
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 13
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Fourier series on larger intervals). Using Fourier series on [0, 1] and scaling / trans-
lation show that for any L ∈ N, every fL ∈ L2([−L/2, L/2]) can be written as

fL(x) = L−1
∑
n∈Z

f̂L(n/L) exp
(
2πiL−1nx

)
, (1)

where the summing is absolute for any x ∈ [−L/2, L/2] and the limit in the series is with respect
to the L2 norm, and

f̂L(n/L) :=

∫
[−L/2,L/2]

fL(x) exp
(
−2πiL−1nx

)
dλ(x). (2)

Deduce Lemma 3.22, i.e. that the set of functions: (
√

2
L sin

(
2
Lπnx

)
)n≥1, (

√
2
L cos

(
2
Lπnx

)
)n≥1

together with the constant function 1√
L

forms an orthonormal basis of L2([−L/2, L/2)).

Proof. Define the function F (x) = fL((x−1/2)L). Then F ∈ L2([0, 1]) and by completeness of the
Fourier basis (exp(2πin·))n∈Z (alternatively, of (sin(2πn·))n≥1, (cos(2πn·))n≥1, 1) there are unique
coefficients (F̂n)n≥1 ⊂ R such that F can be written

F (x) =
∑
n∈Z

F̂ (n)e2πinx. (3)

We compute more specifically

F̂ (n) =

∫
R
F (x)1[0,1](x) exp(−2πixn)dλ(x)

=

∫
R
F (x)1[−L/2,L/2](L(x− 1/2)) exp(−2πixn)dλ(x)

=

∫
R
fL(L(x− 1/2))1[−L/2,L/2](L(x− 1/2)) exp(−2πixn)dλ(x)

=
(−1)n

L

∫
R
fL(x)1[−L/2,L/2](x) exp

(
−2πixnL−1

)
dλ(x),

where in the last step we used the translation and dilation formula from exercise 1 of exercise sheet
11. We conclude that

fL(x) = F ((x+ 1/2)/L) =
∑
n∈Z

(−1)nF̂ (n) exp(2πinx/L)

=
∑
n∈Z

1

L

∫
[−L/2,L/2]

fL(y) exp(−2πiyn/L)dλ(y) exp(2πinx/L)

=
∑
n∈Z

1

L
f̂(n/L) exp(2πinx/L).

Exercise 2 (Finishing Theorem 3.23).



1. In the set-up of Theorem 3.23, prove rigorously that the three following functions

uP (t, x) = ⟨u0, 1⟩+
∑
n≥1

exp
(
−D4π2n2t

)
(sin(2πnx)⟨u0, 2 sin(2πn·)⟩+ cos(2πnx)⟨u0, 2 cos(2πn·)⟩)

uD(t, x) =
∑
n≥1

exp
(
−Dπ2n2t

)
sin(πnx)⟨u0, 2 sin(πn·)⟩

uN (t, x) = ⟨u0, 1⟩+
∑
n≥1

exp
(
−Dπ2n2t

)
cos(πnx)⟨u0, 2 cos(2πn·)⟩

are well-defined and belong to L2([0, 1]). Furthermore, prove that for each t > 0 they are dif-
ferentiable in t and twice differentiable in x such that the derivatives are Riemann integrable.
Finally, show that they solve the heat equation.

2. Finish the proof of uniqueness in Theorem 3.23 by verifying the steps in the formal calculation.
In particular, when u(t, x) is one of the three functions above argue the following.

• By using the connection to the Riemann integral and known results in that case or
otherwise show that for all t > 0,

∂∥u(t, x)∥2

∂t
= 2

∫
[0,1]

u(t, x)
∂u(t, x)

∂t
dλ(x)

• Similarly show that the integration by parts is allowed:∫
[0,1]

u(t, x)
∂2u(t, x)

∂x2
dλ(x) = −

∫
[0,1]

(
∂u(t, x)

∂x

)2

dλ(x).

