

Exercise sheet 14

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

More Fourier series and transforms

Exercise 1 (Legendre polynomials). *The goal of this exercise is to show that the Gram-Schmidt orthogonalization procedure applied to the sequence of monomials $(x \mapsto x^n)_{n \geq 0}$ on $L^2([-1, 1])$ yields the (normalized) Legendre polynomials $(\sqrt{n+1/2}P_n)_{n \geq 0}$, where*

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), \quad P_0 = 1, P_1(x) = x.$$

1. Show that at the n -th step of Gram-Schmidt, the projection of the monomial x^n onto the span of $\{p_k\}_{k=1}^{n-1}$ is the same as that of xp_{n-1} . Then, use it to simplify the expression of p_n given by Gram-Schmidt.
2. Further simplify the expression by showing by induction that p_n is an even function for n even, and an odd function when n is odd.
3. Conclude that $p_n = P_n \cdot p_n(1)$, by showing that they satisfy the same recurrence relation.

Proof. 1. By applying the Gram-Schmidt orthogonalization procedure, we get the recursion

$$p_n(x) = x^n - \sum_{k=1}^{n-1} \frac{\langle p_k, x^n \rangle}{\langle p_k, p_k \rangle} p_k(x) \quad (1)$$

We can simplify the right side of the equation in the following way. Note that $xp_{n-1}(x)$ is of degree n and has leading coefficient 1. Hence, instead of projecting x^n we can project $xp_{n-1}(x)$ and we get the same result. More formally, $xp_{n-1}(x) = x^n + q(x)$, where $q(x)$ is a polynomial of degree $n-1$. In particular $q(x) \in \text{span}(p_1, \dots, p_{n-1})$. This implies

$$q(x) = \sum_{k=1}^{n-1} \frac{\langle q, p_k \rangle}{\langle p_k, p_k \rangle} p_k(x).$$

With this we can rewrite equation 1 as

$$\begin{aligned} p_n(x) &= x^n - \sum_{k=1}^{n-1} \frac{\langle p_k, x^n \rangle}{\langle p_k, p_k \rangle} p_k(x) + q(x) - \sum_{k=1}^{n-1} \frac{\langle q, p_k \rangle}{\langle p_k, p_k \rangle} p_k(x) \\ &= x^n + q(x) - \sum_{k=1}^{n-1} \frac{\langle p_k, x^n + q(x) \rangle}{\langle p_k, p_k \rangle} p_k(x) \\ &= xp_{n-1}(x) - \sum_{k=1}^{n-1} \frac{\langle p_k, xp_{n-1} \rangle}{\langle p_k, p_k \rangle} p_k(x) \end{aligned}$$

Now note that $\langle p_k, xp_{n-1} \rangle = \langle xp_k, p_{n-1} \rangle$ and xp_k is of degree $k+1$, hence $xp_k \in \text{span}(p_1, \dots, p_{k+1})$. Since p_{n-1} is orthogonal to $\text{span}(p_1, \dots, p_{k+1})$ for $k+1 < n-1$, we conclude that $\langle xp_k, p_{n-1} \rangle = 0$ for $k+1 < n-1$. This gives

$$p_n(x) = xp_{n-1}(x) - \frac{\langle p_{n-1}, xp_{n-1} \rangle}{\langle p_{n-1}, p_{n-1} \rangle} p_{n-1}(x) - \frac{\langle p_{n-2}, xp_{n-1} \rangle}{\langle p_{n-2}, p_{n-2} \rangle} p_{n-2}(x).$$

2. We show the statement by induction on n . For $n = 0$ and $n = 1$ the statement clearly holds.

Consider now $n \geq 1$, and let us assume it also even, as the odd case works analogously. Then by the induction hypothesis, p_{n-1} is odd. In particular $x(p_{n-1}(x))^2$ is also odd and this implies that $\langle p_{n-1}, xp_{n-1} \rangle = 0$. We have

$$\begin{aligned} p_n(-x) &= -xp_{n-1}(-x) - \frac{\langle p_{n-2}, xp_{n-1} \rangle}{\langle p_{n-2}, p_{n-2} \rangle} p_{n-2}(-x) \\ &= xp_{n-1}(x) - \frac{\langle p_{n-2}, xp_{n-1} \rangle}{\langle p_{n-2}, p_{n-2} \rangle} p_{n-2}(x) = p_n(x). \end{aligned}$$

