Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 5

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1. Find a sequence (fn)n>1 C C([0,1],R) that converges to some f € C([0,1],R) with
respect to the uniform norm || -||eo, but where f is not differentiable. Now show that if convergence
holds w.r.t. the norm || f|lco + |||, then the limit is also continuously differentiable.

Proof. Let g — [||9]|| == ll9llc + l¢’[loo, Whenever the expression is well-defined and finite (the
suprema are taken over the closed unit interval K). Note first that ||| - ||| is indeed a norm: it is
indeed finite and positive with |||g||| = 0 iff ¢ = 0 (and ¢’ = 0), and the triangular inequality and
scaling are immediate from |-|| , (and linearity of the differentiation).

Observe that if a function belongs to the normed space (C(K), ||| |||), it automatically belongs
to the normed space (C(K), || - ||co)-

The sequence of functions
fo(@):=/(x—1/2)2+1/n

clearly belong to (C(K), ||| - |||) and converges in (C(K),|| - ||co) to f := |z — 1/2|. However, we see
that convergence in (C(K), ||| |||) is not possible, since the sequence of derivatives
z—1/2
o) = 4
Ja@— 122+ 1/n
does not converge uniformly, and therefore (f,) cannot converge in (C(K),||| - |||). Indeed, the

pointwise limit is equal to a translated sign function g defined on K as

-1 x<1/2
glx):=<0 =0
+1 2> 1/2,
which is discontinuous, so the convergence of f], to g cannot be uniform, as (C(K),||-||c) is closed

(as a Banach space).

Now, consider (f,,)n>1 C C*(D,R) converging to f € C(D,R) with respect to the norm ||| - |||.
If ||| fn — f||| = 0 as n — oo, in particular ||f, — f'||., — 0, so f is differentiable and (f;)n>0
converges uniformly to f’: it results that f’ is continuous. O

Exercise 2. Show that the Riemann integral satisfies some desirable properties:
o All continuous functions on [0,1] are Riemann integrable
o FEuvery piecewise constant function is Riemann integrable

o Linearity: If f,g are Riemann integrable on [0,1], then so is their sum and the integral is
equal to the sums.

Proof. Throughout this exercise we rely on Theorem 9 from the Reminder sheet.

1. Let f : [0,1] — R be continuous. As [0, 1] is compact, f is uniformly continuous. Hence,
for any € > 0, there exists § > 0 such that for |:1: —y| < 8, we have |f(z) — f(y)] <e. In

particular, considering the partition P, := {i2~ ”} i—o for n large enough so that 27" < 4, for
all0 <i<2™—1,

sup flz) — inf flz) <e.
zeli2—n,(i+1)2- "] @) xefi2=n,(i+1)27"] (@)



We now compute:

2"—1 21
U(Pa, f)~L(Pu f) =27 3 ( sup  f(o) —me[ﬁni,r(lifﬂ)w,]f(x)) <2 E:j e=e.

—o \a€liz—m (i+1)2-"]
The claim follows by arbitrariness of € > 0.

2. Let f : [0,1] — R be piecewise constant, i.e. it changes value finitely many times with
0=2¢9<x1 < -+ < xy = 1 being the points of discontinuity, and f is constant equal to
¢; on intervals (z;,2;11) (with f(x;) = ¢; or ¢j—1). Thus, within these intervals, we have
sup f = inf f. Let € > 0 and consider the partition

P, ={0,1,2;£27"1<j<m—1},

ordered by increasing value, and with n large enough so that 27" ! < ming<j<m—1 241 — 2]
(draw a sketch!). As observed above, the only intervals of the partition over which the supre-
mum and the infimum of the function differ are those of the form [z; — 27", z; +27"]. We
get that

m—2

U(Pp, f) = L(Pa, /) <> 27" ejyn — ¢ < e
j=0

provided that n is large enough, showing f is integrable.

