Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 8

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Measurability

Exercise 1. Prove that if f,g : R® — R are Borel measurable then {x € R : f(x) = g(z)} and
{z e R": f(x) # g(x)} are Borel measurable.

Proof. The set {z € R": f(x) # g(x)} might be rewritten (f — ¢g)~*(R\ {0}). By exercise 3 of
sheet 7, f — g is measurable, and by exercise 2 of the same sheet we have that

(f =9)THR\A{0}) = ((f = 9) 7 (=00,0) U((f — 9) (0, +00))

is Borel. Since finally

{z eR": f(z) =g(2)} = {z €R": f(z) # g(2)}",

we conclude.
Note that the exercise can also be proven in a more basic though lengthier way, writing

{z: flx) #g(2)} ={z: f(z) <g(x)} U{z: f(z) > g(z)}
= JA{z: fl@) <g<g@)}u{z: g(x) < g < fx)}

q€Q

= U el f@<apnfz:g<gl@) <rhu{e:l<g@) <gyn{z:q< fo) <r})
q,l,reQ

= U ¢ @ayng ™ lem) ue (L e) N f g )
q,l,reQ

By measurability of f and g all sets appearing in the last term are measurable, and since the unions
and intersections are countable it follows that {z : f(x) # g(x)} is measurable too. Finally since
{z: f(z) = g(x)} = {z: f(x) # g(x)}", it is measurable as well. O

Exercise 2. Let (f,)n>1 be a sequence of measurable functions from R™ to R. Prove that sup,, f,,(x)
and inf,, f,(x) are also measurable.

Proof. Tt is easy to check that

{r:a< i%ffn(x) <b}={z:Yn>1, fu(x) > aand Im > 1, fi,(x) < b}.

So, for f = inf,, f, we haVEEI

a0 = | U M aa) | 0 U fulla,0)),

n>1 \qeQ m>1

1More directly, one can use Exercise 7.2 and see that

FH(=o0,0) = [ fat((—o0,)).

n>1



which is a countable union of measurable sets as (f,)n>1 is a sequence of measurable functions,
and hence f is measurable. Using that inf, f,, is measurable we now show that sup,, f, is also

measurable. Since for any set S C R we have sup,cgy = —infyes —y, we have for any z € R that
sup,, fn(x) = —inf,, — f,(z), or in other words sup,, f, = —inf,, —f,,. We conclude by using the
fact that if g is measurable, then —g is measurable. O

Lebesgue integral

Exercise 3. Prove that the Lebesgue measure of the Cantor set is zero.

Proof. Recall that we can write the cantor set as C' = (1),~; Cpn, where each C,, contains 2" closed
and disjoint intervals of length (1/3)™. This implies that, for any n € N

AMO) = A((ms1Cm) < A(Cr) = (;)”

which can be made arbitrarily small. O

Exercise 4 (Examples). Find a measurable function f : R — R that is unbounded, but is still
integrable. Find also a measurable function f that is non-zero only on [0, 1] but is still not integrable.

Proof. Consider the following function:
+oo
f(z) = Z2n/21(27",2w+1](3«")~
n=1
Being a simple function, it is measurable, and also clearly unbounded. However, since
+o0 oo
Z 277./2)\((2771’ 27’!7.4’1]) — Z 277,/227?7, < +OO,
n=1 n=1

it is integrable.
On the other hand, for

“+o0
g(l‘) = Z 2“1(2—1;72—n+1] (.'L'),
n=1

we have that
+oo +oo
Z 2n>\((2—n’ 2—n+1]) — Z gno—n _ +00,
n=1 n=1

so that g is not integrable.

O

Exercise 5 (Basic properties of the Lebesgue integral). Show Lemma 2.26 from the class, i.e.
that for f: R™ — R measurable:

2. if | f(x)| < C forallz € R™, then it is integrable over any finite box [a1, b1] X+ - - X [an, by,] C R™
3 Af Mf #0) = A{z: f(z) #0}) =0, then [ is integrable and [ fdA =0
4. if f>0and [ fd\ =0, then A(f #0) = 0.

Proof. Recall that a non-negative function f is said to be integrable if

[ @) 2d0) = sup { [ s rian)

0<g<f, gsimple} < oo.



