

Exercise sheet 11

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Translations and dilations). *Let $f \in L^1(\mathbb{R})$, $\alpha \in \mathbb{R}$, $\mu \in \mathbb{R}^*$. Prove that*

$$\begin{aligned}\int_{\mathbb{R}} f(x - \alpha) d\lambda(x) &= \int_{\mathbb{R}} f(x) d\lambda(x), \\ \int_{\mathbb{R}} f(\mu x) d\lambda(x) &= \frac{1}{\mu} \int_{\mathbb{R}} f(x) d\lambda(x).\end{aligned}$$

Proof. Consider first E a measurable set. From translation invariance and the dilation property of the Lebesgue measure (see the construction in the notes), which follows from $\lambda([a - \alpha, b - \alpha]) = (a - \alpha) - (b - \alpha) = \lambda([a, b])$ and $\lambda([\mu a, \mu b]) = \mu b - \mu a = \mu \lambda([a, b])$, one has that the two equations in the statement hold for $f = \mathbf{1}_E$. More generally, it follows by linearity of these equations for all f finite simple functions $f = \sum_{i=0}^n \alpha_i \mathbf{1}_{E_i}$:

$$\begin{aligned}\int_{\mathbb{R}} f(x - \alpha) d\lambda(x) &= \int_{\mathbb{R}} \sum_{i=0}^n \alpha_i \mathbf{1}_{E_i + \alpha} d\lambda(x) = \sum_{i=0}^n \alpha_i \lambda(E_i + \alpha) = \sum_{i=0}^n \alpha_i \lambda(E_i) = \int_{\mathbb{R}} f(x) d\lambda(x), \\ \int_{\mathbb{R}} f(\mu x) d\lambda(x) &= \int_{\mathbb{R}} \sum_{i=0}^n \alpha_i \mathbf{1}_{E_i / \mu} d\lambda(x) = \sum_{i=0}^n \alpha_i \lambda(E_i / \mu) = \sum_{i=0}^n \alpha_i \frac{1}{\mu} \lambda(E_i) = \frac{1}{\mu} \int_{\mathbb{R}} f(x) d\lambda(x).\end{aligned}$$

To conclude in the general case, take $f \in L^1(\mathbb{R})$, and take an increasing sequence of simple functions $(f_n)_{n \geq 1}$ such that $f_n \xrightarrow[n \rightarrow \infty]{} f$ in $L^1(\mathbb{R})$. One has for the first property:

$$\int_{\mathbb{R}} f_n(x - \alpha) d\lambda(x) = \int_{\mathbb{R}} f_n(x) d\lambda(x),$$

and the right-hand side converges to $\int_{\mathbb{R}} f(x - \alpha) d\lambda(x)$ as $n \rightarrow \infty$ by the monotone convergence theorem (which also shows that $f(\cdot - \alpha)$ is integrable), and the right-hand side to $\int_{\mathbb{R}} f(x) d\lambda(x)$ as $n \rightarrow \infty$. The second property follows almost identically. \square

Exercise 2. *The aim is to calculate $I = \int_{(0, \infty)} \exp(-x) \frac{\sin^2(x)}{x} d\lambda(x)$. To do this, we define $f(x, y) = \exp(-x) \sin(2xy)$ and use Fubini:*

- Show that $f(x, y)$ is integrable over $(0, \infty) \times [0, 1]$
- Show that when first integrating y over $[0, 1]$ we obtain exactly I .
- On the other hand, calculate explicitly the integral by first integrating over x . Integration by parts might be useful.

Proof. Recall that we have seen with Fubini's theorem that $g = f \mathbf{1}_{(0, +\infty) \times (0, 1)}$ is integrable on \mathbb{R}^2 if the integral of its absolute value is finite when integrating first one variable, then the other. Here, we have

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x, y) \mathbf{1}_{(0, +\infty) \times (0, 1)}| d\lambda(y) \right) d\lambda(x) \leq \int_{\mathbb{R}} \exp(-x) \mathbf{1}_{(0, +\infty)} d\lambda(x) < +\infty$$

which is finite as seen in previous exercise sheets.

For the second part of the exercise we first integrate $f(x, y)$ over y for $x \in (0, +\infty)$ fixed. Since $f(x, \cdot)$ is continuous on $[0, 1]$ we can use standard integration techniques.

$$\begin{aligned} \int_{[0,1]} f(x, y) d\lambda(y) &= \exp(-x) \int_{[0,1]} \sin(2xy) d\lambda(y) \\ &= \exp(-x) \left[\frac{1}{2x} (-\cos(2xy)) \right]_{y=0}^{y=1} \\ &= \exp(-x) \frac{1 - \cos(2x)}{2x} = \exp(-x) \frac{\sin^2(x)}{x}. \end{aligned}$$

Integrating the above expression over x , we recover I , which proves the second part of the exercise.