3. Let f, g be integrable on [0, 1]: by Theorem 9 again, for € > 0 there are partitions Py, P, such
that U(Py, f) — L(Py, f) < e, U(Py,g9) — L(P,, g) < e. Consider the partition P = Py U P,
reordered by increasing value. Since P is a refinement of Py and P, it holds that

U<Paf) < U(Pf’f)7L(P’f) ZL(Pfaf)7 U(P7g) < U(Pgmg)vL(Pvg) ZL(PgMg)'

Furthermore, writing P as P = {0 = zo,21,...,Zp_1,2, = 1}, then
n—1
UP,f+g) =) (w1 —x) sup |f+g|
i=0 [zi,@it1]
n—1
<S (@i —z) | s |fl+ sup gl
i—0 [®i,2it1] [@i,zit1]

SUPf)+U(P,g)
and similarly L(P, f + g) > L(P, f) + L(P, g). Gathering everything, we find that
UP.] +9)~ L(P.f +9) SUP.J) + U(P.g) ~ L(P.J) ~ L(P.g)
< (U(Py, f) = L(Py, ) + (U(Py,9) — L(Py, 9)) <€
showing that f + ¢ is Riemann integrable.
O

Exercise 3. We aim to conclude the proof of Proposition 1.9 in the notes. Recall that the setup
consisted of f € C?%([0,1],R) twice continuously differentiable and satisfying f(0) = f(1) and
£1(0) = (1), and that we argued in the first part of the proof that

N
fn = Z(sn sin(2mnx) + ¢, cos(2mnx)),

n=1



converges w.r.t. || |0 as N — 00 to some function g € C([0,1],R), where (sp)n>1 and (cp)n>1
are the Fourier coefficients of f.
Using the definition of fy and g show that for alln > 0,

/ (f — g) cos(2mnz)dx = / (f — g)sin(2rnz)dz = 0,
0 0

and conclude the proof with the help of Proposition 1.12.

Proof. The critical thing to recall from the lecture is that the limit ¢ is a uniform limit of the
continuous functions fy, and can therefore be swapped with the integral (cf. Theorem 10 in the
reminders shee‘ﬂ)7 together with the integrals computed in sheet 3 exercise 3. Write K := [0, 1].
We have

N—o00
n=1

N
/ g(z) cos(2mmz)dx = lim Z/ (Sn sin(2mnx) + ¢, cos(2mnz)) cos(2mrma)dx
K K

al 1
= lim Z(0+§cn5mm)

N—o00
n=1

icm,

yielding the first integral is equal to zero. Analogous computations show that the second integral
vanishes. 0

Exercise 4 (Fejér kernel, I). One possible choice for the function T), 5, in the notes is the so called
Fejér kernel, denoted F°. The Fejér kernel for xo = 0 is given by

n—1
k
F(z)=1 §21—f 5(2 .
() +k:1 ( n) cos(2wkx)

Deduce the expression for F¥0 for xq € (0,1).
Now prove carefully the following properties, thereby proving Lemma 1.13:

1. ¥Yn > 1, Fro(x) >0,
2.¥n>1, [y Fo(z)de =1,

3. Ve > 0,1imy 00 [y Lja—no|e F20 (z)d = 0.

Proof. Since for g = 0 we have
n—1 k
Fl(z)=1 2(1-= 27k
() + ; ( n) cos(2mkx),

and for arbitrary centers xg € (0, 1), we just shift the kernel by replacing = with « — 2. Thus, we
define

n—1
k
F(z) = FX(x —x9) = 1 + Z 2 (1 - > cos(2mk(z — x0)).
k=1 n
1For the sake of completeness, we include a short proof: let f be the uniform limit of a sequence of continuous
functions (frn) on a bounded set K. In particular it is continuous, hence Riemann integrable. Then,

Afdx :nlmm/l{fndz.

Indeed, using the triangle inequality of integrals, we have

‘/defE*‘/KfndI /K(fffn)dczf

< diam(K)[|f — falloo — 0.



1. We write

1

- k
FO(z)=1+ 2 <1 — > cos(2mkx)
k=1 n
1 n—1
— E Z (’I’L _ |k_|)627mkz
k=—n-+1
1 o n— . n—
— 5(62771le + 627”sz 4. +e—27‘rzz 21)2
2mine 2
— l e*ﬁi(nfl)xe i -1
n e27rw: -1
1 (sin(mnzx) 2
~ n \ sin(nz)

In general, we obtain

Foo(a) = (W”(“"‘””O”f >0, 1)

n \ sin(m(z — xp))
2. Now, using the definition of F7°, the linearity of the integral, and

1 ifk=0,

1
/o cos(2mk(x — zg)) do = {O £k £0,

we get
1 1 n—1 k 1
/ Fpo(z)de = / ldx + Z 2 (1 - ) / cos(2mkx)dr = 1.
0 0 k=1 n/Jo

3. Since o € (0,1), for € < min(zg, 1 — ) and |x — x¢| > £ we have that
|sin(m(z — zg))| > gs

(this follows for instance from |sin(z)| > |x|/2 on [—7/2,7/2]). Applying it to Equation (1)),
we get that
4
Fro(r) < ——
n'(@) < nm2e2

for x such that |z — zg| > ¢, so that

4

1
o
/0 1|:v7zo\>an (ac)dx < n7r252'

Exercise 5 (Fejér kernel, II).

