
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 12
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Markov inequality). Let f be integrable and non-negative and let β > 0. Prove that
λ({x : f(x) > β}) ≤ (

∫
fdλ)/β.

Conclude that if f, g ∈ L1(E) satisfy ∥f − g∥1 ≤ ε, then λ({x : |f(x)− g(x)| > λ}) ≤ ε/λ.

Proof. For the first part, by monotonicity of the integral:

λ({x : f(x) > β}) =
∫

1{x:f(x)>β}dλ ≤
∫

f

β
1{x:f(x)>β}dλ ≤ 1

β

∫
fdλ.

The second part follows immediately from applying Markov’s inequality to |f − g|.

Exercise 2. Consider the form ⟨·, ·⟩ on L2([0, 1],C) defined for f, g ∈ L2([0, 1],C) by

⟨f, g⟩ =
∫
[0,1]

f g dλ,

is a (hermitian / complex) scalar product1, turning L2([0, 1],C) into a complex vector space. Then,
similarly to Exercise 3, sheet 3, show that (exp(2πin·))n∈Z are orthonormal functions in L2([0, 1]).

Proof. The form ⟨·, ·⟩ is clearly sesquilinear by the linearity properties of the integral. Also, for
any f ∈ L2([0, 1],C), ⟨f, f⟩ is real and positive since ff = |f |2 is. Finally, for f, g ∈ L2([0, 1],C),
we check that

⟨f, g⟩ =
∫
[0,1]

f g dλ =

∫
[0,1]

Re(f g) dλ+ i

∫
[0,1]

Im(f g) dλ

=

∫
[0,1]

Re(f g) dλ− i

∫
[0,1]

Im(f g) dλ

=

∫
[0,1]

g f dλ = ⟨g, f⟩,

where we used the definition of the integral of a complex-valued function and linearity.
For orthogonality now, since both the real and the imaginary part of (exp(2πin·))n∈Z are

continuous on [0, 1], the Lebesgue and Riemann integrals coincide and we can use standard inte-
gration techniques. We need to integrate exp(2πinx)exp(2πimx) = exp(2πinx) exp(−2πimx) =
exp(2πi(n−m)x). We have two cases, either m = n and∫ 1

0

exp(2πinx)exp(2πimx)dλ(x) = 1,

or n ̸= m and∫ 1

0

exp(2πinx)exp(2πimx)dλ(x) =

∫ 1

0

exp(2πi(n−m)x)dλ(x)

=

∫ 1

0

cos(2π(n−m)x)dλ(x) + i

∫ 1

0

sin(2π(n−m)x)dλ(x)

=
1

2π(n−m)

([
sin(2π(n−m)x)

]1
0
+
[
− cos(2π(n−m)x)

]1
0

)
= 0,

which shows that (exp(2πin·))n∈Z is an orthonormal sequence.
1For positive-definiteness of the scalar product, one would need to identify functions in L2([0, 1],C) that are

equal almost everywhere, like in the real case.



Exercise 3. Show that, on an inner product space (V, ⟨·, ·⟩), the application v 7→
√

⟨v, v⟩ always
defines a norm.

Proof. Define
∥v∥ =

√
⟨v, v⟩ .

We check the three norm axioms in turn. Since ⟨v, v⟩ ≥ 0, we have ∥v∥ ≥ 0. Moreover,

∥v∥ = 0 ⇐⇒ ⟨v, v⟩ = 0 ⇐⇒ v = 0.

For any scalar α,
∥αv∥ =

√
⟨αv, αv⟩ =

√
α2⟨v, v⟩ = |α| ∥v∥.

Lastly, we prove the triangular inequality using Cauchy-Schwartz. For v, w ∈ V ,

∥v + w∥2 = ⟨v + w, v + w⟩ = ∥v∥2 + 2 ⟨v, w⟩+ ∥w∥2 ≤ ∥v∥2 + 2 ∥v∥∥w∥+ ∥w∥2 = (∥v∥+ ∥w∥)2.

Taking square roots gives
∥v + w∥ ≤ ∥v∥+ ∥w∥.

Thus, all three norm axioms hold and ∥ · ∥ is indeed a norm on V .

Exercise 4. Let v1, v2, . . . be orthonormal vectors in a complete inner product space V . Show that
for any w ∈ V , we have that ŵ :=

∑
i≥1⟨vi, w⟩vi is well-defined and satisfies 1) ∥ŵ∥ ≤ ∥w∥ and 2)

⟨w − ŵ, vi⟩ = 0 for all i ≥ 1.

Proof. Let (vi)i≥1 be orthonormal nonzero vectors in the inner product space V , and fix w ∈ V .
For each N ≥ 1 define the N -term projection

wN =

N∑
i=1

⟨vi, w⟩ vi.

We can compute

⟨w − wN , wN ⟩ =
N∑
i=1

⟨w, ⟨vi, w⟩ vi⟩−
N∑

j,k=1

⟨⟨vj , w⟩ vj , ⟨vk, w⟩ vk⟩ =
N∑
j=1

|⟨vj , w⟩|2−
N∑
j=1

|⟨vj , w⟩|2 = 0,

so that
∥wN∥2 = ⟨w,wN ⟩ ≤ ∥wN∥∥w∥.

