
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 14
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

More Fourier series and transforms
Exercise 1 (Legendre polynomials). The goal of this exercise is to show that the Gram-Schmidt
orthogonalization procedure applied to the sequence of monomials (x 7→ xn)n≥0 on L2([−1, 1]) yields
the (normalized) Legendre polynomials (

√
n+ 1/2Pn)n≥0, where

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), P0 = 1, P1(x) = x.

1. Show that at the n-th step of Gram-Schmidt, the projection of the monomial xn onto the span
of {pk}n−1

k=1 is the same as that of xpn−1. Then, use it to simplify the expression of pn given
by Gram-Schmidt.

2. Further simplify the expression by showing by induction that pn is an even function for n
even, and an odd function when n is odd.

3. Conclude that pn = Pn · pn(1), by showing that they satisfy the same recurrence relation.

Proof. 1. By applying the Gram-Schmidt orthogonalization procedure, we get the recursion

pn(x) = xn −
n−1∑
k=1

⟨pk, xn⟩
⟨pk, pk⟩

pk(x) (1)

We can simplify the right side of the equation in the following way. Note that xpn−1(x) is
of degree n and has leading coefficient 1. Hence, instead of projecting xn we can project
xpn−1(x) and we get the same result. More formally, xpn−1(x) = xn + q(x), where q(x) is a
polynomial of degree n− 1. In particular q(x) ∈ span(p1, . . . , pn−1). This implies

q(x) =

n−1∑
k=1

⟨q, pk⟩
⟨pk, pk⟩

pk(x).

With this we can rewrite equation 1 as

pn(x) = xn −
n−1∑
k=1

⟨pk, xn⟩
⟨pk, pk⟩

pk(x) + q(x)−
n−1∑
k=1

⟨q, pk⟩
⟨pk, pk⟩

pk(x)

= xn + q(x)−
n−1∑
k=1

⟨pk, xn + q(x)⟩
⟨pk, pk⟩

pk(x)

= xpn−1(x)−
n−1∑
k=1

⟨pk, xpn−1⟩
⟨pk, pk⟩

pk(x)

Now note that ⟨pk, xpn−1⟩ = ⟨xpk, pn−1⟩ and xpk is of degree k+1, hence xpk ∈ span(p1, . . . , pk+1).
Since pn−1 is orthogonal to span(p1, . . . , pk+1) for k+1 < n−1, we conclude that ⟨xpk, pn−1⟩ =
0 for k + 1 < n− 1. This gives

pn(x) = xpn−1(x)−
⟨pn−1, xpn−1⟩
⟨pn−1, pn−1⟩

pn−1(x)−
⟨pn−2, xpn−1⟩
⟨pn−2, pn−2⟩

pn−2(x).



2. We show the statement by induction on n. For n = 0 and n = 1 the statement clearly holds.
Consider now n ≥ 1, and let us assume it also even, as the odd case works analogously. Then
by the induction hypothesis, pn−1 is odd. In particular x(pn−1(x))

2 is also odd and this
implies that ⟨pn−1, xpn−1⟩ = 0. We have

pn(−x) = −xpn−1(−x)− ⟨pn−2, xpn−1⟩
⟨pn−2, pn−2⟩

pn−2(−x)

= xpn−1(x)−
⟨pn−2, xpn−1⟩
⟨pn−2, pn−2⟩

pn−2(x) = pn(x).

3. We will have that pn = Pn · pn(1), where Pn is the Legendre polynomial, provided that we
can prove that they satisfy the same recurrence relation. Denoting sn := pn(1), we get that

xsn−1Pn−1(x)− sn−1
⟨Pn−2, xPn−1⟩
⟨Pn−2, Pn−2⟩

Pn−2(x) = xsn−1Pn−1(x)− sn−1
n− 1

2n− 1
Pn−2(x),

where we have used that nPn(x) = (2n−1)xPn−1(x)−(n−1)Pn−2(x) and their orthogonality.
To conclude, it suffices to observe (for instance by induction) that sn/sn−1 = n/(2n− 1), so
that the last term is equal to snPn, proving the claim.

