

## Exercise sheet 5

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

**Exercise 1.** Find a sequence  $(f_n)_{n \geq 1} \subset C^1([0, 1], \mathbb{R})$  that converges to some  $f \in C([0, 1], \mathbb{R})$  with respect to the uniform norm  $\|\cdot\|_\infty$ , but where  $f$  is not differentiable. Now show that if convergence holds w.r.t. the norm  $\|f\|_\infty + \|f'\|_\infty$ , then the limit is also continuously differentiable.

*Proof.* Let  $g \mapsto \|\|g\|| := \|g\|_\infty + \|g'\|_\infty$ , whenever the expression is well-defined and finite (the suprema are taken over the closed unit interval  $K$ ). Note first that  $\|\|\cdot\||$  is indeed a norm: it is indeed finite and positive with  $\|\|g\|| = 0$  iff  $g \equiv 0$  (and  $g' \equiv 0$ ), and the triangular inequality and scaling are immediate from  $\|\cdot\|_\infty$  (and linearity of the differentiation).

Observe that if a function belongs to the normed space  $(\mathcal{C}(K), \|\|\cdot\||)$ , it automatically belongs to the normed space  $(\mathcal{C}(K), \|\cdot\|_\infty)$ .

The sequence of functions

$$f_n(x) := \sqrt{(x - 1/2)^2 + 1/n}$$

clearly belong to  $(\mathcal{C}(K), \|\|\cdot\||)$  and converges in  $(\mathcal{C}(K), \|\cdot\|_\infty)$  to  $f := |x - 1/2|$ . However, we see that convergence in  $(\mathcal{C}(K), \|\|\cdot\||)$  is not possible, since the sequence of derivatives

$$f'_n(x) := \frac{x - 1/2}{\sqrt{(x - 1/2)^2 + 1/n}}$$

does not converge uniformly, and therefore  $(f_n)$  cannot converge in  $(\mathcal{C}(K), \|\|\cdot\||)$ . Indeed, the pointwise limit is equal to a translated sign function  $g$  defined on  $K$  as

$$g(x) := \begin{cases} -1 & x < 1/2 \\ 0 & x = 0 \\ +1 & x > 1/2, \end{cases}$$

which is discontinuous, so the convergence of  $f'_n$  to  $g$  cannot be uniform, as  $(\mathcal{C}(K), \|\cdot\|_\infty)$  is closed (as a Banach space).

Now, consider  $(f_n)_{n \geq 1} \subset C^1(D, \mathbb{R})$  converging to  $f \in C(D, \mathbb{R})$  with respect to the norm  $\|\|\cdot\||$ . If  $\|\|f_n - f\|| \rightarrow 0$  as  $n \rightarrow \infty$ , in particular  $\|f'_n - f'\|_\infty \rightarrow 0$ , so  $f$  is differentiable and  $(f'_n)_{n \geq 0}$  converges uniformly to  $f'$ : it results that  $f'$  is continuous.  $\square$

**Exercise 2.** Show that the Riemann integral satisfies some desirable properties:

- All continuous functions on  $[0, 1]$  are Riemann integrable
- Every piecewise constant function is Riemann integrable
- Linearity: If  $f, g$  are Riemann integrable on  $[0, 1]$ , then so is their sum and the integral is equal to the sums.

*Proof.* Throughout this exercise we rely on Theorem 9 from the Reminder sheet.

1. Let  $f : [0, 1] \rightarrow \mathbb{R}$  be continuous. As  $[0, 1]$  is compact,  $f$  is uniformly continuous. Hence, for any  $\varepsilon > 0$ , there exists  $\delta > 0$  such that for  $|x - y| < \delta$ , we have  $|f(x) - f(y)| < \varepsilon$ . In particular, considering the partition  $P_n := \{i2^{-n}\}_{i=0}^{2^n}$  for  $n$  large enough so that  $2^{-n} < \delta$ , for all  $0 \leq i \leq 2^n - 1$ ,

$$\sup_{x \in [i2^{-n}, (i+1)2^{-n}]} f(x) - \inf_{x \in [i2^{-n}, (i+1)2^{-n}]} f(x) < \varepsilon.$$

We now compute:

$$U(P_n, f) - L(P_n, f) = 2^{-n} \sum_{i=0}^{2^n-1} \left( \sup_{x \in [i2^{-n}, (i+1)2^{-n}]} f(x) - \inf_{x \in [i2^{-n}, (i+1)2^{-n}]} f(x) \right) \leq 2^{-n} \sum_{i=0}^{2^n-1} \varepsilon = \varepsilon.$$

The claim follows by arbitrariness of  $\varepsilon > 0$ .

