

Exercise sheet 13

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Fourier series on larger intervals). *Using Fourier series on $[0, 1]$ and scaling / translation show that for any $L \in \mathbb{N}$, every $f_L \in L^2([-L/2, L/2])$ can be written as*

$$f_L(x) = L^{-1} \sum_{n \in \mathbb{Z}} \hat{f}_L(n/L) \exp(2\pi i L^{-1} nx), \quad (1)$$

where the summing is absolute for any $x \in [-L/2, L/2]$ and the limit in the series is with respect to the L^2 norm, and

$$\hat{f}_L(n/L) := \int_{[-L/2, L/2]} f_L(x) \exp(-2\pi i L^{-1} nx) d\lambda(x). \quad (2)$$

Deduce Lemma 3.22, i.e. that the set of functions: $(\sqrt{\frac{2}{L}} \sin(\frac{2}{L}\pi nx))_{n \geq 1}, (\sqrt{\frac{2}{L}} \cos(\frac{2}{L}\pi nx))_{n \geq 1}$ together with the constant function $\frac{1}{\sqrt{L}}$ forms an orthonormal basis of $L^2([-L/2, L/2])$.

Proof. Define the function $F(x) = f_L((x - 1/2)L)$. Then $F \in L^2([0, 1])$ and by completeness of the Fourier basis $(\exp(2\pi i n \cdot))_{n \in \mathbb{Z}}$ (alternatively, of $(\sin(2\pi n \cdot))_{n \geq 1}, (\cos(2\pi n \cdot))_{n \geq 1}, 1$) there are unique coefficients $(\hat{F}_n)_{n \geq 1} \subset \mathbb{R}$ such that F can be written

$$F(x) = \sum_{n \in \mathbb{Z}} \hat{F}(n) e^{2\pi i n x}. \quad (3)$$

We compute more specifically

$$\begin{aligned} \hat{F}(n) &= \int_{\mathbb{R}} F(x) 1_{[0,1]}(x) \exp(-2\pi i x n) d\lambda(x) \\ &= \int_{\mathbb{R}} F(x) 1_{[-L/2, L/2]}(L(x - 1/2)) \exp(-2\pi i x n) d\lambda(x) \\ &= \int_{\mathbb{R}} f_L(L(x - 1/2)) 1_{[-L/2, L/2]}(L(x - 1/2)) \exp(-2\pi i x n) d\lambda(x) \\ &= \frac{(-1)^n}{L} \int_{\mathbb{R}} f_L(x) 1_{[-L/2, L/2]}(x) \exp(-2\pi i x n L^{-1}) d\lambda(x), \end{aligned}$$

where in the last step we used the translation and dilation formula from exercise 1 of exercise sheet 11. We conclude that

$$\begin{aligned} f_L(x) &= F((x + 1/2)/L) = \sum_{n \in \mathbb{Z}} (-1)^n \hat{F}(n) \exp(2\pi i n x / L) \\ &= \sum_{n \in \mathbb{Z}} \frac{1}{L} \int_{[-L/2, L/2]} f_L(y) \exp(-2\pi i y n / L) d\lambda(y) \exp(2\pi i n x / L) \\ &= \sum_{n \in \mathbb{Z}} \frac{1}{L} \hat{f}(n/L) \exp(2\pi i n x / L). \end{aligned}$$

□

Exercise 2 (Finishing Theorem 3.23).

1. In the set-up of Theorem 3.23, prove rigorously that the three following functions

$$\begin{aligned} u_P(t, x) &= \langle u_0, 1 \rangle + \sum_{n \geq 1} \exp(-D4\pi^2 n^2 t) (\sin(2\pi n x) \langle u_0, 2 \sin(2\pi n \cdot) \rangle + \cos(2\pi n x) \langle u_0, 2 \cos(2\pi n \cdot) \rangle) \\ u_D(t, x) &= \sum_{n \geq 1} \exp(-D\pi^2 n^2 t) \sin(\pi n x) \langle u_0, 2 \sin(\pi n \cdot) \rangle \\ u_N(t, x) &= \langle u_0, 1 \rangle + \sum_{n \geq 1} \exp(-D\pi^2 n^2 t) \cos(\pi n x) \langle u_0, 2 \cos(2\pi n \cdot) \rangle \end{aligned}$$

are well-defined and belong to $L^2([0, 1])$. Furthermore, prove that for each $t > 0$ they are differentiable in t and twice differentiable in x such that the derivatives are Riemann integrable. Finally, show that they solve the heat equation.

