Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 14

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

More Fourier series and transforms

Exercise 1 (Legendre polynomials). The goal of this exercise is to show that the Gram-Schmidt
orthogonalization procedure applied to the sequence of monomials (z — x™),>0 on L*([—1,1]) yields
the (normalized) Legendre polynomials (\/n + 1/2P,)n>0, where

(n+1)Poy1(x) = 2n+ DzPy(x) —nPyr_1(z), Py=1P(x)=

1. Show that at the n-th step of Gram-Schmidt, the projection of the monomial x™ onto the span
of {pk}Z;; s the same as that of xpn,_1. Then, use it to simplify the expression of p, given
by Gram-Schmidt.

2. Further simplify the expression by showing by induction that p, is an even function for n
even, and an odd function when n is odd.

3. Conclude that p, = P, - pn(1), by showing that they satisfy the same recurrence relation.

Proof. 1. By applying the Gram-Schmidt orthogonalization procedure, we get the recursion

n—1

— " — (pkvxn> z
pn(x) - ] <pk,pk>pk( ) (1)

We can simplify the right side of the equation in the following way. Note that xp,_1(z) is
of degree n and has leading coefficient 1. Hence, instead of projecting z™ we can project
Zpn—1(x) and we get the same result. More formally, xp,_1(xz) = 2™ + ¢(x), where ¢(z) is a
polynomial of degree n — 1. In particular ¢(z) € span(p1,...,pn—1). This implies

= (a.)
q(x) = i ().
( kZ:: (ks Pr) (
With this we can rewrite equation [1| as
n—1 n—1
<pk7 xn) qapk
pola) =a" = 3 T

" <pkapk> ; plwpk

=a" +q(z i P, "+ 9( )>pk($)

1 (Pks k)
= (P 2pn_1)
k
= app_1(z) — MWhk> Zbn—1/ (z)
h—1 <pkapk:>
Now note that (pg, xpn—1) = (pk, Pn—1) and xpy, is of degree k+1, hence xpy, € span(pi, ..., Dk+1)-
Since p;,—1 is orthogonal to span(py, . .., pg+1) for k+1 < n—1, we conclude that (xpg, pp—1) =
0 for k+1 < n — 1. This gives

<pn—17xpn—1> <pn—271'pn—1>
S Pn1(T) —

pn—Q(x)-
<pn717pn71> <pn72apn72>

pn(x) = xpn—l(x) -



2. We show the statement by induction on n. For n = 0 and n = 1 the statement clearly holds.
Consider now n > 1, and let us assume it also even, as the odd case works analogously. Then
by the induction hypothesis, p,_1 is odd. In particular x(p,_1(z))? is also odd and this
implies that (p,—1,2pn—1) = 0. We have

<pn—2azpn—1>
Pn(—2) = —app_1(—2) — ———"Dn—2(—2
L( ) " 1( ) <pnf2apn72> " 2( )
<pn72v:rpn71>

=xpn-1(z) — Pn—2(7) = pn(x).

<pn—27pn—2>

3. We will have that p, = P, - p,(1), where P, is the Legendre polynomial, provided that we
can prove that they satisfy the same recurrence relation. Denoting s, := p,(1), we get that

P, o, xP,_ n—1
WPH_Z(ZE) = $Sn_1pn_1(13) — Sn—1 o — 1

where we have used that nP,(z) = (2n—1)zP,—1(z)—(n—1)P,_2(z) and their orthogonality.
To conclude, it suffices to observe (for instance by induction) that s,,/s,-1 =n/(2n — 1), so
that the last term is equal to s, P,, proving the claim.

JCSn_lpn_l(iE) — Sp—1 Pn—2($)7

O
Exercise 2. In this exercise we aim to show that L*(R) is separable.

e Prove that each f € L?(R) can be approzimated arbitrarily well by fl{=n,n) for n large enough,
meaning that for every e > 0 there is some n € N with || f — f1i_p, nll2 < €.

e By using dense countable subsets of L*([—n,n]) (which we know to be separable), find a
countable dense subset of L*(R).

|

Proof. e For f € L*(R) and & > 0, the function f21_ ~N,N is integrable by monotonicity and
its integral tends to that of f2 by the dominated convergence theorem: therefore there exists
N > 1 such that || f — flfN,NHm(R) <e/2.

