Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 12

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Markov inequality). Let f be integrable and non-negative and let 5 > 0. Prove that

A{z : f(z) > B}) < ([ fdN)/B.
Conclude that if f,g € L'(E) satisfy ||f — gl1 <&, then \({z : |f(z) — g(z)] > A}) <e/A.

Proof. For the first part, by monotonicity of the integral:

f 1
A({z: f(z) > B}) = /l{m:f(a:)>6}d)\ < /Bl{w:f(x)>ﬂ}d/\ < 3 fdA.
The second part follows immediately from applying Markov’s inequality to |f — g|. O

Exercise 2. Consider the form (-,-) on L*([0,1],C) defined for f,g € L?([0,1],C) by
(f,9) = fgd,
(0,1]
is a (hermitian / complex) scalar pmducﬂ turning L?([0,1], C) into a complex vector space. Then,

similarly to Ezercise 3, sheet 3, show that (exp(2min-))nez are orthonormal functions in L?([0,1]).

Proof. The form (-,-) is clearly sesquilinear by the linearity properties of the integral. Also, for
any f € L2([0,1],C), (f, f) is real and positive since ff = |f|* is. Finally, for f,g € L2([0,1],C),
we check that

fgar= [ Re(f7) d)\+i/ Im(f3) dA
[0,1] [0,1] [0,1]
= Re(f g) d\ — z/ Im(f g) dA
[0,1] [0,1]

[0,1]

where we used the definition of the integral of a complex-valued function and linearity.

For orthogonality now, since both the real and the imaginary part of (exp(2min-)),cz are
continuous on [0, 1], the Lebesgue and Riemann integrals coincide and we can use standard inte-
gration techniques. We need to integrate exp(2minz)exp(2rimz) = exp(2minx) exp(—2mimx) =
exp(2mi(n —m)zx). We have two cases, either m = n and

1
/ exp(2minz)exp(2rimaz)dA(z) = 1,
0

or n # m and
1 1
/ exp(2minz)exp(2mimaz)dA(x) :/ exp(2mi(n —m)x)dA(x)
0 0

= /0 cos(2m(n — / n(2r(n —m)x)d(x)
:m([sm (27(n —m ] [ — cos( 27T(n—m)x)](l)) =0,

which shows that (exp(2min-)),cz is an orthonormal sequence. O

1] or positive—deﬁniteness of the scalar product, one would need to 1dent1fy functions in 112 07 1 ,(C that are
equal almost every where, like in the real case.



Exercise 3. Show that, on an inner product space (V,{-,-)), the application v — +/(v,v) always
defines a norm.

Proof. Define
[oll = v/ {v,0).

We check the three norm axioms in turn. Since (v,v) > 0, we have ||v|| > 0. Moreover,
[lv] =0 <= (v,v) =0 <= v=0.

For any scalar «,

lawll = /e, av) = /oo, v) = [a [Jo]l-
Lastly, we prove the triangular inequality using Cauchy-Schwartz. For v,w € V,
lv+wl|? = (v +w,v+w) = [Jo]|* +2 (v, w) + [w]|* < ol + 2 [[olllwl] + lw]* = (lv]| + [[w])*.

Taking square roots gives
[v 4wl < [|vf| + [lwl]

Thus, all three norm axioms hold and || - || is indeed a norm on V. O

Exercise 4. Let v1,vs,... be orthonormal vectors in a complete inner product space V. Show that
for any w € V, we have that W := ;< (v;, w)v; is well-defined and satisfies 1) ||| < ||w|| and 2)
(w—w,v;) =0 for all i > 1. B

Proof. Let (v;);>1 be orthonormal nonzero vectors in the inner product space V, and fix w € V.
For each N > 1 define the N-term projection

We can compute

N N N N
2
<’LU—U}N,'LUN Z ’Ula Z v]7 v]7 Uk?a ZI Vj, W Z|<U]aw>| :Ov
j=1 j=1

i=1 J,k=1
so that
2
lwn|]” = (w,wn) < lwnllfwl].
It follows that Y. |(vi, w)|* converges, and therefore that wy is Cauchy: by completeness of V,
it therefore converges to some element w = ;010 (vi, w) v;. Finally, for each fixed index j > 1 and
each N > j, orthogonality gives
N
<’LU WN, U] - w UJ Z Vs, W Ulvv] - <U]a > <U]aw> *0
i=1
But now finally
[(w =, v5)| = [(w —wn,v5) + (wy =W, 05)] < lwy — @[]
which goes to zero as n — oo, proving the result. O

Exercise 5.



1. Show that in any inner product space (V, (-,-)) with orthonormal basis (v;);>1, for anyw € V

the norm
n

lw =" civi

i=1

is (strictly) minimized by ¢; = (v;, w).

2. Using this, show the second item of Lemma 3.16, i.e. that for (V,{(-,-)) an inner product
space admitting an orthonormal basis (v;)i>1, the writing w = Y.<, a;v; of any w € V is
such that each a; is uniquely determined, and actually equal to (v,v;).

Proof. 1. Using linearity of the inner product, we get
n n n n n
— Z Civ;, W — Z civi) = (w,w) — 2(w, Z civ;) + <Z CiVi, Z Civ;)
i=1 i=1 i=1 i=1 i=1
n n
= (w,w) — 2Zci<w,vi> + Zc?(vi,vi>
i=1 i=1
n n
= (w,w) — QZci<w,vi> + Zcf
i=1 1=1

This is a convex function in ¢1,...,¢,, hence taking partial derivatives with respect to c;
and setting the result equal to zero, we get ¢; = (v;,w) for ¢ € [n], which minimizes the
expression. Alternatively, it is a second order polynomial, for which it is clear that the choice
¢; = (v;,w) is a strict minimizer.

2. Suppose there exists another writing w = )., bjv;, with some K > 1 such that bx #
(w,vg). By 1), we know that for some § > 0 we have

K K
—Zbivi = Z w, v;) + 6.
i=1 i—1
But now for any N > K,
N K 2 N 2
vaz Zwvz val Zwvl Z biv; — Z (w, v;) v;
i=1 =1 i=K+1 i=K+1

K K 2
2( bewi Zwvz > =42
i=1 i=1

which is a contradiction to the convergence of both series on the left-hand side to w in V.
O

Exercise 6. Let I>(N) denote the set of all real-valued sequences ¢ = (¢;)i>1 with Y5, ¢; < 0.

Show that equipping it with (coordinate-wise) addition and inner product (a, b) D isq aibs turns
it into an inner product space. -

Proof. We check that all properties of the inner product hold. Symmetry follows from the fact that
aibi = bia; for all 4 > 1. For linearity, note that for a,b € I>(N), 32,5, laibi| < 32,5  af + b7 < o0
which shows that the product of the sequences converge absolutely. This enables us to split the



sum in the following way

(\a+ pb,e) = (Aa; + pby)e;

i>1
=AY aici+p Y bici
i>1 i>1

= \a, ) + u(b, ¢).

Finally, non-negativity follows from (a,a) = ;5 a? > 0. Note also that by Cauchy-Schwartz, if
¢, € LA(N), A, € R, then pc+ A’ € L2(N) as ||uc + A||* = (uc + A, pe + ) < p2|le||® +
A2||/||* < 400 by assumption. O