3. We will have that $p_n = P_n \cdot p_n(1)$, where P_n is the Legendre polynomial, provided that we can prove that they satisfy the same recurrence relation. Denoting $s_n := p_n(1)$, we get that

$$xs_{n-1}P_{n-1}(x) - s_{n-1} \frac{\langle P_{n-2}, xP_{n-1} \rangle}{\langle P_{n-2}, P_{n-2} \rangle} P_{n-2}(x) = xs_{n-1}P_{n-1}(x) - s_{n-1} \frac{n-1}{2n-1} P_{n-2}(x),$$

where we have used that $nP_n(x) = (2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x)$ and their orthogonality. To conclude, it suffices to observe (for instance by induction) that $s_n/s_{n-1} = n/(2n-1)$, so that the last term is equal to $s_n P_n$, proving the claim. \square

Exercise 2. In this exercise we aim to show that $L^2(\mathbb{R})$ is separable.

- Prove that each $f \in L^2(\mathbb{R})$ can be approximated arbitrarily well by $f\mathbf{1}_{[-n,n]}$ for n large enough, meaning that for every $\varepsilon > 0$ there is some $n \in \mathbb{N}$ with $\|f - f\mathbf{1}_{[-n,n]}\|_2 < \varepsilon$.
- By using dense countable subsets of $L^2([-n,n])$ (which we know to be separable), find a countable dense subset of $L^2(\mathbb{R})$.

¹.

Proof. • For $f \in L^2(\mathbb{R})$ and $\varepsilon > 0$, the function $f^2\mathbf{1}_{[-N,N]}$ is integrable by monotonicity and its integral tends to that of f^2 by the dominated convergence theorem: therefore there exists $N \geq 1$ such that $\|f - f\mathbf{1}_{[-N,N]}\|_{L^2(\mathbb{R})} \leq \varepsilon/2$.

- Take $\{g_i^N\}_{i \geq 1}$ a countable dense subset of $L^2([-N,N])$ (for instance, all trigonometric polynomials with rational coefficients). We then claim that

$$\{g_i^N \mathbf{1}_{[-N,N]}\}_{i,N \geq 1}$$

is the desired set (these functions lie all in L^2). Indeed, for all $f \in L^2(\mathbb{R})$, by the first part there exists $N \geq 1$ s.t. by the triangular inequality $\|f - f\mathbf{1}_{[-N,N]}\|_{L^2(\mathbb{R})} \leq \varepsilon/2$, and by density there exists $N_k \in \mathbb{N}$ such that $\|f\mathbf{1}_{[-N,N]} - g_{N_k}^N\|_{L^2([-N,N])} \geq \varepsilon/2$, from which it follows that $\|f - g_{N_k}^N \mathbf{1}_{[-N,N]}\|_{L^2(\mathbb{R})} \leq \varepsilon$. \square

Exercise 3 (Heisenberg uncertainty principle). Let $f : \mathbb{R} \rightarrow \mathbb{C}$ be a smooth function such that all its derivatives decay more than polynomially fast - more precisely, such that $x^m f^{(n)}$ are bounded for any $m, n \in \mathbb{N}$ with $f^{(n)}$ denoting the n -th derivative (this is called a Schwartz function). Suppose further that $\int_{\mathbb{R}} |f|^2 d\lambda = 1$. Show that

¹Why is $\{\exp(2\pi i kx)\}_{k \in \mathbb{R}}$ not a basis?

Actually, a basis can be neatly constructed from Hermite polynomials and the Hamiltonian of the quantum harmonic oscillator, as studied in Exercise 8.

- Also $\int_{\mathbb{R}} |\hat{f}|^2 d\lambda = 1$;
- both $x^2|f(x)|^2$ and $k^2|\hat{f}(k)|^2$ are integrable;

Hint: look at the Fourier transform of f

- the following uncertainty principle holds:

$$\left(\int_{\mathbb{R}} x^2 |f(x)|^2 d\lambda(x) \right) \left(\int_{\mathbb{R}} k^2 |\hat{f}(k)|^2 d\lambda(x) \right) \geq \frac{1}{16\pi^2}.$$

- In fact for any x_0, k_0 :

$$\left(\int_{\mathbb{R}} (x_0 - x)^2 |f(x)|^2 d\lambda(x) \right) \left(\int_{\mathbb{R}} (k_0 - k)^2 |\hat{f}(k)|^2 d\lambda(x) \right) \geq \frac{1}{16\pi^2}.$$

Intuitively this says that for any function both f and \hat{f} cannot be simultaneously localised. The interpretation in the realm of quantum mechanics is that the position of the particle and its momentum cannot be localised simultaneously.

