
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 8
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Measurability
Exercise 1. Prove that if f, g : Rn → R are Borel measurable then {x ∈ Rn : f(x) = g(x)} and
{x ∈ Rn : f(x) ̸= g(x)} are Borel measurable.

Proof. The set {x ∈ Rn : f(x) ̸= g(x)} might be rewritten (f − g)−1(R \ {0}). By exercise 3 of
sheet 7, f − g is measurable, and by exercise 2 of the same sheet we have that

(f − g)−1(R \ {0}) = ((f − g)−1(−∞, 0)) ∪ ((f − g)−1(0,+∞))

is Borel. Since finally

{x ∈ Rn : f(x) = g(x)} = {x ∈ Rn : f(x) ̸= g(x)}c ,

we conclude.
Note that the exercise can also be proven in a more basic though lengthier way, writing

{x : f(x) ̸= g(x)} = {x : f(x) < g(x)} ∪ {x : f(x) > g(x)}

=
⋃
q∈Q

{x : f(x) < q < g(x)} ∪ {x : g(x) < q < f(x)}

=
⋃

q,l,r∈Q
({x : l ≤ f(x) < q} ∩ {x : q ≤ g(x) < r}) ∪ ({x : l ≤ g(x) < q} ∩ {x : q ≤ f(x) < r})

=
⋃

q,l,r∈Q
(f−1([l, q)) ∩ g−1([q, r))) ∪ (g−1([l, q)) ∩ f−1([q, r))).

By measurability of f and g all sets appearing in the last term are measurable, and since the unions
and intersections are countable it follows that {x : f(x) ̸= g(x)} is measurable too. Finally since
{x : f(x) = g(x)} = {x : f(x) ̸= g(x)}c, it is measurable as well.

Exercise 2. Let (fn)n≥1 be a sequence of measurable functions from Rn to R. Prove that supn fn(x)
and infn fn(x) are also measurable.

Proof. It is easy to check that

{x : a ≤ inf
n

fn(x) < b} = {x : ∀n ≥ 1, fn(x) ≥ a and ∃m ≥ 1, fm(x) < b}.

So, for f = infn fn we have1

f−1([a, b)) =
⋂
n≥1

⋃
q∈Q

f−1
n ([a, q))

 ∩
⋃
m≥1

fm([a, b)),

1More directly, one can use Exercise 7.2 and see that

f−1(−∞, b)) =
⋃
n≥1

f−1
n ((−∞, b)).



which is a countable union of measurable sets as (fn)n≥1 is a sequence of measurable functions,
and hence f is measurable. Using that infn fn is measurable we now show that supn fn is also
measurable. Since for any set S ⊆ R we have supy∈S y = − infy∈S −y, we have for any x ∈ R that
supn fn(x) = − infn −fn(x), or in other words supn fn = − infn −fn. We conclude by using the
fact that if g is measurable, then −g is measurable.

Lebesgue integral
Exercise 3. Prove that the Lebesgue measure of the Cantor set is zero.

Proof. Recall that we can write the cantor set as C =
⋂

n≥1 Cn, where each Cn contains 2n closed
and disjoint intervals of length (1/3)n. This implies that, for any n ∈ N

λ(C) = λ(∩m≥1Cm) ≤ λ(Cn) =
(2
3

)n

,

which can be made arbitrarily small.

Exercise 4 (Examples). Find a measurable function f : R → R that is unbounded, but is still
integrable. Find also a measurable function f that is non-zero only on [0, 1] but is still not integrable.

Proof. Consider the following function:

f(x) =

+∞∑
n=1

2n/21(2−n,2−n+1](x).

Being a simple function, it is measurable, and also clearly unbounded. However, since

+∞∑
n=1

2n/2λ((2−n, 2−n+1]) =

+∞∑
n=1

2n/22−n < +∞,

it is integrable.
On the other hand, for

g(x) =

+∞∑
n=1

2n1(2−n,2−n+1](x),

we have that
+∞∑
n=1

2nλ((2−n, 2−n+1]) =

+∞∑
n=1

2n2−n = +∞,

so that g is not integrable.

Exercise 5 (Basic properties of the Lebesgue integral). Show Lemma 2.26 from the class, i.e.
that for f : Rn → R measurable:

2. if |f(x)| ≤ C for all x ∈ Rn, then it is integrable over any finite box [a1, b1]×· · ·×[an, bn] ⊆ Rn

3. if λ(f ̸= 0) := λ({x : f(x) ̸= 0}) = 0, then f is integrable and
∫
fdλ = 0

4. if f ≥ 0 and
∫
fdλ = 0, then λ(f ̸= 0) = 0.

Proof. Recall that a non-negative function f is said to be integrable if∫
Rn

f(x)λ(dx) := sup

{∫
Rn

g(x)λ(dx)

∣∣∣∣ 0 ≤ g ≤ f, g simple
}

< ∞.



