Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 13

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Fourier series on larger intervals). Using Fourier series on [0,1] and scaling / trans-
lation show that for any L € N, every f, € L*([~L/2,L/2]) can be written as

fo(x) =Lt Z fr(n/L) exp(2miL ™ 'nz), (1)

where the summing is absolute for any x € [—L/2,L/2] and the limit in the series is with respect
to the L? norm, and

fr(n/L) = / fr(z) exp(—2miL ™ nz)dA(). (2)

(—L/2,L/2]
Deduce Lemma 3.22, i.e. that the set of functions: ( %sin(%ﬂ'nx))nzl,(\/%cos(%ﬂnx))nzl

together with the constant function ﬁ forms an orthonormal basis of L>([—L/2,L/2)).

Proof. Define the function F(z) = fr((z—1/2)L). Then F € L?([0,1]) and by completeness of the
Fourier basis (exp(2min-))nez (alternatively, of (sin(27n-))n>1, (cos(2mn-)),>1, 1) there are unique

coefficients (F,)n>1 C R such that F' can be written

F(z) = Z F(n)e?mine, (3)

nez

We compute more specifically
F(n) = /R F(2)1(0,1)(z) exp(—2mizn)dA(z)
- /R F(2)1(_1/9.1y2)(L(x — 1/2)) exp(—2mizn)dA(z)
= [ Fulha =121 1y (Ll = 1/2) exp(=2ian)d@)

(_2)n /]R fL (x)l[fL/Q,L/Z] (LII) eXp(_Qﬂ-ian_l)d)‘(m)’

where in the last step we used the translation and dilation formula from exercise 1 of exercise sheet
11. We conclude that

fo(@) = F(x +1/2)/L) = 3" (~1)"F(n) exp(2minz/L)

1
= — exp(—2miyn/L)d\(y) exp(2minz /L
> /[_L/Q,L/Q] fr(y) exp(—2miyn/L)d\(y) exp( /L)

L
nez

= Z %f(n/L) exp(2minz/L).

neZ

Exercise 2 (Finishing Theorem 3.23).



1. In the set-up of Theorem 3.23, prove rigorously that the three following functions

up(t,x) = {ug, 1 Z exp(—D4r’n’t) (sin(2rnz) (ug, 2sin(2mn-)) + cos(2mnz)(ug, 2 cos(2wn-)))
x) = Z exp(—Dn’n’t) sin(mna)(uo, 2 sin(mn-))
n>1
un(t, ) = (ug, 1 Z exp(—Dn*n’t) cos(mnz)(ug, 2 cos(2mn-))

are well-defined and belong to L?([0,1]). Furthermore, prove that for each t > 0 they are dif-
ferentiable in t and twice differentiable in x such that the derivatives are Riemann integrable.
Finally, show that they solve the heat equation.

2. Finish the proof of uniqueness in Theorem 3.28 by verifying the steps in the formal calculation.
In particular, when u(t,z) is one of the three functions above argue the following.

e By using the connection to the Riemann integral and known results in that case or
otherwise show that for allt > 0,

Ollut, 2)|I* _ / Qu(t, z)
o =2 o u(t, x) 5 d\(x)

o Similarly show that the integration by parts is allowed:

/[0,1] u(t’x)%w‘(x) == /[0’1] <augx’x))2d)\(x).

Proof. 1. We focus on up, the other functions can be studied identically. By assumption,
u0(0) = up(1l) = 0, so the expression given for up(0,-) corresponds to the Fourier series
expansion of ug, which converges in L? as ug € L? by assumption. Furthermore, the function
fiRYx[0,1] - R,

f(t,z) = exp(—Dn*n’t) sin(rnax)(ug, 2 sin(rn-))
is clearly smooth in both variables. Since
|8£f(t, z)| = ‘—7r2n2 exp(—Dn°n’t) sin(mna)(uo, 2sin(mn-))| < 2m%n? exp(—D7*n’t) ||uo 5,

it follows that S 92f,(t,-) converges pointwise absolutely to a bounded function (and
actually the convergence is even uniform): indeed for all £ there exists N > 1 large enough
such that for all Ky, Ko > M,

K>

Arguing similarly for 7% f,(¢,-) and 3212 9, fu(t, -), we obtain that up(t,-) = S0 fa(t,-)
is twice differentiable in z and that

< Z 21n? exp(—D7*n’t) ||ug ||, < e.

oo

O up(t, ) Zﬂ' n? exp(—Dn*n’t) sin(mnz)(uo, 2 sin(mn-)).
n>1

The reasoning for o f,(z,-), = € [0, 1] fixed is the sameﬂ we can apply the hint because the
series of O fy, (z,t) converges in the space of continuous functions, given that it is a bounded

IHere t € (0,+00) whereas in the hint we ask for the functions to be defined on [0, 1], but that can easily be
circumvented by considering ¢ € [n,n + 1], i.e. ¢t —n € [0, 1].



series of continuous functions and C°([0, 1]) is complete with the uniform norm. We obtain
therefore that up(-,z) is differentiable in ¢ and that

Owup(t, ) ZDW n? exp(—Dr*n’t) sin(mnz)(ug, 2 sin(mn-)).

n>1

In particular, it holds that 9;u = DAw. Lastly, up(t,-) satisfies the Dirichlet condition for
all t > 0 as well.

For ux and up, one argues similarly, with the only difference corresponding to the boundary
conditions: for wp, notice that up(t,0) = wup(t,1) for all ¢ > 0, and for uy one must
differentiate at the boundary of [0,1]. Since cos is periodic, we can actually see un(t,-) as a
function defined on [—1, 2], and the derivative can be computed inside the sum using similar
arguments to what has been done before. We obtain

Ozun(t, ) an exp(—Dnn’t) cos(mnz)(ug, 2 cos(mn-)),
n>1

which gives the same value when evaluated at 0 or 1.