Exercise 2. In this exercise we aim to show that L2(R) is separable.

• Prove that each f ∈ L2(R) can be approximated arbitrarily well by f1[−n,n] for n large enough,
meaning that for every ε > 0 there is some n ∈ N with ∥f − f1[−n,n]∥2 < ε.

• By using dense countable subsets of L2([−n, n]) (which we know to be separable), find a
countable dense subset of L2(R).

1.

Proof. • For f ∈ L2(R) and ε > 0, the function f21−N,N is integrable by monotonicity and
its integral tends to that of f2 by the dominated convergence theorem: therefore there exists
N ≥ 1 such that ∥f − f1−N,N∥L2(R) ≤ ε/2.

• Take
{
gNi
}
i≥1

a countable dense subset of L2([−N,N ]) (for instance, all trigonometric poly-
nomials with rational coefficients). We then claim that{

gNi 1[−N,N ]

}
i,N≥1

is the desired set (these functions lie all in L2). Indeed, for all f ∈ L2(R), by the first part
there exists N ≥ 1 s.t. by the triangular inequality ∥f − f1−N,N∥L2(R) ≤ ε/2, and by density
there exists Nk ∈ N such that

∥∥f1−N,N − gNNk

∥∥
L2([−N,N ])

≥ ε/2, from which it follows that∥∥f − gNNk
1−N,N

∥∥
L2(R) ≤ ε.

Exercise 3 (Heisenberg uncertainty principle). Let f : R → C be a smooth function such that all
its derivatives decay more than polynomially fast - more precisely, such that xmf (n) are bounded for
any m,n ∈ N with f (n) denoting the n−th derivative (this is called a Schwartz function). Suppose
further that

∫
R |f |2dλ = 1. Show that

1Why is {exp(2πikx)}k∈R not a basis?
Actually, a basis can be neatly constructed from Hermite polynomials and the Hamiltonian of the quantum harmonic
oscillator, as studied in Exercise 8.



• Also
∫
R |f̂ |2dλ = 1;

• both x2|f(x)|2 and k2|f̂(k)|2 are integrable;

Hint:lookattheFouriertransformoff′.

• the following uncertainty principle holds:(∫
R
x2|f(x)|2dλ(x)

)(∫
R
k2|f̂(k)|2dλ(x)

)
≥ 1

16π2
.

• In fact for any x0, k0:(∫
R
(x0 − x)2|f(x)|2dλ(x)

)(∫
R
(k0 − k)2|f̂(k)|2dλ(x)

)
≥ 1

16π2
.

Intuitively this says that for any function both f and f̂ cannot be simultaneously localised. The
interpretation in the realm of quantum mechanics is that the position of the particle and its mo-
mentum cannot be localised simultaneously.

Hint:lookatthefunctionx7→αxf+βf′(x)andexpanditsL
2

norm.

Proof. • It follows directly from Plancherel’s formula.

• We have that for all x ∈ R,

x2|f(x)|2 = 1|x|<1x
2|f(x)|2 + 1|x|≥1x

2|f(x)|2

≤ sup
y∈R

|f(y)|21|x|<1 + sup
y∈R

y4|f(y)|21|x|≥1
1

x2
,

which we have seen is integrable (the suprema are finite by assumption). We conclude by
monotonicity.
For the Fourier Transform, we first notice that f ′ ∈ L1, since for all x ∈ R,

|f ′(x)| ≤ (1 + x2)|f ′(x)| 1

1 + x2
≤ sup

y∈R
(|f ′(y)|(1 + y2))

1

1 + x2

which is integrable again since the supremum is finite. We can therefore consider its Fourier
transform:

f̂ ′(k) =

∫
R
f ′(x)e−2πikxdλ(x) = 2πik

∫
R
f(x)e−2πikxdλ(x) = 2πikf̂(k),

where the integration by parts is justified like in Exercise 3, exercise sheet 13:
We then have that for k ∈ R,

k2|f̂(k)|2 =
1

4π2
|f̂ ′(k)|2,

and since f ′ ∈ L2 using similar arguments as for x2|f(x)|2 (by noting that f ′ is also a
Schwartz function) we conclude by Plancherel’s formula that the right-hand term lies in L2

with norm equal to ∥f ′∥L2/(4π2).