Note that in particular, if 0 ≤ f1 ≤ f2 are integrable, then necessarily by monotonicity of the
supremum∫

Rn

f1(x)λ(dx) = sup

{∫
Rn

g(x)λ(dx)

∣∣∣∣ 0 ≤ g ≤ f1, g simple
}

≤ sup

{∫
Rn

g(x)λ(dx)

∣∣∣∣ 0 ≤ g ≤ f2, g simple
}

=

∫
Rn

f2(x)λ(dx),

which is often referred to as monotonicity of the (Lebesgue) integral. Furthermore, recall that a
general (not necessarily non-negative) function f is integrable if f+ and f− are, and then∫

Rn

fdλ :=

∫
Rn

f+dλ−
∫
Rn

f−dλ.

An equivalent condition for f to be integrable is then that |f | is integrable, as since |f | = f++f− we
have that |f | is integrable if and only if f+ and f− are (and that ultimately

∫
Rn fdλ ≤

∫
Rn |f |dλ by

monotonicity). This is important in practice as to check that a function is integrable, it boils down
to checking whether its absolute value–which is non-negative–is integrable. Also, if the integral of
|f | is zero, then so is that of f .

2. Let B := [a1, b1] × · · · × [an, bn]. Then, |f(x)| ≤ C on B, i.e. |f |1B ≤ C1B . The latter is a
simple function, integrable since λ(B) < +∞ by assumption, so that∫

Rn

C1Bdλ = C · λ(B) < +∞.

It follows from monotonicity that |f |1B is integrable, i.e.∫
Rn

|f |1B dλ ≤
∫
Rn

C1B dλ = C · λ(B) < ∞,

and therefore f is integrable as well.

3. Let A := {x ∈ Rn : f(x) ̸= 0}. Note that this set is measurable due to exercise 1. By
assumption, λ(A) = 0. Then, for any simple function 0 ≤ g ≤ |f |, we have that g = 0 almost
everywhere. Indeed, g(x) > 0 implies |f(x)| > 0, so that {g > 0} ⊂ A, and thus 0 ≤ λ({g >

0}) ≤ λ(A) = 0. Writing g =
∑N

i=1 ci1Ei
where (ci)

nf

i=1 ⊂ R and (Ei)
N
i=1 are disjoint Borel

sets, this implies that λ(Ei) = 0 whenever ci ̸= 0. In particular,
∑N

i=1 |ci|λ(Ei) = 0 so that
g is integrable with

∫
gdλ = 0. Finally,∫
R
|f |dλ := sup

{∫
g dλ | 0 ≤ g ≤ |f | simple

}
= 0.

It then follows that f is integrable with integral zero.

4. Suppose for the sake of contradiction that

λ({f > 0}) > 0.

Consider for ε > 0 the level set

Aϵ := {x ∈ Rn : f(x) ≥ ϵ}

which is measurable, since f is. We notice that

{x ∈ Rn : f(x) > 0} =
⋃
n≥1

A1/n,



and from Proposition 2.6 (2)

lim
n→∞

λ(A1/n) = λ({x ∈ Rn : f(x) > 0}) > 0.

In particular, there must exist n large enough so that λ(A1/n) > 0. Let us denote ε = 1/n.
Now, f · 1Aϵ

is measurable as a product of measurable functions, and since on Aε it holds
that f(x) ≥ ε, we obtain that

f(x) · 1Aϵ(x) ≥ ϵ · 1Aϵ(x) ∀x ∈ Rn.

The function ϵ · 1Aϵ
is simple and non-negative, and integrable as smaller than f which is

integrable by assumption. We can further compute its integral explicitly as∫
Rn

ϵ · 1Aϵ
(x) dλ = ϵ · λ(Aϵ) > 0.

Since f ≥ f · 1Aϵ ≥ ϵ · 1Aϵ , we conclude by monotonicity of the Lebesgue integral that:∫
Rn

f dλ ≥
∫
Rn

f · 1Aϵ
dλ ≥ ϵ · λ(Aϵ) > 0,

which is the desired contradiction.

Exercise 6 (Linearity of the integral for simple functions). Prove that for f, g : Rn → R finite
simple functions and a, b ∈ R, af + bg is integrable and∫

(af + bg)dλ = a

∫
f dλ+ b

∫
g dλ.

Proof. Let f, g ≥ 0 be finite simple functions, admitting the expression

f =

nf∑
i=1

αi1Fi , g =

ng∑
j=1

βj1Gj ,

with (αi)
nf

i=1, (βj)
ng

j=1 ⊂ R and (Fi)
nf

i=1 (resp. (Gj)
ng

j=1) disjoint Borel sets in Rn. It follows analo-
gously to Exercise 3, sheet 7 that af + bg is also simple and can be written

af + bg =

nf∑
i=1

ng∑
j=1

(aαi + bβj)1Fi∩Gj
.

We have that
nf∑
i=1

ng∑
j=1

|aαi + bβj |λ(Fi ∩Gj) ≤
nf∑
i=1

ng∑
j=1

(|aαi|+ |bβj |)λ(Fi ∩Gj)

= |a|
nf∑
i=1

|αi|λ(Fi) + |b|
ng∑
j=1

|βj |λ(Gj) < +∞,

implying that af + bg is integrable, and∫
(af + bg)dλ =

nf∑
i=1

ng∑
j=1

(aαi + bβj)λ(Fi ∩Gj)

= a

nf∑
i=1

αiλ(Fi) + b

ng∑
j=1

βjλ(Gj)

= a

∫
fdλ+ b

∫
gdλ,



which is the desired identity.


