
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 3

Spaces of continuous functions

Exercise 1. Let F : C([0, 1],R) → R be defined by F (f) :=
∫ 1

0
f(x)dx, where we consider the

Riemann integral. Prove that F is continuous w.r.t. the uniform metric: i.e. show that for any
ε > 0, we can find δ > 0 such that if ∥f − g∥∞ < δ, then |F (f)− F (g)| < ε. What does it say if f
denotes the density of a line-like object?

Proof. As in the statement, let ε > 0 and f, g ∈ C(D,R) be such that ∥f − g∥∞ ≤ δ with δ to be
determined. We compute:

|F (f)− F (g)| =
∣∣∣∣∫ 1

0

(f(x)− g(x))dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)− g(x)|dx ≤
∫ 1

0

∥f − g∥∞dx ≤ δ.

It follows from choosing δ = ε that F is continuous as a map (C(D,R), ∥·∥∞) → (R, |·|). Note that
changing the bounds of the integral from [0, 1] to [a, b] leads to choosing δ = ε/(b− a).

This means that computing the mass of a line-like object given its density is a continuous
operation: a slight change in the density (w.r.t. the norm ∥·∥∞) only results in a slight change of
the mass.

Exercise 2. Show that the set of functions fn : x 7→ sin(nx), x ∈ [0, 1] defined for all n ≥ 1 admits
no subsequence that converges w.r.t. the norm |·|∞.

Proof. Assume by contradiction that some subsequence (fnk
)k∈N converges uniformly to some f ,

which is therefore continuous (as a uniform limit of continuous functions). Notice that for each
n ∈ N, fn(π/n) = 1. On the other hand, for all large enough k, ∥f − fnk

∥∞ ≤ 1/2. Therefore, for
all large enough k, f(π/nk) ≥ 1/2. Taking k → +∞, since f is continuous, we get f(0) ≥ 1/2.
But since f(0) = limk→+∞ fnk

(0) = 0, we get a contradiction.

Fourier
Exercise 3. Prove that the following orthogonality relations hold for integers m,n ≥ 0:

1. Cosine-cosine Orthogonality:

∫ 1

0

cos(2πnx) cos(2πmx) dx =


1, if n = m = 0,

1
2 , if n = m ̸= 0,

0, if n ̸= m.

2. Sine-sine Orthogonality:

∫ 1

0

sin(2πnx) sin(2πmx) dx =


0, if n = 0 or m = 0,

1
2 , if n = m ̸= 0,

0, if n ̸= m.

3. Sine-cosine Orthogonality:∫ 1

0

sin(2πnx) cos(2πmx) dx = 0 ∀n,m.



Proof. We compute

⟨cos(2πn·), cos(2πm·)⟩ :=
∫ 1

0

cos(2πnx) cos(2πmx) dx.

Recall that
cos θ cosϕ =

1

2
(cos(θ − ϕ) + cos(θ + ϕ)) ,

we rewrite first expression as

⟨cos(2πn·), cos(2πm·)⟩ =
∫ 1

0

1

2
(cos(2π(n−m)x) + cos(2π(n+m)x)) dx.

Using the linearity of the integral, we can evaluate each summand in the integral separately using:∫ 1

0

cos(2πkx)dx =

{
1, k = 0,

0, k ̸= 0.

Thus,

⟨cos(2πn·), cos(2πm·)⟩ = 1

2
(δn,m + δn,−m) .

Since for nonzero n, δn,−m = 0, we get:

⟨cos(2πn·), cos(2πm·)⟩ =


1, if n = m = 0,
1
2 , if n = m ̸= 0,

0, if n ̸= m.

Similarly,

⟨sin(2πn·), sin(2πm·)⟩ =
∫ 1

0

sin(2πnx) sin(2πmx) dx

can be computed using

sin θ sinϕ =
1

2
(cos(θ − ϕ)− cos(θ + ϕ))

which yields

⟨sin(2πn·), sin(2πm·)⟩ =


0, if n = 0 or m = 0,
1
2 , if n = m ̸= 0,

0, if n ̸= m.