• For any a, b ∈ R we have

0 ≤
∫
R
(axf(x) + bf ′(x))(axf(x) + bf ′(x))dλ(x)

= a2
∫
R
x2|f(x)|2dλ(x) + b2

∫
R
|f ′(x)|2dλ(x) + ab

∫
R
xf(x)f ′(x) + xf ′(x)f(x)dλ(x)

= a2
∫
R
x2|f(x)|2dλ(x) + b2

∫
R
|f ′(x)|2dλ(x)− 2ab

∫
R
|f(x)|2dλ(x),



where we used integration by parts in the third integral, together with the fact that xf(x)
goes to zero for x → ±∞, since f decays more than polynomially fast. Now we set a2 =∫
R |f ′(x)|2dλ(x) and b2 =

∫
R x2|f(x)|2dλ(x) and divide both sides of the inequality by ab to

get

ab ≥ 1

2
∫
R |f(x)|2dλ(x)

=
1

2
. (2)

Finally we can write a2 differently by using as we’ve seen that f̂ ′(k) = 2πikf̂(k) and using
the Plancherel formula we get

a2 =

∫
R
|f ′(x)|2dλ(x) =

∫
R
|f̂ ′(k)|2dλ(k) = 4π2

∫
R
k2|f̂(k)|2dλ(k)

Plugging this into equation (2)and rearranging, we conclude that∫
R
x2|f(x)|2

∫
R
k2|f̂(k)|2dλ(k) ≥ 1

16π2
.

For the last bullet, note that

̂f(x+ x0)(k) =

∫
R
exp(−2πikx)f(x+ x0)dλ(x) = exp(2πikx0)

∫
R
exp(−2πik(x+ x0))f(x+ x0)dλ(x)

= exp(2πikx0)f̂(k).

Let us define g(x) = exp(−2πixk0)f(x+ x0). We have∫
R
x2|g(x)|2dλ(x) =

∫
R
x2|f(x+ x0)|2dλ(x) =

∫
R
(x− x0)

2|f(x)|2dλ(x) (3)

On the other hand, if we compute the Fourier transform of g we get

ĝ(k) =

∫
R
exp(−2πixk) exp(−2πixk0)f(x+ x0)dλ(x)

=

∫
R
exp(−2πix(k + k0))f(x+ x0)dλ(x)

= ̂f(x+ x0)(k + k0)

(4)

This implies that ∫
R
k2|ĝ(k)|2dλ(k) =

∫
R
k2| ̂f(x+ x0)(k + k0)|2dλ(k)

=

∫
R
(k − k0)

2| ̂f(x+ x0)(k)|2dλ(k)

=

∫
R
(k − k0)

2|f̂(k)|2dλ(k),

where in the last equation we used equation (4). By applying the previously derived uncer-
tainty principle to the function g, we conclude the proof of the last part of the exercise.

Operators
Exercise 4. Consider (H, ∥·∥) a separable Hilbert space and T a bounded linear operator.



• Show the following inequality for f ∈ H:

∥Tf∥ ≤ ∥T∥op∥f∥.

• Show that T is continuous in the sense that if a sequence (fn)n≥1 converges to f w.r.t ∥ · ∥,
then also Tfn converges to Tf .

Proof. • Let f ∈ H:

∥Tf∥ = ∥f∥ ·
∥∥∥∥T f

∥f∥

∥∥∥∥ ≤ ∥f∥ sup
g∈H,∥g∥≤1

∥Tg∥ = ∥f∥ · ∥T∥op.

