
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 5
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1. Find a sequence (fn)n≥1 ⊂ C1([0, 1],R) that converges to some f ∈ C([0, 1],R) with
respect to the uniform norm ∥ · ∥∞, but where f is not differentiable. Now show that if convergence
holds w.r.t. the norm ∥f∥∞ + ∥f ′∥∞, then the limit is also continuously differentiable.

Proof. Let g 7→ |||g||| := ∥g∥∞ + ∥g′∥∞, whenever the expression is well-defined and finite (the
suprema are taken over the closed unit interval K). Note first that ||| · ||| is indeed a norm: it is
indeed finite and positive with |||g||| = 0 iff g ≡ 0 (and g′ ≡ 0), and the triangular inequality and
scaling are immediate from ∥·∥∞ (and linearity of the differentiation).

Observe that if a function belongs to the normed space (C(K), ||| · |||), it automatically belongs
to the normed space (C(K), || · ||∞).

The sequence of functions
fn(x) :=

√
(x− 1/2)2 + 1/n

clearly belong to (C(K), ||| · |||) and converges in (C(K), || · ||∞) to f := |x− 1/2|. However, we see
that convergence in (C(K), ||| · |||) is not possible, since the sequence of derivatives

f ′
n(x) :=

x− 1/2√
(x− 1/2)2 + 1/n

does not converge uniformly, and therefore (fn) cannot converge in (C(K), ||| · |||). Indeed, the
pointwise limit is equal to a translated sign function g defined on K as

g(x) :=


−1 x < 1/2

0 x = 0

+1 x > 1/2,

which is discontinuous, so the convergence of f ′
n to g cannot be uniform, as (C(K), || · ||∞) is closed

(as a Banach space).
Now, consider (fn)n≥1 ⊂ C1(D,R) converging to f ∈ C(D,R) with respect to the norm ||| · |||.

If |||fn − f ||| → 0 as n → ∞, in particular ∥f ′
n − f ′∥∞ → 0, so f is differentiable and (f ′

n)n≥0

converges uniformly to f ′: it results that f ′ is continuous.

Exercise 2. Show that the Riemann integral satisfies some desirable properties:

• All continuous functions on [0, 1] are Riemann integrable

• Every piecewise constant function is Riemann integrable

• Linearity: If f, g are Riemann integrable on [0, 1], then so is their sum and the integral is
equal to the sums.

Proof. Throughout this exercise we rely on Theorem 9 from the Reminder sheet.

1. Let f : [0, 1] → R be continuous. As [0, 1] is compact, f is uniformly continuous. Hence,
for any ε > 0, there exists δ > 0 such that for |x − y| < δ, we have |f(x) − f(y)| < ε. In
particular, considering the partition Pn := {i2−n}2

n

i=0 for n large enough so that 2−n < δ, for
all 0 ≤ i ≤ 2n − 1,

sup
x∈[i2−n,(i+1)2−n]

f(x)− inf
x∈[i2−n,(i+1)2−n]

f(x) < ε.



We now compute:

U(Pn, f)−L(Pn, f) = 2−n
2n−1∑
i=0

(
sup

x∈[i2−n,(i+1)2−n]

f(x)− inf
x∈[i2−n,(i+1)2−n]

f(x)

)
≤ 2−n

2n−1∑
i=0

ε = ε.

The claim follows by arbitrariness of ε > 0.

2. Let f : [0, 1] → R be piecewise constant, i.e. it changes value finitely many times with
0 = x0 < x1 < · · · < xm = 1 being the points of discontinuity, and f is constant equal to
cj on intervals (xj , xj+1) (with f(xj) = cj or cj−1). Thus, within these intervals, we have
sup f = inf f . Let ε > 0 and consider the partition

Pn =
{
0, 1, xj ± 2−n, 1 ≤ j ≤ m− 1

}
,

ordered by increasing value, and with n large enough so that 2−n+1 < min0≤j≤m−1 |xj+1 − xj |
(draw a sketch!). As observed above, the only intervals of the partition over which the supre-
mum and the infimum of the function differ are those of the form [xj − 2−n, xj + 2−n]. We
get that

U(Pn, f)− L(Pn, f) ≤
m−2∑
j=0

2−n+1|cj+1 − cj | ≤ ε

provided that n is large enough, showing f is integrable.

3. Let f, g be integrable on [0, 1]: by Theorem 9 again, for ε > 0 there are partitions Pf , Pg such
that U(Pf , f)− L(Pf , f) < ε, U(Pg, g)− L(Pg, g) < ε. Consider the partition P = Pf ∪ Pg,
reordered by increasing value. Since P is a refinement of Pf and Pg, it holds that

U(P, f) ≤ U(Pf , f), L(P, f) ≥ L(Pf , f), U(P, g) ≤ U(Pg, g), L(P, g) ≥ L(Pg, g).