e Take {g]¥} _, a countable dense subset of L*([—N, N]) (for instance, all trigonometric poly-
nomials with rational coefficients). We then claim that

{gzN 1[—N7N]}¢,N21

is the desired set (these functions lie all in L?). Indeed, for all f € L?(R), by the first part
there exists N > 1 s.t. by the triangular inequality || f — fl,N,NHLQ(R) < ¢/2, and by deunsity

there exists N € N such that Hfl,N}N — g]]\\;k HLZ([_N N > £/2, from which it follows that

1F - o 1w oy < <
O

Exercise 3 (Heisenberg uncertainty principle). Let f : R — C be a smooth function such that all
its derivatives decay more than polynomially fast - more precisely, such that ™ f™ are bounded for
any m,n € N with f) denoting the n—th derivative (this is called a Schwartz function). Suppose
further that [, |f[*d\ = 1. Show that

"Why is {exp(2mikz)}, g not a basis?
Actually, a basis can be neatly constructed from Hermite polynomials and the Hamiltonian of the quantum harmonic
oscillator, as studied in Exercise 8.



Also [, |fPd\ = 1;
both 22| f(x)|? and k2| f(k)|? are integrable;

" f Jo wuofsunag 4214n0, Y] D Y00] TJULE]

the following uncertainty principle holds:

([#r@row) ([ #impow) >

In fact for any xq, ko

(/R(xo—x)2|f(x)2d)\(x)) (/R(ko—k)Qf( 2 )) N 161

Intuitively this says that for any function both f and f cannot be simultaneously localised. The
interpretation in the realm of quantum mechanics is that the position of the particle and its mo-
mentum cannot be localised simultaneously.

WU 7 sp pundra pup (), fd + [x0 T uoyounf ayy v yoo) UL
Proof. e It follows directly from Plancherel’s formula.

e We have that for all z € R,
22| (@) = Lgj2®[ f(@)]? + Ljapz12° | f ()

1
< sup [f () Laj<1 + sup y* | F ()P 112115,
yeR yER X

which we have seen is integrable (the suprema are finite by assumption). We conclude by
monotonicity.

For the Fourier Transform, we first notice that f/ € L', since for all € R,

|f'(@)] < (14 2?)]f'(2)]; sz < Zgg(lf’(y)l(l +7)

14 22

which is integrable again since the supremum is finite. We can therefore consider its Fourier
transform:

- / F(@)e 2k d)(z) = 2mik / F@)e2m ke A (z) = 2mikf(k),
R R

where the integration by parts is justified like in Exercise 3, exercise sheet 13:
We then have that for k € R,

2| F 2 _ 1 i 2
KR = 5 (R,

and since f’ € L? using similar arguments as for z?|f(z)|? (by noting that f’ is also a
Schwartz function) we conclude by Plancherel’s formula that the right-hand term lies in L?
with norm equal to || f'|| 2/ (472).

e For any a,b € R we have

0< / (axf(z) + bf'(x)) (@@ @) T OF (@))dA(x)
— / 21f (@) PdNz) + 1P / | (@)[2dA() + ab / 2f (@) F@) + 2 (@) F@)dA(z)
R R R
—a / 21 f (@) 2dNz) + b / | (@)[2dA(z) — 2ab / (@) PdA@)



where we used integration by parts in the third integral, together with the fact that xf(z)
goes to zero for x — oo, since f decays more than polynomially fast. Now we set a? =
Jo |f'(x)|?dX(z) and b* = fR 22| f(z)]?d\(z) and divide both sides of the inequality by ab to
get

1 1

SN

ab

2

~—

Finally we can write a? differently by using as we’ve seen that f’(k) = 2m’kf(k) and using
the Plancherel formula we get

o= [ 17 @R = [ 1F0)PNw) = 422 [ 12170 Pare)

Plugging this into equation and rearranging, we conclude that

L@l [ B0 Eam > .