Note that in particular, if 0 < f; < fo are integrable, then necessarily by monotonicity of the
supremum

f1() A(dz) = sup { [ s@

n

0<g<fi,g simple}
R’Vl

< sup {/ g9(x) A(dx)

0<g<fo, g simple} = f2(x) A(dz),
Rn

which is often referred to as monotonicity of the (Lebesgue) integral. Furthermore, recall that a
general (not necessarily non-negative) function f is integrable if fy and f_ are, and then

fdx:= [ frdh— [ fodA.
R™ R™ Rn

An equivalent condition for f to be integrable is then that | f| is integrable, as since |f| = f1+f_ we
have that | f| is integrable if and only if f1 and f_ are (and that ultimately [p, fdX < [, |f]dX by
monotonicity). This is important in practice as to check that a function is integrable, it boils down
to checking whether its absolute value—which is non-negative—is integrable. Also, if the integral of
|f] is zero, then so is that of f.

2. Let B :=[a1,b1] X -+ X [an,by]. Then, |f(z)] < C on B, ie. |f|]lp < Clp. The latter is a

simple function, integrable since A(B) < 400 by assumption, so that

Clpd) =C - A(B) < +cc.
Rn

It follows from monotonicity that |f|1p is integrable, i.e.
/ flipdr< [ Clpdr=C-AB) < oo,
R’ﬂ R”L

and therefore f is integrable as well.

3. Let A := {x € R" : f(x) # 0}. Note that this set is measurable due to exercise 1. By
assumption, A(A) = 0. Then, for any simple function 0 < g < |f|, we have that g = 0 almost
everywhere. Indeed, g(x) > 0 implies |f(z)| > 0, so that {g > 0} C A, and thus 0 < A({g >
0}) < AM(A) = 0. Writing g = Zfil cilp, where (¢;);7, C R and (E;)Y, are disjoint Borel
sets, this implies that A(E;) = 0 whenever ¢; # 0. In particular, Zfil |ci|\(E;) = 0 so that
g is integrable with [ gd\ = 0. Finally,

/|f|d)\:=sup{/gd)\|0§g§f| simple}:().
R

It then follows that f is integrable with integral zero.
4. Suppose for the sake of contradiction that
A{f>0})>0.
Consider for € > 0 the level set
Ac:={z €R": f(z) = €}

which is measurable, since f is. We notice that

{zeR": f(z) >0} = | Ai/n,

n>1



and from Proposition 2.6 (2)
lim A(Ay/,) = A({z € R": f(z) > 0}) > 0.

n—oo

In particular, there must exist n large enough so that A(A;,,) > 0. Let us denote ¢ = 1/n.
Now, f - 14, is measurable as a product of measurable functions, and since on A, it holds
that f(z) > €, we obtain that

f(x)-1a.(x)>€-1a.(x) VaeR"™

The function € - 14, is simple and non-negative, and integrable as smaller than f which is
integrable by assumption. We can further compute its integral explicitly as

/ €-1a. (x)dr=€-A(A4e) > 0.
Since f > f-14, > €- 14, , we conclude by monotonicity of the Lebesgue integral that:

FA > [ feladh> e AA) >0,
R’IL R’!L

which is the desired contradiction.

O

Exercise 6 (Linearity of the integral for simple functions). Prove that for f,g : R™ — R finite
simple functions and a,b € R, af + bg is integrable and

/(af+bg)d)\:a/fd>\+b/gd)\.

Proof. Let f,g > 0 be finite simple functions, admitting the expression

nf g
f:Zaile QZZﬁjlcj7
i=1 j=1

with ()i, (85)72, C R and (F;);Z, (resp. (Gj);2,) disjoint Borel sets in R™. Tt follows analo-

=1 =1

gously to Exercise 3, sheet 7 that af + bg is also simple and can be written

ny nNg
af +bg =Y Y (ac; +bB;)1rna,-
i=1 j=1
We have that
nf ng ny ng
SO laas +BHIAF N G) < 303 (ol + BBDAE N Gy)
i=1 j=1 i=1j=1

nf g
= lal Y [ A(F3) + [b] D |851A(Gy) < +oe,
i=1 j=1

implying that af + bg is integrable, and

/(af Fogdn =SS ao + b8)AF N G5)

i=1 j=1

ny Ng
— a3 aE) + 53 BNG))
i=1 j=1

a/fd)\—i-b/gd)\,



which is the desired identity.