Proof. 1. We focus on uD, the other functions can be studied identically. By assumption,
u0(0) = u0(1) = 0, so the expression given for uD(0, ·) corresponds to the Fourier series
expansion of u0, which converges in L2 as u0 ∈ L2 by assumption. Furthermore, the function
f : R+ × [0, 1] → R,

f(t, x) = exp
(
−Dπ2n2t

)
sin(πnx)⟨u0, 2 sin(πn·)⟩

is clearly smooth in both variables. Since∣∣∂2
xf(t, x)

∣∣ = ∣∣−π2n2 exp
(
−Dπ2n2t

)
sin(πnx)⟨u0, 2 sin(πn·)⟩

∣∣ ≤ 2π2n2 exp
(
−Dπ2n2t

)
∥u0∥2,

it follows that
∑+∞

n=1 ∂
2
xfn(t, ·) converges pointwise absolutely to a bounded function (and

actually the convergence is even uniform): indeed for all ε there exists N ≥ 1 large enough
such that for all K1,K2 ≥ M ,∥∥∥∥∥

K1∑
n=1

∣∣∂2
xfn(t, ·)

∣∣− K2∑
n=1

∣∣∂2
xfn(t, ·)

∣∣∥∥∥∥∥
∞

≤
+∞∑
n=N

2π2n2 exp
(
−Dπ2n2t

)
∥u0∥2 ≤ ε.

Arguing similarly for
∑+∞

n=1 fn(t, ·) and
∑+∞

n=1 ∂xfn(t, ·), we obtain that uD(t, ·) =
∑+∞

n=1 fn(t, ·)
is twice differentiable in x and that

∂2
xuD(t, x) = −

∑
n≥1

π2n2 exp
(
−Dπ2n2t

)
sin(πnx)⟨u0, 2 sin(πn·)⟩.

The reasoning for ∂tfn(x, ·), x ∈ [0, 1] fixed is the same1: we can apply the hint because the
series of ∂tfn(x, t) converges in the space of continuous functions, given that it is a bounded

1Here t ∈ (0,+∞) whereas in the hint we ask for the functions to be defined on [0, 1], but that can easily be
circumvented by considering t ∈ [n, n+ 1], i.e. t− n ∈ [0, 1].



series of continuous functions and C0([0, 1]) is complete with the uniform norm. We obtain
therefore that uD(·, x) is differentiable in t and that

∂tuD(t, x) = −
∑
n≥1

Dπ2n2 exp
(
−Dπ2n2t

)
sin(πnx)⟨u0, 2 sin(πn·)⟩.

In particular, it holds that ∂tu = D∆u. Lastly, uD(t, ·) satisfies the Dirichlet condition for
all t > 0 as well.

For uN and uP , one argues similarly, with the only difference corresponding to the boundary
conditions: for uP , notice that uP (t, 0) = uP (t, 1) for all t > 0, and for uN one must
differentiate at the boundary of [0, 1]. Since cos is periodic, we can actually see uN (t, ·) as a
function defined on [−1, 2], and the derivative can be computed inside the sum using similar
arguments to what has been done before. We obtain

∂xuN (t, x) = −
∑
n≥1

πn exp
(
−Dπ2n2t

)
cos(πnx)⟨u0, 2 cos(πn·)⟩,

which gives the same value when evaluated at 0 or 1.

2. We have proven in the previous subquestion that ui, i ∈ {P,D,N} is differentiable once in
t and twice in x (actually, notice that we could have proven that it was in fact infinitely
differentiable!). In particular,

∥u(t, ·)∥2L2([0,1]) =

∫
[0,1]

u(t, x)2dx

coincides with the Riemann integral since u is continuous, and one can use results from
Analysis II on permutations of integrals and derivatives (since u is continuously differentiable
in t) to obtain that

∂∥u(t, ·)∥2L2([0,1])

∂t
=

∫
[0,1]

2u(t, x)∂tu(t, x)dx.

Since u satisfies the heat equation, we may rewrite

∂∥u(t, ·)∥2L2([0,1])

∂t
= 2D

∫
[0,1]

u(t, x)∂2
xxu(t, x)dx.

Lastly, the integrand is again a continuous function of x (on [0, 1], compact) so that we may
integrate by parts (again because u(t, ·) is twice differentiable) and conclude that

∂∥u(t, ·)∥2L2([0,1])

∂t
= −2D

∫
[0,1]

(∂xu(t, x))
2dx.

Remark 1. If u0 is not continuous (think of [0, 1] as a rod of length 1, and imagine u0 to be a
step function, as if only a section of the rod had been heated), there is of course no hope that ut

converges uniformly as t → 0. What is very surprising is that even for "rough/irregular" initial
data u0, we have seen that ut becomes differentiable (actually, C∞!) as soon as t > 0. This
regularization property of the heat equation is a very important idea in mathematics and physics.

Exercise 3 (Fourier transform of Gaussian density). The aim of this exercise is to calculate the
Fourier transform of the Gaussian density exp

(
−x2/2

)
.



• By allowing yourself to change the order of differentiation / integration and using integration
by parts, find a first-order ODE satisfied by the Fourier transform

f̂(k) :=

∫
R
exp

(
−x2/2

)
exp(−2kiπx)dλ(x).