Furthermore, writing P as P = {0 = x0, x1, . . . , xn−1, xn = 1}, then

U(P, f + g) =

n−1∑
i=0

(xi+1 − xi) sup
[xi,xi+1]

|f + g|

≤
n−1∑
i=0

(xi+1 − xi)

(
sup

[xi,xi+1]

|f |+ sup
[xi,xi+1]

|g|

)
≤ U(P, f) + U(P, g)

and similarly L(P, f + g) ≥ L(P, f) + L(P, g). Gathering everything, we find that

U(P, f + g)− L(P, f + g) ≤ U(P, f) + U(P, g)− L(P, f)− L(P, g)

≤ (U(Pf , f)− L(Pf , f)) + (U(Pg, g)− L(Pg, g)) < ε

showing that f + g is Riemann integrable.

Exercise 3. We aim to conclude the proof of Proposition 1.9 in the notes. Recall that the setup
consisted of f ∈ C2([0, 1],R) twice continuously differentiable and satisfying f(0) = f(1) and
f ′(0) = f ′(1), and that we argued in the first part of the proof that

fN :=

N∑
n=1

(sn sin(2πnx) + cn cos(2πnx)),



converges w.r.t. ∥ · ∥∞ as N → ∞ to some function g ∈ C([0, 1],R), where (sn)n≥1 and (cn)n≥1

are the Fourier coefficients of f .
Using the definition of fN and g show that for all n ≥ 0,∫ 1

0

(f − g) cos(2πnx)dx =

∫ 1

0

(f − g) sin(2πnx)dx = 0,

and conclude the proof with the help of Proposition 1.12.

Proof. The critical thing to recall from the lecture is that the limit g is a uniform limit of the
continuous functions fN , and can therefore be swapped with the integral (cf. Theorem 10 in the
reminders sheet1), together with the integrals computed in sheet 3 exercise 3. Write K := [0, 1].
We have∫

K

g(x) cos(2πmx)dx = lim
N→∞

N∑
n=1

∫
K

(sn sin(2πnx) + cn cos(2πnx)) cos(2πmx)dx

= lim
N→∞

N∑
n=1

(0 +
1

2
cnδn,m)

=
1

2
cm,

yielding the first integral is equal to zero. Analogous computations show that the second integral
vanishes.

Exercise 4 (Fejér kernel, I). One possible choice for the function Tn,x0
in the notes is the so called

Fejér kernel, denoted F x0
n . The Fejér kernel for x0 = 0 is given by

F 0
n(x) = 1 +

n−1∑
k=1

2

(
1− k

n

)
cos(2πkx).

Deduce the expression for F x0
n for x0 ∈ (0, 1).

Now prove carefully the following properties, thereby proving Lemma 1.13:

1. ∀n ≥ 1, F x0
n (x) ≥ 0,

2. ∀n ≥ 1,
∫ 1

0
F x0
n (x)dx = 1,

3. ∀ε > 0, limn→∞
∫ 1

0
1|x−x0|>εF

x0
n (x)dx = 0.

Proof. Since for x0 = 0 we have

F 0
n(x) = 1 +

n−1∑
k=1

2

(
1− k

n

)
cos(2πkx),

and for arbitrary centers x0 ∈ (0, 1), we just shift the kernel by replacing x with x− x0. Thus, we
define

F x0
n (x) = F 0

n(x− x0) = 1 +

n−1∑
k=1

2

(
1− k

n

)
cos
(
2πk(x− x0)

)
.

1For the sake of completeness, we include a short proof: let f be the uniform limit of a sequence of continuous
functions (fn) on a bounded set K. In particular it is continuous, hence Riemann integrable. Then,∫

K
fdx = lim

n→∞

∫
K

fndx.

Indeed, using the triangle inequality of integrals, we have∣∣∣∣ ∫
K

fdx−
∫
K

fndx

∣∣∣∣ = ∣∣∣∣ ∫
K
(f − fn)dx

∣∣∣∣ ≤ diam(K)||f − fn||∞ → 0.



1. We write

F 0
n(x) = 1 +

n−1∑
k=1

2

(
1− k

n

)
cos(2πkx)

=
1

n

n−1∑
k=−n+1

(n− |k|)e2πikx

=
1

n
(e2πix

n−1
2 + e2πix

n−3
2 + · · ·+ e−2πixn−1

2 )2

=
1

n

(
e−πi(n−1)x e

2πinx − 1

e2πix − 1

)2

=
1

n

(
sin(πnx)

sin(πx)

)2

.

In general, we obtain

F x0
n (x) =

1

n

(
sin(πn(x− x0))

sin(π(x− x0))

)2

≥ 0. (1)

2. Now, using the definition of F x0
n , the linearity of the integral, and∫ 1

0

cos(2πk(x− x0)) dx =

{
1 if k = 0,

0 if k ̸= 0,

we get ∫ 1

0

F x0
n (x) dx =

∫ 1

0

1 dx+

n−1∑
k=1

2

(
1− k

n

)∫ 1

0

cos(2πkx)dx = 1.

3. Since x0 ∈ (0, 1), for ε < min(x0, 1− x0) and |x− x0| > ε we have that

|sin(π(x− x0))| ≥
π

2
ε

(this follows for instance from |sin(x)| ≥ |x|/2 on [−π/2, π/2]). Applying it to Equation (1),
we get that

F x0
n (x) ≤ 4

nπ2ε2

for x such that |x− x0| > ε, so that∫ 1

0

1|x−x0|>εF
x0
n (x)dx ≤ 4

nπ2ε2
.