Hint: look at the function T and its norm.

Proof. • It follows directly from Plancherel's formula.

- We have that for all $x \in \mathbb{R}$,

$$\begin{aligned} x^2 |f(x)|^2 &= \mathbf{1}_{|x|<1} x^2 |f(x)|^2 + \mathbf{1}_{|x|\geq 1} x^2 |f(x)|^2 \\ &\leq \sup_{y \in \mathbb{R}} |f(y)|^2 \mathbf{1}_{|x|<1} + \sup_{y \in \mathbb{R}} y^4 |f(y)|^2 \mathbf{1}_{|x|\geq 1} \frac{1}{x^2}, \end{aligned}$$

which we have seen is integrable (the suprema are finite by assumption). We conclude by monotonicity.

For the Fourier Transform, we first notice that $f' \in L^1$, since for all $x \in \mathbb{R}$,

$$|f'(x)| \leq (1+x^2) |f'(x)| \frac{1}{1+x^2} \leq \sup_{y \in \mathbb{R}} (|f'(y)|(1+y^2)) \frac{1}{1+x^2}$$

which is integrable again since the supremum is finite. We can therefore consider its Fourier transform:

$$\hat{f}'(k) = \int_{\mathbb{R}} f'(x) e^{-2\pi i k x} d\lambda(x) = 2\pi i k \int_{\mathbb{R}} f(x) e^{-2\pi i k x} d\lambda(x) = 2\pi i k \hat{f}(k),$$

where the integration by parts is justified like in Exercise 3, exercise sheet 13:

We then have that for $k \in \mathbb{R}$,

$$k^2 |\hat{f}(k)|^2 = \frac{1}{4\pi^2} |\hat{f}'(k)|^2,$$

and since $f' \in L^2$ using similar arguments as for $x^2 |f(x)|^2$ (by noting that f' is also a Schwartz function) we conclude by Plancherel's formula that the right-hand term lies in L^2 with norm equal to $\|f'\|_{L^2}/(4\pi^2)$.

- For any $a, b \in \mathbb{R}$ we have

$$\begin{aligned} 0 &\leq \int_{\mathbb{R}} (axf(x) + bf'(x))(\overline{axf(x) + bf'(x)}) d\lambda(x) \\ &= a^2 \int_{\mathbb{R}} x^2 |f(x)|^2 d\lambda(x) + b^2 \int_{\mathbb{R}} |f'(x)|^2 d\lambda(x) + ab \int_{\mathbb{R}} xf(x) \overline{f'(x)} + xf'(x) \overline{f(x)} d\lambda(x) \\ &= a^2 \int_{\mathbb{R}} x^2 |f(x)|^2 d\lambda(x) + b^2 \int_{\mathbb{R}} |f'(x)|^2 d\lambda(x) - 2ab \int_{\mathbb{R}} |f(x)|^2 d\lambda(x), \end{aligned}$$

where we used integration by parts in the third integral, together with the fact that $xf(x)$ goes to zero for $x \rightarrow \pm\infty$, since f decays more than polynomially fast. Now we set $a^2 = \int_{\mathbb{R}} |f'(x)|^2 d\lambda(x)$ and $b^2 = \int_{\mathbb{R}} x^2 |f(x)|^2 d\lambda(x)$ and divide both sides of the inequality by ab to get

$$ab \geq \frac{1}{2 \int_{\mathbb{R}} |f(x)|^2 d\lambda(x)} = \frac{1}{2}. \quad (2)$$

Finally we can write a^2 differently by using as we've seen that $\widehat{f}'(k) = 2\pi ik \widehat{f}(k)$ and using the Plancherel formula we get

$$a^2 = \int_{\mathbb{R}} |f'(x)|^2 d\lambda(x) = \int_{\mathbb{R}} |\widehat{f}'(k)|^2 d\lambda(k) = 4\pi^2 \int_{\mathbb{R}} k^2 |\widehat{f}(k)|^2 d\lambda(k)$$