It follows that
∑+∞

i=1 |⟨vi, w⟩|2 converges, and therefore that wN is Cauchy: by completeness of V ,
it therefore converges to some element ŵ =

∑+∞
i=1 ⟨vi, w⟩ vi. Finally, for each fixed index j ≥ 1 and

each N ≥ j, orthogonality gives

〈
w − wN , vj

〉
= ⟨w, vj⟩ −

N∑
i=1

⟨vi, w⟩ ⟨vi, vj⟩ = ⟨vj , w⟩ − ⟨vj , w⟩ = 0.

But now finally

|⟨w − ŵ, vj⟩| = |⟨w − wN , vj⟩+ ⟨wN − ŵ, vj⟩| ≤ ∥wN − ŵ∥∥vj∥

which goes to zero as n → ∞, proving the result.

Exercise 5.



1. Show that in any inner product space (V, ⟨·, ·⟩) with orthonormal basis (vi)i≥1, for any w ∈ V
the norm

∥w −
n∑

i=1

civi∥

is (strictly) minimized by ci = ⟨vi, w⟩.

2. Using this, show the second item of Lemma 3.16, i.e. that for (V, ⟨·, ·⟩) an inner product
space admitting an orthonormal basis (vi)i≥1, the writing w =

∑
i≥1 aivi of any w ∈ V is

such that each ai is uniquely determined, and actually equal to ⟨v, vi⟩.

Proof. 1. Using linearity of the inner product, we get

⟨w −
n∑

i=1

civi, w −
n∑

i=1

civi⟩ = ⟨w,w⟩ − 2⟨w,
n∑

i=1

civi⟩+ ⟨
n∑

i=1

civi,

n∑
i=1

civi⟩

= ⟨w,w⟩ − 2

n∑
i=1

ci⟨w, vi⟩+
n∑

i=1

c2i ⟨vi, vi⟩

= ⟨w,w⟩ − 2

n∑
i=1

ci⟨w, vi⟩+
n∑

i=1

c2i

This is a convex function in c1, . . . , cn, hence taking partial derivatives with respect to ci
and setting the result equal to zero, we get ci = ⟨vi, w⟩ for i ∈ [n], which minimizes the
expression. Alternatively, it is a second order polynomial, for which it is clear that the choice
ci = ⟨vi, w⟩ is a strict minimizer.

2. Suppose there exists another writing w =
∑

i≥1 bivi, with some K ≥ 1 such that bK ̸=
⟨w, vK⟩. By 1), we know that for some δ > 0 we have∥∥∥∥∥w −

K∑
i=1

bivi

∥∥∥∥∥ =

∥∥∥∥∥w −
K∑
i=1

⟨w, vi⟩ vi

∥∥∥∥∥+ δ.

But now for any N ≥ K,∥∥∥∥∥
N∑
i=1

bivi −
N∑
i=1

⟨w, vi⟩ vi

∥∥∥∥∥
2

=

∥∥∥∥∥
K∑
i=1

bivi −
K∑
i=1

⟨w, vi⟩ vi

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑

i=K+1

bivi −
N∑

i=K+1

⟨w, vi⟩ vi

∥∥∥∥∥
2

≥

( ∥∥∥∥∥w −
K∑
i=1

bivi

∥∥∥∥∥−
∥∥∥∥∥w −

K∑
i=1

⟨w, vi⟩ vi

∥∥∥∥∥
)2

= δ2

which is a contradiction to the convergence of both series on the left-hand side to w in V .

Exercise 6. Let l2(N) denote the set of all real-valued sequences c̄ = (ci)i≥1 with
∑

i≥1 c
2
i < ∞.

Show that equipping it with (coordinate-wise) addition and inner product ⟨ā, b̄⟩ =
∑

i≥1 aibi turns
it into an inner product space.

Proof. We check that all properties of the inner product hold. Symmetry follows from the fact that
aibi = biai for all i ≥ 1. For linearity, note that for ā, b̄ ∈ l2(N),

∑
i≥1 |aibi| ≤

∑
i≥1 a

2
i + b2i < ∞

which shows that the product of the sequences converge absolutely. This enables us to split the



sum in the following way

⟨λā+ µb̄, c̄⟩ =
∑
i≥1

(λai + µbi)ci

= λ
∑
i≥1

aici + µ
∑
i≥1

bici

= λ⟨ā, c̄⟩+ µ⟨b̄, c̄⟩.

Finally, non-negativity follows from ⟨ā, ā⟩ =
∑

i≥1 a
2
i ≥ 0. Note also that by Cauchy-Schwartz, if

c, c′ ∈ L2(N), λ, µ ∈ R, then µc + λc′ ∈ L2(N) as ∥µc+ λc′∥2 = ⟨µc + λc′, µc + λc′⟩ ≤ µ2∥c∥2 +
λ2∥c′∥2 < +∞ by assumption.