2. We have proven in the previous subquestion that u;,i € {P, D, N} is differentiable once in
t and twice in x (actually, notice that we could have proven that it was in fact infinitely
differentiable!). In particular,

ot M o) = / u(t, 2)de
[0,1]

coincides with the Riemann integral since u is continuous, and one can use results from
Analysis IT on permutations of integrals and derivatives (since w is continuously differentiable
in ) to obtain that

8 u t, * 22
M :/ 2u(t, x)Opu(t, z)dx.

Since u satisfies the heat equation, we may rewrite

O||u(t, - 2
M =2D u(t, r)0% u(t, r)dz.

Lastly, the integrand is again a continuous function of  (on [0, 1], compact) so that we may
integrate by parts (again because u(t, -) is twice differentiable) and conclude that

O|lu t7 : 22
Ot llizqory _ oy [ (5,u(t. 2))de.
ot [0,1]

O

Remark 1. If ug is not continuous (think of [0,1] as a rod of length 1, and imagine ug to be a
step function, as if only a section of the rod had been heated), there is of course no hope that u;
converges uniformly as t — 0. What is very surprising is that even for "rough/irreqular” initial
data ug, we have seen that u; becomes differentiable (actually, C*!) as soon as t > 0. This
reqularization property of the heat equation is a very important idea in mathematics and physics.

Exercise 3 (Fourier transform of Gaussian density). The aim of this exercise is to calculate the
Fourier transform of the Gaussian density exp(—xQ/Z).



By allowing yourself to change the order of differentiation / integration and using integration
by parts, find a first-order ODE satisfied by the Fourier transform

f(k):= /Rexp(fo/Q) exp(—2kirx)dA(x).

Justify carefully the change of integration and differentiation and integration by parts in part
1.

Solve this ODE and find thus the Fourier transform of the Gaussian density.

Is there a function f : R — R that is equal to its Fourier transform?
Proof. o Let f(x) = exp(fx2/2). We compute first formally

d% Flk) = /]R exp<_”§>(—2mx) exp(—2mikz)d\(z) = 2mi / % (exp(—f)) exp(—2mikx)dA(z),

R

We formally apply integration by parts:

2

%f(k) = —4772k/ReXp(—x2) exp(—2mikz)d\(z) = —4n2kf (k). (4)

e To justify the differentiation, we first write for k € R, h # 0:

Flk+h) — f(k o, e 2milkth)e _ o —2mike
Hesh = 76) _ [ e
R

N N dzx.

We wish to take the limit h — 0 by using the dominated convergence theorem. For any
sequence (hy)p>1 C R*, let us define for n > 1 the function f,, : R — R,

) 6727Ti(k+hn):c _ e 2mika

fn(x) = 67I2/ hn

These functions are continuous, and since

6727ri(k+hn):r _ e—2mikz

ha,

1 [k+he _
—/ 2me” 2" dy| < 2,
k

b,

the bound | f,(z)| < 2exp(—2?/2) =: g(x) implies that f, is integrable and puts us in the
set-up of the dominated convergence theorem. Since furthermore (f,,),>1 converges pointwise
to

/R exp <”;2) (—2iz) exp(—2mika)d\(z),

the dominated convergence theorem implies that f is indeed differentiable and gives us the
correct expression.

For the integration by parts, one should consider the integral on [—K, K], i.e.

K 2
747r2k/ exp<) exp(—2mikx)dA(x),
Kk 2
such that it is the integral of a differentiable function on a compact interval and integration by
parts can be performed, for instance because these results have been shown for the Riemann
integral. It remains to take the limit K — oo, and this is possible by dominated convergence
as the integrand is bounded by Cg which is in L!.



e The ordinary differential equation admits a unique solution given by

f(k) = f(0) exp(—2m°k) = \/Z?exp(—27r2k2).

e Similarly, we can check that the Fourier transform of h(z) = f(az) = exp(—a®2?/2) is given
by

h(k) = = f(k/a) = =" exp(—272k2/a?).

@\H

We want to find a such that & is its own Fourier transform, i.e.,

V21
a

exp(—27r2k2/a2) = exp(—a2k2/2),

which is satisfied for a = v/2m. We conclude that h(z) = exp(fwxz) equal to its own Fourier
transform.
O

Exercise 4 (Convolutions, IT). Recall for g a bounded measurable function on R the convolution
product f xg on L*(R) (i.e. for f € L), defined by

(f*g)(x /f

Suppose now that g is also integrable, i.e. that g € L*(R). Show that the following identity holds:

F(frg)=F(f)-Flg),
where - stands for pointwise multiplication.

Proof. We have already shown that f x g € L'. We can compute its Fourier coefficients:

F(fxg)(k)= /R(f*g)( x) exp(2mikz)dx = / (/ flaz— )exp(?m’kx)dx.

Since the integrand is bounded by |f(z — y)g(y) exp(2mikz)| < |f(z — y)g(y)| which is integrable
as a function on R?, we can use Fubini’s theorem to exchange the integrals. We obtain

/IR ( /IR fl@—y) exp(%ikm)dw) 9(y)dy = /R ( /IR f(z —y) exp(2mik(z — y))dx> 9(y) exp(2miky)dy
= /R </R fx) exp(?wika:)d:r) g(y) exp(2miky)dy

= /Rff(k)g(y) exp(2miky)dy = Ff(k) - Fg(k),

where we have used translation invariance of the Lebesgue measure on the second line. O