2. Finish the proof of uniqueness in Theorem 3.23 by verifying the steps in the formal calculation. In particular, when $u(t, x)$ is one of the three functions above argue the following.

- By using the connection to the Riemann integral and known results in that case or otherwise show that for all $t > 0$,

$$\frac{\partial \|u(t, x)\|^2}{\partial t} = 2 \int_{[0, 1]} u(t, x) \frac{\partial u(t, x)}{\partial t} d\lambda(x)$$

- Similarly show that the integration by parts is allowed:

$$\int_{[0, 1]} u(t, x) \frac{\partial^2 u(t, x)}{\partial x^2} d\lambda(x) = - \int_{[0, 1]} \left(\frac{\partial u(t, x)}{\partial x} \right)^2 d\lambda(x).$$

Proof. 1. We focus on u_D , the other functions can be studied identically. By assumption, $u_0(0) = u_0(1) = 0$, so the expression given for $u_D(0, \cdot)$ corresponds to the Fourier series expansion of u_0 , which converges in L^2 as $u_0 \in L^2$ by assumption. Furthermore, the function $f : \mathbb{R}^+ \times [0, 1] \rightarrow \mathbb{R}$,

$$f(t, x) = \exp(-D\pi^2 n^2 t) \sin(\pi n x) \langle u_0, 2 \sin(\pi n \cdot) \rangle$$

is clearly smooth in both variables. Since

$$|\partial_x^2 f(t, x)| = |-\pi^2 n^2 \exp(-D\pi^2 n^2 t) \sin(\pi n x) \langle u_0, 2 \sin(\pi n \cdot) \rangle| \leq 2\pi^2 n^2 \exp(-D\pi^2 n^2 t) \|u_0\|_2,$$

it follows that $\sum_{n=1}^{+\infty} \partial_x^2 f_n(t, \cdot)$ converges pointwise absolutely to a bounded function (and actually the convergence is even uniform): indeed for all ε there exists $N \geq 1$ large enough such that for all $K_1, K_2 \geq M$,

$$\left\| \sum_{n=1}^{K_1} |\partial_x^2 f_n(t, \cdot)| - \sum_{n=1}^{K_2} |\partial_x^2 f_n(t, \cdot)| \right\|_\infty \leq \sum_{n=N}^{+\infty} 2\pi^2 n^2 \exp(-D\pi^2 n^2 t) \|u_0\|_2 \leq \varepsilon.$$

Arguing similarly for $\sum_{n=1}^{+\infty} f_n(t, \cdot)$ and $\sum_{n=1}^{+\infty} \partial_x f_n(t, \cdot)$, we obtain that $u_D(t, \cdot) = \sum_{n=1}^{+\infty} f_n(t, \cdot)$ is twice differentiable in x and that

$$\partial_x^2 u_D(t, x) = - \sum_{n \geq 1} \pi^2 n^2 \exp(-D\pi^2 n^2 t) \sin(\pi n x) \langle u_0, 2 \sin(\pi n \cdot) \rangle.$$

The reasoning for $\partial_t f_n(x, \cdot)$, $x \in [0, 1]$ fixed is the same¹: we can apply the hint because the series of $\partial_t f_n(x, t)$ converges in the space of continuous functions, given that it is a bounded

¹Here $t \in (0, +\infty)$ whereas in the hint we ask for the functions to be defined on $[0, 1]$, but that can easily be circumvented by considering $t \in [n, n+1]$, i.e. $t - n \in [0, 1]$.

series of continuous functions and $C^0([0, 1])$ is complete with the uniform norm. We obtain therefore that $u_D(\cdot, x)$ is differentiable in t and that

$$\partial_t u_D(t, x) = - \sum_{n \geq 1} D\pi^2 n^2 \exp(-D\pi^2 n^2 t) \sin(\pi n x) \langle u_0, 2 \sin(\pi n \cdot) \rangle.$$

In particular, it holds that $\partial_t u = D\Delta u$. Lastly, $u_D(t, \cdot)$ satisfies the Dirichlet condition for all $t > 0$ as well.