Exercise 5 (Fejér kernel, II).

1. For f ∈ C([0, 1],R) such that f(0) = f(1), show that∫ 1

0

f(x)F x0
n (x)dx −−−−→

n→∞
f(x0).

Therefore, the Fejér kernel is in some sense an ‘approximate Dirac delta function’.



2. Compute formally the Fourier coefficients of the Dirac delta function, i.e. a ‘function’2
δx0

: [0, 1] → R+ for x0 ∈ [0, 1] fixed such that for all f ∈ C([0, 1],R) such that f(0) = f(1),∫ 1

0

f(x)δx0
(x)dx = f(x0),

and write formally its Fourier series.

3. Show that the Fourier coefficients of F x0
n converge to the formal expression that you found

in 2.

Proof. 1. Since f is continuous on [0, 1] and f(0) = f(1), we may view f as a continuous 1-periodic
function, and uniformly continuous: for any ε > 0 there exists δ > 0 such that |f(x)− f(y)| ≤ ε
whenever |x− y| ≤ δ. Using that the Fejér kernel integrates to one (see the previous exercise) we
may rewrite:∫ 1

0

f(x)F x0
n (x)dx =

∫ 1

0

(f(x)− f(x0))F
x0
n (x)dx+ f(x0)

=

∫ 1

0

1|x−x0|>δ(f(x)− f(x0))F
x0
n (x)dx+

∫ 1

0

1|x−x0|≤δ(f(x)− f(x0))F
x0
n (x)dx+ f(x0)

We estimate the two integrals on the right-hand side. First,∣∣∣∣∫ 1

0

1|x−x0|>δ(f(x)− f(x0))F
x0
n (x)dx

∣∣∣∣ ≤ 2∥f∥∞
∫ 1

0

1|x−x0|>δF
x0
n (x)dx −−−−→

n→∞
0

by the third property shown in the previous exercise of F x0
n and the fact that f is bounded. On

the other hand, by continuity,∫ 1

0

1|x−x0|≤δ

∣∣f(x)− f(x0)
∣∣F x0

n (x)dx ≤ ε

∫ 1

0

F x0
n (x)dx = ε.

This concludes the proof as it shows that

lim sup
n→∞

∣∣∣∣∫ 1

0

f(x)F x0
n (x)dx− f(x0)

∣∣∣∣ ≤ ε

and ε was arbitrary.
2. To compute the Fourier coefficients of δx0

, we formally compute:∫ 1

0

cos(2πnx) δx0
(x)dx = cos(2πnx0),

∫ 1

0

sin(2πnx)δx0
(x)dx = sin(2πnx0),

∫ 1

0

δx0
(x)dx = 1,

so that formally

δx0
(x) = 1 +

∞∑
n=1

[
2 cos(2πnx0) cos(2πnx) + 2 sin(2πnx0) sin(2πnx)

]
.

On the other hand, the Fejér kernel can be rewritten (using a trigonometric identity for cos(2πk(x− x0)))

F x0
n (x) = 1 +

n−1∑
k=0

(
2

(
1− k

n

)
cos(2πkx0) cos(2πkx) + 2

(
1− k

n

)
sin(2πkx0) sin(2πkx)

)
.

It follows that for each k ≥ 0, the coefficients ck(F
x0
n ), sk(F

x0
n ) tend to the respective Fourier

coefficients ck(δx0
), sk(δx0

) as n → ∞.

2Such a function does not exist, in the classical sense!



Exercise 6 (The Cantor set). Consider the following iteration: we set C0 = [0, 1] and obtain C1

by removing the middle third, i.e. C1 = C0 \ (1/3, 2/3). Now to obtain C2, we remove the middle
third of the both remaining intervals. We continue iteratively and define C = ∩i≥1Ci. Prove that
C is a closed set (i.e. [0, 1]\C is open) with empty interior (i.e. there is no open interval contained
in C).

It also has uncountably many elements and is a perfect set - both of these are in the for fun
section. It can also be described as the set of numbers in [0, 1] that admit a representation in
ternary expansion containing no occurrence of 1.

Proof. Let us start by noticing that one can write:

Cn = Cn−1 ∩
3n−1−1⋃
k=0

[
3k

3n
,
3k + 1

3n

]
∪
[
3k + 2

3n
,
3k + 3

3n

]
,

so that each Cn is closed by induction. It follows that C =
⋂

n≥1 Cn is closed as an intersection of
closed sets.

For the second part, suppose there existed U ⊂ C open and non-empty, and let x ∈ U : by
assumption there exists δ > 0 such that (x − δ, x + δ) ⊂ U . Taking n large enough such that
2/3n < δ, we would then have that (x − δ, x + δ) ⊂ U ⊂ C ⊂ Cn, but Cn is a disjoint union of
intervals of length 2/3n < δ, also at distance 1/3n away from eachother, contradiction: we deduce
that int(C) = ∅.