1. For f € C([0,1],R) such that f(0) = f(1), show that

/0 F@) o (@)de —— f(zo).

Therefore, the Fejér kernel is in some sense an ‘approzimate Dirac delta function’.



2. Compute formally the Fourier coefficients of the Dirac delta function, i.e. a ‘functionﬁ
8o 1 10,1] = RY for zg € [0,1] fized such that for all f € C([0,1],R) such that f(0) = f(1),

/0 F(2)62, (2)dz = f(z0),

and write formally its Fourier series.

3. Show that the Fourier coefficients of FX° converge to the formal expression that you found
m 2.
Proof. 1. Since f is continuous on [0, 1] and f(0) = f(1), we may view f as a continuous 1-periodic
function, and uniformly continuous: for any e > 0 there exists § > 0 such that |f(z) — f(y)| < e
whenever |z — y| < 0. Using that the Fejér kernel integrates to one (see the previous exercise) we
may rewrite:

1 1
/ J(@)F2 (2)dz = / (f(2) - Flao)) F2o(x)dz + f(xo)
0 0

= /0 Lio—ao>s(f(z) = f20)) 7 (v)dz +/0 1ig—ao<s(f(x) = f(z0))Fy0 (x)da + f(0)

We estimate the two integrals on the right-hand side. First,

n— oo

1 1
‘/O Lo—ao|>s(f(x) = f(20)) Fyy° (x)dz| < 2||f||oo/0 Lig—ao|>oF3° (2)dz —— 0

by the third property shown in the previous exercise of F;7° and the fact that f is bounded. On
the other hand, by continuity,

/0 1o anys| (@) — F(20)]| F2o(@)dz < e / Foo(z)de = .

0

This concludes the proof as it shows that

lim sup <e

n—oo

/0 f(2)F2 (2)dz — f(zo)

and ¢ was arbitrary.
2. To compute the Fourier coefficients of d,,, we formally compute:

1 1 1
/ cos(2mnx) Oy, (z)dr = cos(2mnzy), / sin(2mnx)dy, (x)dz = sin(2mnzg), / Iz (x)dx =1,
0 0 0

so that formally

Oz () =14 Z {2 cos(2mnxg) cos(2mnx) + 2 sin(2mnxg) SiH(QWTl:L')]

n=1

On the other hand, the Fejér kernel can be rewritten (using a trigonometric identity for cos(2mk(x — x¢)))

n—1
F¥(z)=1+ Z <2 (1 — 7]2> cos(2mkxg) cos(2mkx) + 2 <1 - 712) sin(2mwkz) sin(27rkx)> .
k=0

It follows that for each k > 0, the coeflicients c(F*°), si(F2°) tend to the respective Fourier

coefficients ¢ (dz,), Sk (0z,) a8 n — 0.
O

2Such a function does not exist, in the classical sense!



Exercise 6 (The Cantor set). Consider the following iteration: we set Cy = [0,1] and obtain Cy
by removing the middle third, i.e. C1 = Cp \ (1/3,2/3). Now to obtain Cs, we remove the middle
third of the both remaining intervals. We continue iteratively and define C' = N;>1C;. Prove that
C' is a closed set (i.e. [0,1]\C is open) with empty interior (i.e. there is no open interval contained
in C).

It also has uncountably many elements and is a perfect set - both of these are in the for fun
section. It can also be described as the set of numbers in [0,1] that admit a representation in
ternary expansion containing no occurrence of 1.

Proof. Let us start by noticing that one can write:

gn—1_1

3k 3k+1 3k+2 3k+3

Cn:Cn— N an? U ; )
o U g e o e

so that each C), is closed by induction. It follows that C' =, -, Cy is closed as an intersection of
closed sets.

For the second part, suppose there existed U C C' open and non-empty, and let x € U: by
assumption there exists 6 > 0 such that (z — §,2 + §) C U. Taking n large enough such that
2/3™ < ¢, we would then have that (x — §,2 + ) C U C C C C,, but C, is a disjoint union of
intervals of length 2/3™ < 4, also at distance 1/3™ away from eachother, contradiction: we deduce
that int(C) = 0. O



