
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 4
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Spaces of continuous functions II
Exercise 1. When D is closed and bounded, is the uniform norm the only norm we can put on
(C(D,R),+)) such that completeness holds?

Proof. It is not: consider for example |||f ||| := supx∈D |(1 + |x|)f(x)| = ∥(1 + |·|)f∥∞. Since D is
bounded, there exists c > 0 such that every x ∈ D is such that |x| ≤ c, and we obtain that for all
f ∈ C(D,R),

∥f∥∞ ≤ |||f ||| ≤ (c+ 1)∥f∥∞,

so that ∥·∥∞ and |||f ||| are equivalent. We claim that the completeness of (C(D,R), ∥·∥∞) implies
the completeness of (C(D,R), ||| · |||). Indeed, let (fn)n≥1 ⊂ C(D,R) be a Cauchy sequence for
||| · |||: for all ε > 0, there exists N ≥ 1 such that for all m,n ≥ N , |||fn − fm||| ≤ ε, meaning that
∥fn − fm∥∞ ≤ ε: therefore (fn)n≥1 is Cauchy in (C(D,R), ∥·∥∞), which is complete, and there
exists an element f ∈ C(D,R) with ∥fn − f∥∞ −−−−→

n→∞
0. It follows that |||fn − f ||| −−−−→

n→∞
0 too

and this shows that (C(D,R), ||| · |||) is complete.

Remark: The norm ||| · ||| can be viewed as re-weighting f .

Exercise 2. Find an example of D that is not closed or not bounded, and f ∈ C(D,R) such that
∥f∥∞ is infinite.

Show that if we define a distance d̂∞(f, g) := min(∥f − g∥∞, 1) on C(D,R) where D ⊂ R is
arbitrary, then (C(D,R), d̂∞) is still complete. Argue that d̂∞ can not be represented by a norm,
i.e. there is no norm ∥ · ∥ such that ∥f∥ = d̂∞(0, f).

Proof. For the case where D is not bounded, consider D = R and f : x 7→ x, then f ∈ C(R,R) but
clearly ∥f∥∞ is infinite. For the case where D is not closed, consider D = (0, 1) and f : x 7→ 1

x .
We have f ∈ C((0, 1),R) and again ∥f∥∞ is infinite. For the second part of the exercise, let
(fn)n≥1 be a Cauchy sequence in (C(D,R), d̂∞), i.e., for every ϵ > 0 there is an nϵ such that for
all n,m ≥ nϵ we have d̂∞(fn, fm) = min(∥fn − fm∥∞, 1) < ϵ. This clearly implies that (fn)n≥1

is also a Cauchy sequence w.r.t. ∥ · ∥∞. One can then replicate fac simile the 3ε-argument from
the class that showed that C(D,R) is complete when D is compact1: we find f ∈ C(D,R) such
that limn→∞ ∥fn − f∥∞ = 0, which implies limn→∞ d̂∞(fn, f) = 0 and shows that (C(D,R), d̂∞)
is complete.

The fact that d̂∞ cannot be represented by a norm can be seen by the following example.
Consider the constant function f = 1, which takes value 1 everywhere. Then

∥2f∥ = d̂∞(0, 2f) = min(∥2f∥∞, 1) = min(2 · ∥f∥∞, 1) = min(2, 1) = 1 ̸= 2 = 2 · ∥f∥.

hence the homogeneity condition is not satisfied.

Exercise 3 (Peano curve).

1. Show that the sequence (fn)n≥1 defined as above is Cauchy, and therefore converges uniformly
to a continuous function f : [0, 1] 7→ [0, 1]2.

1This proof did not use the fact that D is compact, other than to obtain finiteness of the norm.



2. Show that f is surjective.

Sketch. 1) We show that the difference between two sequence elements becomes arbitrarily small.
Without loss of generality, let n ≥ m and observe that each individual step refines the previous step
with movements of at most 3−n in the supremum norm. This means that if we instead compare
the n-th and m-th step as above, we get

∥fn − fm∥∞ ≤ 3−min(m,n).

The sequence (fn) belongs to the Banach space C([0, 1];R2) and therefore, by completeness, it
converges to some f ∈ C([0, 1];R2).

2) Let x ∈ [0, 1]2 be any point in the unit square. Recall that we define the distance between
a point x and a set A as

d(x,A) := inf
a∈A

d(x, a),

that is, the smallest distance between x and the set A. Notice in our case A is the image of a
function, so that

d(x, Imf) = inf
y∈[0,1]

d(x, f(y))

Observe that by construction, for each n ≥ 1, there exists yn ∈ [0, 1] such that d(x, fn(yn)) ≤
3−n. Since (yn)n≥1 ⊂ [0, 1], by Bolzano-Weierstrass there is a subsequence (ynk

)k≥1 and y ∈ [0, 1]2

such that ynk
−−−−→
k→∞

y, and f(ynk
) −−−−→

k→∞
f(y) by continuity. Gathering everything, we obtain

that

d(x, f(y)) ≤ d(x, fnk
(ynk

)) + d(fnk
(ynk

), f(ynk
)) + d(f(ynk

), f(y))

≤ 3−nk + ∥fnk
− f∥∞ + d(f(ynk

), f(y))

Hence, taking k → ∞, we obtain that d(x, f(y)) = 0, showing that x ∈ Im f .

Fourier II
Exercise 4. Consider the function f : x 7→ x on [0, 1].

1. Show that the Fourier coefficients of f are c0 = 1/2, cn = 0, sn = −1/(πn) for n ≥ 1.

2. Using that
+∞∑
n=1

zn

n
= − log(1− z)

for z ∈ D \ {1} (the unit disk in C minus 1), show that
∑+∞

n≥1 sin(2πnx)/(πn) converges and
satisfies the identity

f(x) = x =
1

2
−

+∞∑
n=1

sin(2πnx)

πn
.

3. Is the identity still valid at x = 0 or x = 1?

Proof. 1) We compute

c0 =

∫ 1

0

x dx =
1

2
.

and for n ≥ 1

cn = 2

∫ 1

0

x cos(2πnx) dx = 0,



using integration by parts. For the sine coefficients sn:

sn = 2

∫ 1

0

x sin(2πnx) dx = − 1

πn
.

2) We have that2
N∑

n≥1

sin(2πnx)

πn
=

1

π
Im(

N∑
n≥1

e2πinx

n
),

and since the right-hand sum converges as N → ∞ for x ∈ (0, 1) by the hint, the left-hand side
must converge as well and the series can be expressed as

+∞∑
n≥1

sin(2πnx)

πn
=

1

π
Im(− log

(
1− e2πix

)
) = − 1

π
arg(1− e2πix) =

1

2
− x,

using that

1− e2πix = eπix(e−πix − eπix) = −2i sin(πx)eπix = sin(πx)ei(πx−π/2).

3) At x = 0 and x = 1, the series clearly converges to 1/2, different from the value of f at these
points.

The points x = 0, 1 are discontinuities for the 1-periodic extension of f over the real line. That
we cannot have pointwise continuity of the Fourier series at a jump can be intuitively seen from
the fact that the approximations made by trigonometric polynomials are continuous and therefore
cannot converge uniformly to a non-continuous function. It is not a coincidence that Ff at these
two discontinuity points equals to the average of the values of f from the right and to the left
of x = 0 and x = 1, respectively. A theorem due to Lebesgue states that this is always the case
whenever we have a discontinuity point.

2Note: Im(·) denotes here the imaginary part of a complex number.


