefore, by monotonicity of the Lebesgue integral, it follows that $f \mathbf{1}_{\mathbb{R}_+}$ is integrable, and by additivity that f is integrable (since the same argument shows that $f \mathbf{1}_{\mathbb{R}_-}$ is integrable). We also have in particular that

$$\int_{\mathbb{R}} \exp(-|x|) dx \leq 2e < \infty.$$

Next, we consider the constant function $g : x \mapsto c$ with $c \neq 0$, which is itself a simple function. Over all of \mathbb{R} , the Lebesgue measure is infinite. Hence,

$$\begin{aligned} \int_{\mathbb{R}^n} c \lambda(dx) &:= \sup \left\{ \int_{\mathbb{R}^n} g(x) \lambda(dx) \mid 0 \leq g \leq c, g \text{ simple} \right\} \\ &\geq \sup_{n \geq 1} \int c \mathbb{1}_{[-n,n]}(x) \lambda(dx) = \sup_{n \geq 1} 2cn = +\infty. \end{aligned}$$

Thus, the constant function $c \neq 0$ is not integrable¹ over \mathbb{R} .

Similarly,

$$\begin{aligned} \int_{\mathbb{R}^n} |x| \lambda(dx) &:= \sup \left\{ \int_{\mathbb{R}^n} g(x) \lambda(dx) \mid 0 \leq g(x) \leq |x| \forall x \in \mathbb{R}, g \text{ simple} \right\} \\ &\geq \sup_{n \geq 1} \int \mathbb{1}_{[1,n]}(x) \lambda(dx) = \sup_{n \geq 1} n = +\infty. \end{aligned}$$

so that $f : x \mapsto x$ is not integrable (since $|f|$ is not). □

Exercise 3. Let $f, g : \mathbb{R} \rightarrow \mathbb{R}$ be measurable and integrable. Is fg necessarily integrable? What if $|g(x)| \leq 1$ for all $x \in \mathbb{R}$?

Proof. That is not true in general: let f, h equal the first function in the correction of Exercise 4, sheet 8 (denoted f there). Then both are integrable, but their product fh is the function g of the correction, which is not integrable.² If $|h(x)| \leq 1$ for all $x \in \mathbb{R}$, then $|fh| \leq |f|$ from which it follows by monotonicity of the integral that $|fh|$ is integrable, and so is fh as well. □

Exercise 4. In probability/statistics you have seen the notion of a random variable X . Suppose X takes values in the set $C = \{c_1, c_2, \dots\}$ each value with probability $\mathbb{P}(c_i)$. What is the expectation (or mean value) of this random variable? Compare this to the Lebesgue integral of a simple function that takes values in the set C .

Proof. The random variable X is a measurable function $\Omega \rightarrow C$, for some probability space Ω . When C is countable, the expectation is defined as

$$\sum_{n=1}^{+\infty} c_n \mathbb{P}[X = c_n].$$

More generally, this is actually equal to the integral

$$\int_{\Omega} X d\mathbb{P},$$

in the sense of Lebesgue. This is akin to the definition of the integral of a simple function. □

Exercise 5. Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be integrable and $a \in \mathbb{R}$. Verify that af is integrable and show that $\int af d\lambda = a \int f d\lambda$ (homogeneity).

The mapping $x \mapsto a$ is measurable, and so is f by the integrability assumption. Therefore, af is measurable.

Note we have already shown the homogeneity property claimed for simple functions in sheet 8, exercise 6 (set $g = 0$ or $b = 0$). Take a non-negative integrable function f and $a \geq 0$. In particular,

¹In fact, the definition of the integral of a simple function readily implies that it is not integrable. We detail the argument here a bit differently, to avoid confusion.

²This essentially amounts to taking $f, h : x \mapsto 1/\sqrt{x}$, except that choosing simple functions from the start allow for an immediate computation of the integral.

f is measurable. By exercise 1, we can approximate it from below using a sequence (f_n) of finite simple functions. Observe that (af_n) approximates af from below. Thus, using the monotone convergence theorem (MCT), we get that af is integrable with

$$\int af d\lambda = \lim_n \int af_n d\lambda = a \lim_n \int f_n d\lambda = a \int f d\lambda$$

where we used sheet 8, exercise 6 in the second equality.

To see that homogeneity of the integral also holds for any integrable f and $a \in \mathbb{R}$, we split $af = (af)_+ - (af)_-$, where $(af)_\pm$ denotes the positive and negative part of af , respectively. Noting that both $(af)_\pm \geq 0$ are non-negative and integrable, the claim follows from the previous step.

Remark: The above procedure is fairly standard: One shows an integral property for (often non-negative) finite simple functions, and extends it to a larger class of functions using an approximation argument (here: exercise 1) together with an integral convergence theorem (here: MCT).

Remark: in fact here the definition of the Lebesgue integral with the supremum allows for a direct and easier proof.

Exercise 6. Let $f_1 \geq f_2 \geq \dots$ be a decreasing sequence of integrable functions, converging pointwise to an integrable function f . Show that $\int f_n d\lambda \xrightarrow{n \rightarrow \infty} \int f d\lambda$.

Proof. The idea is to use the MCT. Define

$$g_n = f_1 - f_n.$$

Since $f_1 \geq f_n$, we have that $g_n \geq 0$ for all n . Moreover, as (f_n) is decreasing in n ,

$$g_n = f_1 - f_n \leq f_1 - f_{n+1} = g_{n+1},$$

the sequence (g_n) is increasing and

$$\lim_{n \rightarrow \infty} g_n = \lim_{n \rightarrow \infty} (f_1 - f_n) = f_1 - f,$$

which is integrable since f_1 and f are, and a linear combination of integrable functions remains integrable.

Therefore, (g_n) satisfies the assumptions of the MCT and hence, together with the linearity of the integral:

$$\begin{aligned} \int f_1 d\lambda - \int f d\lambda &= \lim_{n \rightarrow \infty} \left(\int f_1 d\lambda - \int f_n d\lambda \right) \\ &= \lim_{n \rightarrow \infty} \int g_n d\lambda = \int \lim_{n \rightarrow \infty} g_n d\lambda = \int (f_1 - f) d\lambda. \end{aligned}$$

Subtracting $\int f_1 d\lambda \in \mathbb{R}$ on both sides and using linearity again yields the desired claim. \square