Plugging this into equation (2) and rearranging, we conclude that

$$\int_{\mathbb{R}} x^2 |f(x)|^2 \int_{\mathbb{R}} k^2 |\widehat{f}(k)|^2 d\lambda(k) \geq \frac{1}{16\pi^2}.$$

For the last bullet, note that

$$\begin{aligned} \widehat{f(x+x_0)}(k) &= \int_{\mathbb{R}} \exp(-2\pi ikx) f(x+x_0) d\lambda(x) = \exp(2\pi ikx_0) \int_{\mathbb{R}} \exp(-2\pi ik(x+x_0)) f(x+x_0) d\lambda(x) \\ &= \exp(2\pi ikx_0) \widehat{f}(k). \end{aligned}$$

Let us define $g(x) = \exp(-2\pi ixk_0) f(x+x_0)$. We have

$$\int_{\mathbb{R}} x^2 |g(x)|^2 d\lambda(x) = \int_{\mathbb{R}} x^2 |f(x+x_0)|^2 d\lambda(x) = \int_{\mathbb{R}} (x-x_0)^2 |f(x)|^2 d\lambda(x) \quad (3)$$

On the other hand, if we compute the Fourier transform of g we get

$$\begin{aligned} \widehat{g}(k) &= \int_{\mathbb{R}} \exp(-2\pi ixk) \exp(-2\pi ixk_0) f(x+x_0) d\lambda(x) \\ &= \int_{\mathbb{R}} \exp(-2\pi ix(k+k_0)) f(x+x_0) d\lambda(x) \\ &= \widehat{f(x+x_0)}(k+k_0) \end{aligned} \quad (4)$$

This implies that

$$\begin{aligned} \int_{\mathbb{R}} k^2 |\widehat{g}(k)|^2 d\lambda(k) &= \int_{\mathbb{R}} k^2 |\widehat{f(x+x_0)}(k+k_0)|^2 d\lambda(k) \\ &= \int_{\mathbb{R}} (k-k_0)^2 |\widehat{f(x+x_0)}(k)|^2 d\lambda(k) \\ &= \int_{\mathbb{R}} (k-k_0)^2 |\widehat{f}(k)|^2 d\lambda(k), \end{aligned}$$

where in the last equation we used equation (4). By applying the previously derived uncertainty principle to the function g , we conclude the proof of the last part of the exercise. \square

Operators

Exercise 4. Consider $(\mathcal{H}, \|\cdot\|)$ a separable Hilbert space and T a bounded linear operator.

- Show the following inequality for $f \in H$:

$$\|Tf\| \leq \|T\|_{op} \|f\|.$$

- Show that T is continuous in the sense that if a sequence $(f_n)_{n \geq 1}$ converges to f w.r.t $\|\cdot\|$, then also Tf_n converges to Tf .

Proof. • Let $f \in \mathcal{H}$:

$$\|Tf\| = \|f\| \cdot \left\| T \frac{f}{\|f\|} \right\| \leq \|f\| \sup_{g \in \mathcal{H}, \|g\| \leq 1} \|Tg\| = \|f\| \cdot \|T\|_{op}.$$

- Consider $(f_n)_{n \geq 1} \subset \mathcal{H}$ converging to some $f \in \mathcal{H}$. We have that

$$\|Tf_n - Tf\| \leq \|f_n - f\| \|T\|_{op} \xrightarrow{n \rightarrow \infty} 0,$$

therefore $(Tf_n)_{n \geq 1}$ converges to Tf as desired. \square

Exercise 5 (Boundedness of operators). *We aim to argue that the position operator formally given by $f \rightarrow xf$ is not bounded on $L^2(\mathbb{R})$:*

- Find a square-integrable function f such that $xf(x)$ is not square integrable.
- Show that the position operator is well defined for functions f that are square integrable and such that also xf is square integrable.
- Find for $i \geq 1$ functions $f_i \in L^2(\mathbb{R})$ of unit norm with $xf_i \in L^2(\mathbb{R})$ but $\|xf_i\|_2 \rightarrow \infty$.