For u_N and u_P , one argues similarly, with the only difference corresponding to the boundary conditions: for u_P , notice that $u_P(t, 0) = u_P(t, 1)$ for all $t > 0$, and for u_N one must differentiate at the boundary of $[0, 1]$. Since \cos is periodic, we can actually see $u_N(t, \cdot)$ as a function defined on $[-1, 2]$, and the derivative can be computed inside the sum using similar arguments to what has been done before. We obtain

$$\partial_x u_N(t, x) = - \sum_{n \geq 1} \pi n \exp(-D\pi^2 n^2 t) \cos(\pi n x) \langle u_0, 2 \cos(\pi n \cdot) \rangle,$$

which gives the same value when evaluated at 0 or 1.

2. We have proven in the previous subquestion that $u_i, i \in \{P, D, N\}$ is differentiable once in t and twice in x (actually, notice that we could have proven that it was in fact infinitely differentiable!). In particular,

$$\|u(t, \cdot)\|_{L^2([0, 1])}^2 = \int_{[0, 1]} u(t, x)^2 dx$$

coincides with the Riemann integral since u is continuous, and one can use results from Analysis II on permutations of integrals and derivatives (since u is continuously differentiable in t) to obtain that

$$\frac{\partial \|u(t, \cdot)\|_{L^2([0, 1])}^2}{\partial t} = \int_{[0, 1]} 2u(t, x) \partial_t u(t, x) dx.$$

Since u satisfies the heat equation, we may rewrite

$$\frac{\partial \|u(t, \cdot)\|_{L^2([0, 1])}^2}{\partial t} = 2D \int_{[0, 1]} u(t, x) \partial_{xx}^2 u(t, x) dx.$$

Lastly, the integrand is again a continuous function of x (on $[0, 1]$, compact) so that we may integrate by parts (again because $u(t, \cdot)$ is twice differentiable) and conclude that

$$\frac{\partial \|u(t, \cdot)\|_{L^2([0, 1])}^2}{\partial t} = -2D \int_{[0, 1]} (\partial_x u(t, x))^2 dx.$$

□

Remark 1. *If u_0 is not continuous (think of $[0, 1]$ as a rod of length 1, and imagine u_0 to be a step function, as if only a section of the rod had been heated), there is of course no hope that u_t converges uniformly as $t \rightarrow 0$. What is very surprising is that even for "rough/irregular" initial data u_0 , we have seen that u_t becomes differentiable (actually, C^∞ !) as soon as $t > 0$. This regularization property of the heat equation is a very important idea in mathematics and physics.*

Exercise 3 (Fourier transform of Gaussian density). *The aim of this exercise is to calculate the Fourier transform of the Gaussian density $\exp(-x^2/2)$.*

- By allowing yourself to change the order of differentiation / integration and using integration by parts, find a first-order ODE satisfied by the Fourier transform

$$\hat{f}(k) := \int_{\mathbb{R}} \exp(-x^2/2) \exp(-2ki\pi x) d\lambda(x).$$

- Justify carefully the change of integration and differentiation and integration by parts in part 1.
- Solve this ODE and find thus the Fourier transform of the Gaussian density.
- Is there a function $f : \mathbb{R} \rightarrow \mathbb{R}$ that is equal to its Fourier transform?

Proof. • Let $f(x) = \exp(-x^2/2)$. We compute first formally

$$\frac{d}{dk} \hat{f}(k) = \int_{\mathbb{R}} \exp\left(-\frac{x^2}{2}\right) (-2\pi i x) \exp(-2\pi i k x) d\lambda(x) = 2\pi i \int_{\mathbb{R}} \frac{d}{dx} \left(\exp\left(-\frac{x^2}{2}\right) \right) \exp(-2\pi i k x) d\lambda(x),$$

We formally apply integration by parts:

$$\frac{d}{dk} \hat{f}(k) = -4\pi^2 k \int_{\mathbb{R}} \exp\left(-\frac{x^2}{2}\right) \exp(-2\pi i k x) d\lambda(x) = -4\pi^2 k \hat{f}(k). \quad (4)$$

- To justify the differentiation, we first write for $k \in \mathbb{R}, h \neq 0$:

$$\frac{\hat{f}(k+h) - \hat{f}(k)}{h} = \int_{\mathbb{R}} e^{-x^2/2} \frac{e^{-2\pi i (k+h)x} - e^{-2\pi i k x}}{h} dx.$$