2. Let  $f : [0, 1] \rightarrow \mathbb{R}$  be piecewise constant, i.e. it changes value finitely many times with  $0 = x_0 < x_1 < \dots < x_m = 1$  being the points of discontinuity, and  $f$  is constant equal to  $c_j$  on intervals  $(x_j, x_{j+1})$  (with  $f(x_j) = c_j$  or  $c_{j-1}$ ). Thus, within these intervals, we have  $\sup f = \inf f$ . Let  $\varepsilon > 0$  and consider the partition

$$P_n = \{0, 1, x_j \pm 2^{-n}, 1 \leq j \leq m-1\},$$

ordered by increasing value, and with  $n$  large enough so that  $2^{-n+1} < \min_{0 \leq j \leq m-1} |x_{j+1} - x_j|$  (draw a sketch!). As observed above, the only intervals of the partition over which the supremum and the infimum of the function differ are those of the form  $[x_j - 2^{-n}, x_j + 2^{-n}]$ . We get that

$$U(P_n, f) - L(P_n, f) \leq \sum_{j=0}^{m-2} 2^{-n+1} |c_{j+1} - c_j| \leq \varepsilon$$

provided that  $n$  is large enough, showing  $f$  is integrable.

3. Let  $f, g$  be integrable on  $[0, 1]$ : by Theorem 9 again, for  $\varepsilon > 0$  there are partitions  $P_f, P_g$  such that  $U(P_f, f) - L(P_f, f) < \varepsilon$ ,  $U(P_g, g) - L(P_g, g) < \varepsilon$ . Consider the partition  $P = P_f \cup P_g$ , reordered by increasing value. Since  $P$  is a refinement of  $P_f$  and  $P_g$ , it holds that

$$U(P, f) \leq U(P_f, f), L(P, f) \geq L(P_f, f), \quad U(P, g) \leq U(P_g, g), L(P, g) \geq L(P_g, g).$$

Furthermore, writing  $P$  as  $P = \{0 = x_0, x_1, \dots, x_{n-1}, x_n = 1\}$ , then

$$\begin{aligned} U(P, f+g) &= \sum_{i=0}^{n-1} (x_{i+1} - x_i) \sup_{[x_i, x_{i+1}]} |f+g| \\ &\leq \sum_{i=0}^{n-1} (x_{i+1} - x_i) \left( \sup_{[x_i, x_{i+1}]} |f| + \sup_{[x_i, x_{i+1}]} |g| \right) \\ &\leq U(P, f) + U(P, g) \end{aligned}$$

and similarly  $L(P, f+g) \geq L(P, f) + L(P, g)$ . Gathering everything, we find that

$$\begin{aligned} U(P, f+g) - L(P, f+g) &\leq U(P, f) + U(P, g) - L(P, f) - L(P, g) \\ &\leq (U(P_f, f) - L(P_f, f)) + (U(P_g, g) - L(P_g, g)) < \varepsilon \end{aligned}$$

showing that  $f+g$  is Riemann integrable. □

**Exercise 3.** We aim to conclude the proof of Proposition 1.9 in the notes. Recall that the setup consisted of  $f \in C^2([0, 1], \mathbb{R})$  twice continuously differentiable and satisfying  $f(0) = f(1)$  and  $f'(0) = f'(1)$ , and that we argued in the first part of the proof that

$$f_N := \sum_{n=1}^N (s_n \sin(2\pi n x) + c_n \cos(2\pi n x)),$$

converges w.r.t.  $\|\cdot\|_\infty$  as  $N \rightarrow \infty$  to some function  $g \in C([0, 1], \mathbb{R})$ , where  $(s_n)_{n \geq 1}$  and  $(c_n)_{n \geq 1}$  are the Fourier coefficients of  $f$ .