Finally, we rewrite

⟨sin(2πn·), cos(2πm·)⟩ =
∫ 1

0

sin(2πnx) cos(2πmx) dx

using the identity

sin θ cosϕ =
1

2
(sin(θ + ϕ) + sin(θ − ϕ)) .

This yields

⟨sin(2πn·), cos(2πm·)⟩
∫ 1

0

1

2
(sin(2π(n+m)x) + sin(2π(n−m)x)) dx = 0

as the integral of a sine function over a full period is always zero.



Remark: Do not worry if you do not know the trigonometric identities we used above, as you
can always show them quite easily from scratch. Indeed, using the functional equation of the
exponential together with Euler’s identity, one gets

cos(θ + ϕ) + i sin(θ + ϕ) = exp(i(θ + ϕ)) = exp(iθ) exp(iϕ) = (cos(θ) + i sin(θ))(cos(ϕ) + i sin(ϕ)).

Expanding the product on the right hand side and comparing real and imaginary parts on the two
ends of the above equations yields the necessary ingredients (it is worth doing it once if you have
not done so already).

Exercise 4. Suppose that f ∈ C([0, 1],R) is k times continuously differentiable and satisfies
f j(0) = f j(1) for all j = 0 . . . k − 1 1 Then prove that there is some C > 0 such that for all n ≥ 1
|cn| ≤ Cn−k and |sn| ≤ Cn−k.

Proof. Consider such f and and 1 ≤ j ≤ k. Note that f (j) is continuous on the compact set
K := [0, 1]. Its absolute value therefore attains its maximum over K and thus f (j) is integrable:∫

K

|f (j)|dλ(x) ≤ ||f (j)||K,∞ =: C < ∞.

Hence, in particular, since | sin(θ)|, | cos(θ)| ≤ 1 for θ ∈ R, its Fourier coefficients are well-defined
and

|cn(f (j))(n)| ≤
∫
K

|f (j)(x) cos(2πnx)|dλ(x) ≤ C

as well as
|sn(f (j))(n)| ≤

∫
K

|f (j)(x) sin(2πnx)|dλ(x) ≤ C.

On the other hand, we compute

|cn(f (j))(n)| =
∣∣∣∣∫

K

f (j)(x) cos(2πnx)dλ(x)

∣∣∣∣
=

∣∣∣∣∫
K

(2πn)f (j−1)(x) sin(2πnx)dλ(x)

∣∣∣∣ = ...

=

∣∣∣∣∫
K

(2πn)jf(x)
dj

dxj
cos(u)|u=2πnxdλ(x)

∣∣∣∣ = (2πn)j
∣∣∣∣∫

K

f(x)
dj

dxj
cos(u)|u=2πnxdλ(x)

∣∣∣∣
by integrating by parts (notice that the boundary terms vanish due to the assumption that f j(0) =
f j(1)). Moreover, the derivative in the integrand is, up to a sign, either a cosine or a sine. Therefore,
the integral is equal to either the cosine or the sine coefficient of f , if j is even or odd, respectively.
Together with the upper bounds on both the cosine and sine coefficients of the derivatives of f ,
one obtains for j = k:

C ≥ |cn(f)|nk

and
C ≥ |sn(f)|nk,

thereby concluding our proof.

Remark 1: The condition f j(0) = f j(1) for all j = 0 . . . k−1 can be viewed as imposing certain
periodicity conditions on f and its derivatives by identifying 0 ∼ 1, that is, K can be seen as the
unit circle S1 and f as a Ck-function on it.

Remark 2: The regularity of the function f therefore plays a role in the decay of the sequences
of Fourier coefficients as n → ∞.

1Here by fj(x) we mean the j − th derivative of f at x, the 0−th derivative being the function itself.