Proof. For the first bullet point, consider the function $f(x) = \frac{1}{x} 1_{[1, \infty)}$. We have $\|f\|_2 = 1$ but $\|xf\|_2 = \|1_{[1, \infty)}\|_2 = \infty$. For the second bullet point, it is clear that the assumptions on f imply that the operator is finite. For the third bullet point consider the functions $f_i = 1_{[i, i+1]}$. We have $\|f_i\|_2 = 1$, but

$$\|xf_i\|_2^2 = \int_i^{i+1} x^2 dx = \frac{1}{3} ((i+1)^3 - i^3) = i^2 + i + \frac{1}{3},$$

which goes to infinity as $i \rightarrow \infty$. \square

Exercise 6 (Finite rank linear operators). *Consider a real Hilbert space \mathcal{H} . Let $u_1, \dots, u_n \in \mathcal{H}$, $v_1, \dots, v_n \in \mathcal{H}$, and define $T(f) := \sum_{i=1}^n \langle f, u_i \rangle v_i$.*

- Prove that T is bounded.

Now let T be of finite rank and Hermitian, i.e. $\langle Tf, g \rangle = \langle f, Tg \rangle$ for any $f, g \in \mathcal{H}$.

- Argue that T can be diagonalized, i.e. that we can find g_1, \dots, g_m orthonormal with $m \leq n$ and $\lambda_i \in \mathbb{R}$ such that if we write $f = \sum_{i=1}^m c_i \langle f, g_i \rangle g_i + f_0$ with f_0 orthogonal to g_1, \dots, g_m then

$$T(f) = \sum_{i=1}^m c_i \lambda_i \langle f, g_i \rangle g_i.$$

Proof. • For the first bullet point, we compute

$$\begin{aligned}\|T(f)\| &= \left\| \sum_{i=1}^n \langle f, u_i \rangle v_i \right\| \\ &\leq \sum_{i=1}^n |\langle f, u_i \rangle| \|v_i\| \\ &\leq \|f\| \sum_{i=1}^n \|u_i\| \|v_i\|,\end{aligned}$$

where in the last inequality we used Cauchy-Schwarz. We deduce that

$$\sup_{\|f\| \leq 1} \|T(f)\| \leq \sum_{i=1}^n \|u_i\| \|v_i\| < \infty.$$

- First, notice that $V = \text{span}(u_1, \dots, u_n, v_1, \dots, v_n)$ is a subspace of \mathcal{H} and we can extract an orthonormal basis $\{h_1, \dots, h_m\}$ for some $1 \leq m \leq 2n$ (so that V has dimension m). In particular, check that we may rewrite

$$T = \sum_{i,j=1}^m \beta_{ij} \langle \cdot, h_i \rangle h_j.$$

$T|_V$ is then a linear map from V to V , a finite dimensional space: using the spectral theorem from linear algebra, we can diagonalize $T|_V$, i.e. find another orthonormal basis $\{g_1, \dots, g_m\}$ of V and $\lambda_1, \dots, \lambda_m \in \mathbb{R}$ (the eigenvalues are real as T is Hermitian; and in fact, at most n of these eigenvalues are non-zero since $\text{rank}(T) \leq n$, so we can now assume w.l.o.g. that $m \leq n$) such that

$$T|_V \left(\sum_{i=1}^m \alpha_i g_i \right) = \sum_{i=1}^m \alpha_i \lambda_i g_i$$

for all $\alpha_1, \dots, \alpha_m \in \mathbb{R}$. Now we recall that we can write $\mathcal{H} = V \oplus V^\perp$, so that any $f \in \mathcal{H}$ can be written $f = f_0 + f^0$, $f_0 \in V^\perp$, $f^0 \in V$. Furthermore, there exist $c_1, \dots, c_m \in \mathbb{R}$ such that $f^0 = \sum_{i=1}^m c_i \langle f^0, g_i \rangle g_i = \sum_{i=1}^m c_i \langle f, g_i \rangle g_i$. We can finally conclude:

$$T(f) = T(f_0 + f^0) = T(f_0) + T|_V \left(\sum_{i=1}^m c_i \langle f, g_i \rangle g_i \right) = \sum_{i=1}^m c_i \lambda_i \langle f, g_i \rangle g_i$$

□