Using the definition of  $f_N$  and  $g$  show that for all  $n \geq 0$ ,

$$\int_0^1 (f - g) \cos(2\pi nx) dx = \int_0^1 (f - g) \sin(2\pi nx) dx = 0,$$

and conclude the proof with the help of Proposition 1.12.

*Proof.* The critical thing to recall from the lecture is that the limit  $g$  is a uniform limit of the continuous functions  $f_N$ , and can therefore be swapped with the integral (cf. Theorem 10 in the reminders sheet<sup>1</sup>), together with the integrals computed in sheet 3 exercise 3. Write  $K := [0, 1]$ . We have

$$\begin{aligned} \int_K g(x) \cos(2\pi mx) dx &= \lim_{N \rightarrow \infty} \sum_{n=1}^N \int_K (s_n \sin(2\pi nx) + c_n \cos(2\pi nx)) \cos(2\pi mx) dx \\ &= \lim_{N \rightarrow \infty} \sum_{n=1}^N \left(0 + \frac{1}{2} c_n \delta_{n,m}\right) \\ &= \frac{1}{2} c_m, \end{aligned}$$

yielding the first integral is equal to zero. Analogous computations show that the second integral vanishes.  $\square$

**Exercise 4** (Fejér kernel, I). *One possible choice for the function  $T_{n,x_0}$  in the notes is the so called Fejér kernel, denoted  $F_n^{x_0}$ . The Fejér kernel for  $x_0 = 0$  is given by*

$$F_n^0(x) = 1 + \sum_{k=1}^{n-1} 2 \left(1 - \frac{k}{n}\right) \cos(2\pi kx).$$

Deduce the expression for  $F_n^{x_0}$  for  $x_0 \in (0, 1)$ .

Now prove carefully the following properties, thereby proving Lemma 1.13:

1.  $\forall n \geq 1, F_n^{x_0}(x) \geq 0$ ,
2.  $\forall n \geq 1, \int_0^1 F_n^{x_0}(x) dx = 1$ ,
3.  $\forall \varepsilon > 0, \lim_{n \rightarrow \infty} \int_0^1 \mathbf{1}_{|x-x_0|>\varepsilon} F_n^{x_0}(x) dx = 0$ .

*Proof.* Since for  $x_0 = 0$  we have

$$F_n^0(x) = 1 + \sum_{k=1}^{n-1} 2 \left(1 - \frac{k}{n}\right) \cos(2\pi kx),$$

and for arbitrary centers  $x_0 \in (0, 1)$ , we just shift the kernel by replacing  $x$  with  $x - x_0$ . Thus, we define

$$F_n^{x_0}(x) = F_n^0(x - x_0) = 1 + \sum_{k=1}^{n-1} 2 \left(1 - \frac{k}{n}\right) \cos(2\pi k(x - x_0)).$$

<sup>1</sup>For the sake of completeness, we include a short proof: let  $f$  be the uniform limit of a sequence of continuous functions  $(f_n)$  on a bounded set  $K$ . In particular it is continuous, hence Riemann integrable. Then,

$$\int_K f dx = \lim_{n \rightarrow \infty} \int_K f_n dx.$$

Indeed, using the triangle inequality of integrals, we have

$$\left| \int_K f dx - \int_K f_n dx \right| = \left| \int_K (f - f_n) dx \right| \leq \text{diam}(K) \|f - f_n\|_\infty \rightarrow 0.$$

1. We write

$$\begin{aligned}
F_n^0(x) &= 1 + \sum_{k=1}^{n-1} 2 \left(1 - \frac{k}{n}\right) \cos(2\pi kx) \\
&= \frac{1}{n} \sum_{k=-n+1}^{n-1} (n - |k|) e^{2\pi i kx} \\
&= \frac{1}{n} (e^{2\pi i x \frac{n-1}{2}} + e^{2\pi i x \frac{n-3}{2}} + \cdots + e^{-2\pi i x \frac{n-1}{2}})^2 \\
&= \frac{1}{n} \left( e^{-\pi i(n-1)x} \frac{e^{2\pi i n x} - 1}{e^{2\pi i x} - 1} \right)^2 \\
&= \frac{1}{n} \left( \frac{\sin(\pi n x)}{\sin(\pi x)} \right)^2.
\end{aligned}$$