We wish to take the limit $h \rightarrow 0$ by using the dominated convergence theorem. For any sequence $(h_n)_{n \geq 1} \subset \mathbb{R}^*$, let us define for $n \geq 1$ the function $f_n : \mathbb{R} \mapsto \mathbb{R}$,

$$f_n(x) = e^{-x^2/2} \frac{e^{-2\pi i (k+h_n)x} - e^{-2\pi i k x}}{h_n}.$$

These functions are continuous, and since

$$\left| \frac{e^{-2\pi i (k+h_n)x} - e^{-2\pi i k x}}{h_n} \right| \leq \left| \frac{1}{h_n} \int_k^{k+h_n} 2\pi e^{-2\pi i y x} dy \right| \leq 2\pi,$$

the bound $|f_n(x)| \leq 2 \exp(-x^2/2) =: g(x)$ implies that f_n is integrable and puts us in the set-up of the dominated convergence theorem. Since furthermore $(f_n)_{n \geq 1}$ converges pointwise to

$$\int_{\mathbb{R}} \exp\left(-\frac{x^2}{2}\right) (-2\pi i x) \exp(-2\pi i k x) d\lambda(x),$$

the dominated convergence theorem implies that \hat{f} is indeed differentiable and gives us the correct expression.

For the integration by parts, one should consider the integral on $[-K, K]$, i.e.

$$-4\pi^2 k \int_{-K}^K \exp\left(-\frac{x^2}{2}\right) \exp(-2\pi i k x) d\lambda(x),$$

such that it is the integral of a differentiable function on a compact interval and integration by parts can be performed, for instance because these results have been shown for the Riemann integral. It remains to take the limit $K \rightarrow \infty$, and this is possible by dominated convergence as the integrand is bounded by Cg which is in L^1 .

- The ordinary differential equation (4) admits a unique solution given by

$$\hat{f}(k) = \hat{f}(0) \exp(-2\pi^2 k) = \sqrt{2\pi} \exp(-2\pi^2 k^2).$$

- Similarly, we can check that the Fourier transform of $h(x) = f(ax) = \exp(-a^2 x^2/2)$ is given by

$$\hat{h}(k) = \frac{1}{a} \hat{f}(k/a) = \frac{\sqrt{2\pi}}{a} \exp(-2\pi^2 k^2/a^2).$$

We want to find a such that h is its own Fourier transform, i.e.,

$$\frac{\sqrt{2\pi}}{a} \exp(-2\pi^2 k^2/a^2) = \exp(-a^2 k^2/2),$$

which is satisfied for $a = \sqrt{2\pi}$. We conclude that $h(x) = \exp(-\pi x^2)$ equal to its own Fourier transform. \square

Exercise 4 (Convolutions, II). *Recall for g a bounded measurable function on \mathbb{R} the convolution product $f \star g$ on $L^1(\mathbb{R})$ (i.e. for $f \in L^1$), defined by*

$$(f \star g)(x) := \int_{\mathbb{R}} f(y)g(x-y)dy.$$

Suppose now that g is also integrable, i.e. that $g \in L^1(\mathbb{R})$. Show that the following identity holds:

$$\mathcal{F}(f \star g) = \mathcal{F}(f) \cdot \mathcal{F}(g),$$

where \cdot stands for pointwise multiplication.

Proof. We have already shown that $f \star g \in L^1$. We can compute its Fourier coefficients:

$$\mathcal{F}(f \star g)(k) = \int_{\mathbb{R}} (f \star g)(x) \exp(2\pi i k x) dx = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x-y)g(y) dy \right) \exp(2\pi i k x) dx.$$

Since the integrand is bounded by $|f(x-y)g(y) \exp(2\pi i k x)| \leq |f(x-y)g(y)|$ which is integrable as a function on \mathbb{R}^2 , we can use Fubini's theorem to exchange the integrals. We obtain

$$\begin{aligned} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x-y) \exp(2\pi i k x) dx \right) g(y) dy &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x-y) \exp(2\pi i k(x-y)) dx \right) g(y) \exp(2\pi i k y) dy \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x) \exp(2\pi i k x) dx \right) g(y) \exp(2\pi i k y) dy \\ &= \int_{\mathbb{R}} \mathcal{F}f(k)g(y) \exp(2\pi i k y) dy = \mathcal{F}f(k) \cdot \mathcal{F}g(k), \end{aligned}$$

where we have used translation invariance of the Lebesgue measure on the second line. \square