For the last bullet, note that

F(@ +z0) (k) = /R exp(—2mikz) f(x + z0)dM ) = exp(2miko) /R exp(—2mik(z + z0)) f(z + z0)d\ (@)

= exp(2mikaxo) f (k).
Let us define g(x) = exp(—2mizko) f(x + o). We have
[ #u@Pae = [ i@t = [@-afi@bae 6)
On the other hand, if we compute the Fourier transform of g we get
g(k) = /Rexp(f2m'xk) exp(—2mizko) f(z + xo)dA(x)
- /R exp(—2miz(k + ko)) f (x + z0)d\(x) (4)

= f(z + o) (k + ko)

This implies that
[ R = [ RIGT R0+ ko) )
R R
= / (k— ko)1 £ (& + 20) (k) PdA(k)
= / (k — ko2 | f (k) Pa(k),

where in the last equation we used equation . By applying the previously derived uncer-
tainty principle to the function g, we conclude the proof of the last part of the exercise.
O

Operators

Exercise 4. Consider (H,|-||) a separable Hilbert space and T a bounded linear operator.



e Show the following inequality for f € H:
ITFI < 1T I F1-

o Show that T is continuous in the sense that if a sequence (fn)n>1 converges to f w.r.t| - |,
then also T f,, converges to T'f.

Proof. o Let feH:

ann::nf-Hzﬂ'fH <7l s ITall = 11 1T,
i )

€M, llgll<1

e Consider (f,)n>1 C H converging to some f € H. We have that

1T fn = THN < o = FINT oy —— O,

therefore (T'f,,),>1 converges to T'f as desired.
O

Exercise 5 (Boundedness of operators). We aim to argue that the position operator formally given
by f — xf is not bounded on L?(R):

e Find a square-integrable function f such that xf(x) is not square integrable.

e Show that the position operator is well defined for functions f that are square integrable and
such that also xf is square integrable.

e Find fori > 1 functions f; € L*(R) of unit norm with zf; € L*(R) but ||z f;||2 — oo.

Proof. For the first bullet point, consider the function f(x) = 21j; ). We have ||f||, = 1 but
lzfll, = Hl[LOO)Hz = oo. For the second bullet point, it is clear that the assumptions on f imply

that the operator is finite. For the third bullet point consider the functions f; = 1f; ;41). We have
I fill =1, but

9 1+1 1 1

ol = [ fde=g(G+ 17 =) = # i g,
which goes to infinity as i — oo. O
Exercise 6 (Finite rank linear operators). Consider a real Hilbert space H. Let uy,...,u, € H,

V1, ..., Uy € H, and define T(f) :== >0 (f,ui)v;.
o Prove that T is bounded.

Now let T be of finite rank and Hermitian, i.e. {Tf,g) = (f,Tq) for any f,g € H.

o Argue that T can be diagonalized, i.e. that we can find g1, ...¢gm orthonormal with m <n
and \; € R such that if we write f = >", ¢i(f,g:)g: + fo with fo orthogonal to gi,...,gm
then

T(f) = ciXilf 9:)gi-
=1



Proof.

e For the first bullet point, we compute

IT(f

n
Z /s uz
1=1

n
< Sl ful o
=1
< IIfIIZIIuiHHvZ-II,
i=1

where in the last inequality we used Cauchy-Schwarz. We deduce that

sup [|T(F)Il < D [luallllvil| < oo
lFI<1 Z

First, notice that V' = span(uy,...,u,,v1,...,v,) is a subspace of H and we can extract
an orthonormal basis {h1,...,h;} for some 1 < m < 2n (so that V has dimension m). In
particular, check that we may rewrite

T=" Bi(-hi)h

4,j=1

T|yv is then a linear map from V to V, a finite dimensional space: using the spectral theorem
from linear algebra, we can diagonalize T'|y, i.e. find another orthonormal basis {g1,- - ,gm }
of V and A1,..., A € R (the eigenvalues are real as T' is Hermitian; and in fact, at most
n of these eigenvalues are non-zero since rank(7") < n, so we can now assume w.l.o.g. that

m < n) such that
T|V(Z @igi) = Z Q;Aigi
i=1 i=1

for all ay,..., o, € R. Now we recall that we can write H = V & V', so that any f € H
can be written f = fo + f°, fo € V4, f© € V. Furthermore, there exist c,...,c, € R such
that fO =" ¢ (f°,9:) 9 = > i, ci {f,9:) gi- We can finally conclude:

T(f):T(f0+fO) (fO +T|V (Zcz f7gz z) Zcz fagz

i=1