In general, we obtain

$$F_n^{x_0}(x) = \frac{1}{n} \left( \frac{\sin(\pi n(x - x_0))}{\sin(\pi(x - x_0))} \right)^2 \geq 0. \quad (1)$$

2. Now, using the definition of  $F_n^{x_0}$ , the linearity of the integral, and

$$\int_0^1 \cos(2\pi k(x - x_0)) dx = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{if } k \neq 0, \end{cases}$$

we get

$$\int_0^1 F_n^{x_0}(x) dx = \int_0^1 1 dx + \sum_{k=1}^{n-1} 2 \left(1 - \frac{k}{n}\right) \int_0^1 \cos(2\pi kx) dx = 1.$$

3. Since  $x_0 \in (0, 1)$ , for  $\varepsilon < \min(x_0, 1 - x_0)$  and  $|x - x_0| > \varepsilon$  we have that

$$|\sin(\pi(x - x_0))| \geq \frac{\pi}{2} \varepsilon$$

(this follows for instance from  $|\sin(x)| \geq |x|/2$  on  $[-\pi/2, \pi/2]$ ). Applying it to Equation (1), we get that

$$F_n^{x_0}(x) \leq \frac{4}{n\pi^2 \varepsilon^2}$$

for  $x$  such that  $|x - x_0| > \varepsilon$ , so that

$$\int_0^1 \mathbf{1}_{|x-x_0|>\varepsilon} F_n^{x_0}(x) dx \leq \frac{4}{n\pi^2 \varepsilon^2}.$$

□

**Exercise 5** (Fejér kernel, II).

1. For  $f \in C([0, 1], \mathbb{R})$  such that  $f(0) = f(1)$ , show that

$$\int_0^1 f(x) F_n^{x_0}(x) dx \xrightarrow{n \rightarrow \infty} f(x_0).$$

Therefore, the Fejér kernel is in some sense an ‘approximate Dirac delta function’.

2. Compute formally the Fourier coefficients of the Dirac delta function, i.e. a ‘function’<sup>2</sup>  $\delta_{x_0} : [0, 1] \rightarrow \mathbb{R}^+$  for  $x_0 \in [0, 1]$  fixed such that for all  $f \in C([0, 1], \mathbb{R})$  such that  $f(0) = f(1)$ ,

$$\int_0^1 f(x) \delta_{x_0}(x) dx = f(x_0),$$

and write formally its Fourier series.

3. Show that the Fourier coefficients of  $F_n^{x_0}$  converge to the formal expression that you found in 2.

*Proof.* 1. Since  $f$  is continuous on  $[0, 1]$  and  $f(0) = f(1)$ , we may view  $f$  as a continuous 1-periodic function, and uniformly continuous: for any  $\varepsilon > 0$  there exists  $\delta > 0$  such that  $|f(x) - f(y)| \leq \varepsilon$  whenever  $|x - y| \leq \delta$ . Using that the Fejér kernel integrates to one (see the previous exercise) we may rewrite:

$$\begin{aligned} \int_0^1 f(x) F_n^{x_0}(x) dx &= \int_0^1 (f(x) - f(x_0)) F_n^{x_0}(x) dx + f(x_0) \\ &= \int_0^1 \mathbf{1}_{|x-x_0|>\delta} (f(x) - f(x_0)) F_n^{x_0}(x) dx + \int_0^1 \mathbf{1}_{|x-x_0|\leq\delta} (f(x) - f(x_0)) F_n^{x_0}(x) dx + f(x_0) \end{aligned}$$