• Justify carefully the change of integration and differentiation and integration by parts in part
1.

• Solve this ODE and find thus the Fourier transform of the Gaussian density.

• Is there a function f : R → R that is equal to its Fourier transform?

Proof. • Let f(x) = exp
(
−x2/2

)
. We compute first formally

d

dk
f̂(k) =

∫
R
exp

(
−x2

2

)
(−2πix) exp(−2πikx)dλ(x) = 2πi

∫
R

d

dx

(
exp

(
−x2

2

))
exp(−2πikx)dλ(x),

We formally apply integration by parts:

d

dk
f̂(k) = −4π2k

∫
R
exp

(
−x2

2

)
exp(−2πikx)dλ(x) = −4π2kf̂(k). (4)

• To justify the differentiation, we first write for k ∈ R, h ̸= 0:

f̂(k + h)− f̂(k)

h
=

∫
R
e−x2/2 e

−2πi(k+h)x − e−2πikx

h
dx.

We wish to take the limit h → 0 by using the dominated convergence theorem. For any
sequence (hn)n≥1 ⊂ R∗, let us define for n ≥ 1 the function fn : R 7→ R,

fn(x) = e−x2/2 e
−2πi(k+hn)x − e−2πikx

hn
.

These functions are continuous, and since∣∣∣∣e−2πi(k+hn)x − e−2πikx

hn

∣∣∣∣ ≤
∣∣∣∣∣ 1

hn

∫ k+hn

k

2πe−2πiyxdy

∣∣∣∣∣ ≤ 2π,

the bound |fn(x)| ≤ 2 exp
(
−x2/2

)
=: g(x) implies that fn is integrable and puts us in the

set-up of the dominated convergence theorem. Since furthermore (fn)n≥1 converges pointwise
to ∫

R
exp

(
−x2

2

)
(−2πix) exp(−2πikx)dλ(x),

the dominated convergence theorem implies that f̂ is indeed differentiable and gives us the
correct expression.
For the integration by parts, one should consider the integral on [−K,K], i.e.

−4π2k

∫ K

−K

exp

(
−x2

2

)
exp(−2πikx)dλ(x),

such that it is the integral of a differentiable function on a compact interval and integration by
parts can be performed, for instance because these results have been shown for the Riemann
integral. It remains to take the limit K → ∞, and this is possible by dominated convergence
as the integrand is bounded by Cg which is in L1.



• The ordinary differential equation (4) admits a unique solution given by

f̂(k) = f̂(0) exp
(
−2π2k

)
=

√
2π exp

(
−2π2k2

)
.

• Similarly, we can check that the Fourier transform of h(x) = f(ax) = exp
(
−a2x2/2

)
is given

by

ĥ(k) =
1

a
f̂(k/a) =

√
2π

a
exp

(
−2π2k2/a2

)
.

We want to find a such that h is its own Fourier transform, i.e.,
√
2π

a
exp

(
−2π2k2/a2

)
= exp

(
−a2k2/2

)
,

which is satisfied for a =
√
2π. We conclude that h(x) = exp

(
−πx2

)
equal to its own Fourier

transform.

Exercise 4 (Convolutions, II). Recall for g a bounded measurable function on R the convolution
product f ⋆ g on L1(R) (i.e. for f ∈ L1), defined by

(f ⋆ g)(x) :=

∫
R
f(y)g(x− y)dy.

Suppose now that g is also integrable, i.e. that g ∈ L1(R). Show that the following identity holds:

F(f ⋆ g) = F(f) · F(g),

where · stands for pointwise multiplication.

Proof. We have already shown that f ⋆ g ∈ L1. We can compute its Fourier coefficients:

F(f ⋆ g)(k) =

∫
R
(f ⋆ g)(x) exp(2πikx)dx =

∫
R

(∫
R
f(x− y)g(y)dy

)
exp(2πikx)dx.

Since the integrand is bounded by |f(x− y)g(y) exp(2πikx)| ≤ |f(x− y)g(y)| which is integrable
as a function on R2, we can use Fubini’s theorem to exchange the integrals. We obtain∫
R

(∫
R
f(x− y) exp(2πikx)dx

)
g(y)dy =

∫
R

(∫
R
f(x− y) exp(2πik(x− y))dx

)
g(y) exp(2πiky)dy

=

∫
R

(∫
R
f(x) exp(2πikx)dx

)
g(y) exp(2πiky)dy

=

∫
R
Ff(k)g(y) exp(2πiky)dy = Ff(k) · Fg(k),

where we have used translation invariance of the Lebesgue measure on the second line.