• Consider (fn)n≥1 ⊂ H converging to some f ∈ H. We have that

∥Tfn − Tf∥ ≤ ∥fn − f∥∥T∥op −−−−→
n→∞

0,

therefore (Tfn)n≥1 converges to Tf as desired.

Exercise 5 (Boundedness of operators). We aim to argue that the position operator formally given
by f → xf is not bounded on L2(R):

• Find a square-integrable function f such that xf(x) is not square integrable.

• Show that the position operator is well defined for functions f that are square integrable and
such that also xf is square integrable.

• Find for i ≥ 1 functions fi ∈ L2(R) of unit norm with xfi ∈ L2(R) but ∥xfi∥2 → ∞.

Proof. For the first bullet point, consider the function f(x) = 1
x1[1,∞). We have ∥f∥2 = 1 but

∥xf∥2 =
∥∥1[1,∞)

∥∥
2
= ∞. For the second bullet point, it is clear that the assumptions on f imply

that the operator is finite. For the third bullet point consider the functions fi = 1[i,i+1]. We have
∥fi∥2 = 1, but

∥xfi∥22 =

∫ i+1

i

x2dx =
1

3

(
(i+ 1)3 − i3

)
= i2 + i+

1

3
,

which goes to infinity as i → ∞.

Exercise 6 (Finite rank linear operators). Consider a real Hilbert space H. Let u1, . . . , un ∈ H,
v1, . . . , vn ∈ H, and define T (f) :=

∑n
i=1⟨f, ui⟩vi.

• Prove that T is bounded.

Now let T be of finite rank and Hermitian, i.e. ⟨Tf, g⟩ = ⟨f, Tg⟩ for any f, g ∈ H.

• Argue that T can be diagonalized, i.e. that we can find g1, . . . gm orthonormal with m ≤ n
and λi ∈ R such that if we write f =

∑m
i=1 ci⟨f, gi⟩gi + f0 with f0 orthogonal to g1, . . . , gm

then

T (f) =

m∑
i=1

ciλi⟨f, gi⟩gi.



Proof. • For the first bullet point, we compute

∥T (f)∥ =

∥∥∥∥∥
n∑

i=1

⟨f, ui⟩vi

∥∥∥∥∥
≤

n∑
i=1

|⟨f, ui⟩|∥vi∥

≤ ∥f∥
n∑

i=1

∥ui∥∥vi∥,

where in the last inequality we used Cauchy-Schwarz. We deduce that

sup
∥f∥≤1

∥T (f)∥ ≤
n∑

i=1

∥ui∥∥vi∥ < ∞.

• First, notice that V = span(u1, . . . , un, v1, . . . , vn) is a subspace of H and we can extract
an orthonormal basis {h1, . . . , hm} for some 1 ≤ m ≤ 2n (so that V has dimension m). In
particular, check that we may rewrite

T =

m∑
i,j=1

βij⟨·, hi⟩hj .

T |V is then a linear map from V to V , a finite dimensional space: using the spectral theorem
from linear algebra, we can diagonalize T |V , i.e. find another orthonormal basis {g1, · · · , gm}
of V and λ1, . . . , λm ∈ R (the eigenvalues are real as T is Hermitian; and in fact, at most
n of these eigenvalues are non-zero since rank(T ) ≤ n, so we can now assume w.l.o.g. that
m ≤ n) such that

T |V (
m∑
i=1

αigi) =

m∑
i=1

αiλigi

for all α1, . . . , αm ∈ R. Now we recall that we can write H = V ⊕ V ⊥, so that any f ∈ H
can be written f = f0 + f0, f0 ∈ V ⊥, f0 ∈ V . Furthermore, there exist c1, . . . , cm ∈ R such
that f0 =

∑m
i=1 ci

〈
f0, gi

〉
gi =

∑m
i=1 ci ⟨f, gi⟩ gi. We can finally conclude:

T (f) = T (f0 + f0) = T (f0) + T |V

(
m∑
i=1

ci ⟨f, gi⟩ gi

)
=

m∑
i=1

ciλi ⟨f, gi⟩ gi