We estimate the two integrals on the right-hand side. First,

$$\left| \int_0^1 \mathbf{1}_{|x-x_0|>\delta} (f(x) - f(x_0)) F_n^{x_0}(x) dx \right| \leq 2 \|f\|_\infty \int_0^1 \mathbf{1}_{|x-x_0|>\delta} F_n^{x_0}(x) dx \xrightarrow{n \rightarrow \infty} 0$$

by the third property shown in the previous exercise of  $F_n^{x_0}$  and the fact that  $f$  is bounded. On the other hand, by continuity,

$$\int_0^1 \mathbf{1}_{|x-x_0|\leq\delta} |f(x) - f(x_0)| F_n^{x_0}(x) dx \leq \varepsilon \int_0^1 F_n^{x_0}(x) dx = \varepsilon.$$

This concludes the proof as it shows that

$$\limsup_{n \rightarrow \infty} \left| \int_0^1 f(x) F_n^{x_0}(x) dx - f(x_0) \right| \leq \varepsilon$$

and  $\varepsilon$  was arbitrary.

2. To compute the Fourier coefficients of  $\delta_{x_0}$ , we formally compute:

$$\int_0^1 \cos(2\pi nx) \delta_{x_0}(x) dx = \cos(2\pi nx_0), \quad \int_0^1 \sin(2\pi nx) \delta_{x_0}(x) dx = \sin(2\pi nx_0), \quad \int_0^1 \delta_{x_0}(x) dx = 1,$$

so that formally

$$\delta_{x_0}(x) = 1 + \sum_{n=1}^{\infty} \left[ 2 \cos(2\pi nx_0) \cos(2\pi nx) + 2 \sin(2\pi nx_0) \sin(2\pi nx) \right].$$

On the other hand, the Fejér kernel can be rewritten (using a trigonometric identity for  $\cos(2\pi k(x - x_0))$ )

$$F_n^{x_0}(x) = 1 + \sum_{k=0}^{n-1} \left( 2 \left( 1 - \frac{k}{n} \right) \cos(2\pi kx_0) \cos(2\pi kx) + 2 \left( 1 - \frac{k}{n} \right) \sin(2\pi kx_0) \sin(2\pi kx) \right).$$

It follows that for each  $k \geq 0$ , the coefficients  $c_k(F_n^{x_0}), s_k(F_n^{x_0})$  tend to the respective Fourier coefficients  $c_k(\delta_{x_0}), s_k(\delta_{x_0})$  as  $n \rightarrow \infty$ . □

---

<sup>2</sup>Such a function does not exist, in the classical sense!

**Exercise 6** (The Cantor set). Consider the following iteration: we set  $C_0 = [0, 1]$  and obtain  $C_1$  by removing the middle third, i.e.  $C_1 = C_0 \setminus (1/3, 2/3)$ . Now to obtain  $C_2$ , we remove the middle third of the both remaining intervals. We continue iteratively and define  $C = \bigcap_{i \geq 1} C_i$ . Prove that  $C$  is a closed set (i.e.  $[0, 1] \setminus C$  is open) with empty interior (i.e. there is no open interval contained in  $C$ ).

It also has uncountably many elements and is a perfect set - both of these are in the for fun section. It can also be described as the set of numbers in  $[0, 1]$  that admit a representation in ternary expansion containing no occurrence of 1.

*Proof.* Let us start by noticing that one can write:

$$C_n = C_{n-1} \cap \bigcup_{k=0}^{3^{n-1}-1} \left[ \frac{3k}{3^n}, \frac{3k+1}{3^n} \right] \cup \left[ \frac{3k+2}{3^n}, \frac{3k+3}{3^n} \right],$$

so that each  $C_n$  is closed by induction. It follows that  $C = \bigcap_{n \geq 1} C_n$  is closed as an intersection of closed sets.

For the second part, suppose there existed  $U \subset C$  open and non-empty, and let  $x \in U$ : by assumption there exists  $\delta > 0$  such that  $(x - \delta, x + \delta) \subset U$ . Taking  $n$  large enough such that  $2/3^n < \delta$ , we would then have that  $(x - \delta, x + \delta) \subset U \subset C \subset C_n$ , but  $C_n$  is a disjoint union of intervals of length  $2/3^n < \delta$ , also at distance  $1/3^n$  away from each other, contradiction: we deduce that  $\text{int}(C) = \emptyset$ .  $\square$