For the third part, we use integration by parts twice. For $N \geq 1$, we have that

$$\begin{aligned} \int_0^N \exp(-x) \sin(2xy) d\lambda(x) &= \left[-\exp(-x) \sin(2xy) \right]_{x=0}^{x=N} - \int_0^N -\exp(-x) 2y (-\cos(2xy)) d\lambda(x) \\ &= -2y \int_0^N \exp(-x) \cos(2xy) d\lambda(x) - \exp(-N) \sin(2Ny). \end{aligned}$$

We apply integration by parts again.

$$\begin{aligned} \int_0^N \exp(-x) \cos(2xy) d\lambda(x) &= \left[-\exp(-x) \cos(2xy) \right]_{x=0}^{x=N} - \int_0^N -\exp(-x) 2y \sin(2xy) d\lambda(x) \\ &= -1 + 2y \int_0^N \exp(-x) \sin(2xy) d\lambda(x) - \exp(-N) \cos(2Ny). \end{aligned}$$

We can now take the limit $N \rightarrow \infty$ as all terms individually converge, and the integral does by the dominated convergence theorem: $\exp(-\cdot) \sin(2 \cdot y) \mathbf{1}_{(0,N)}$ converges pointwise to $\exp(-\cdot) \sin(2 \cdot y) \mathbf{1}_{(0,+\infty)}$, and is bounded in absolute value by $\exp(-\cdot) \mathbf{1}_{(0,+\infty)}$ which is integrable.

We therefore get that

$$\int_0^\infty \exp(-x) \sin(2xy) d\lambda(x) = \frac{2y}{1 + 4y^2}.$$

Now, using Fubini we conclude that

$$I = \int_0^1 \frac{2y}{1 + 4y^2} d\lambda(y) = \left[\frac{\log(1 + 4y^2)}{4} \right]_0^1 = \frac{\log(5)}{4},$$

using standard integration techniques here again since the integrand is continuous. \square

Remark 1. *It's important here to carry out the integration by parts on a bounded interval first, then taking the limit using convergence theorems, to avoid any integration issue. It's the same for functions only continuous over an open interval (for instance, $f : x \mapsto x^{-\alpha}$ on $[0, 1]$).*

Exercise 3 (Convolutions, I). *Fix g a bounded integrable function on \mathbb{R} and consider the convolution product $f \star g$ on $L^1(\mathbb{R})$ (i.e. for $f \in L^1$), defined by*

$$(f \star g)(x) := \int_{\mathbb{R}} f(y)g(x - y) dy.$$

1. *Show that $f \star g$ on $L^1(\mathbb{R})$ is well-defined. Is it also well-defined on $\mathcal{L}^1(\mathbb{R})$?*
2. *Show that the convolution product is bilinear, and commutative if f, g are both bounded and in L^1 .*

Proof. 1. We have to show that the integral makes sense, i.e. that $f(\cdot)g(x - \cdot)$ is integrable for all $x \in \mathbb{R}$. By assumption, let $C > 0$ be such that $|g| \leq C$. Note first that

$$\left| \int_{\mathbb{R}} f(x - y)g(y)dy \right| \leq C \int_{\mathbb{R}} |f(x - y)|dy = C \int_{\mathbb{R}} |f(y)|dy = C\|f\|_{L^1} < +\infty.$$

In the first equality, we used the translation invariance of the Lebesgue measure. Now by a change of variables (a translation once again) this shows that $\int_{\mathbb{R}} f(y)g(x - y)dy$ is also well-defined and therefore the convolution product makes sense. We now need to see whether $f * g \in L^1$. We claim that $(x, y) \mapsto f(y)g(x - y)$, which is clearly measurable as a composition and product of measurable functions, is integrable over \mathbb{R}^2 . Indeed,

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y)g(x - y)|dx \right) dy = \int_{\mathbb{R}} |f(y)| \left(\int_{\mathbb{R}} |g(x - y)|dx \right) dy = \|f\|_1 \|g\|_1 < +\infty$$

where we have used translation invariance. It now follows from Fubini's theorem (or rather, the converse thereof) that $(x, y) \mapsto f(y)g(x - y)$ is integrable and its integral, bounded by $\|f\|_1 \|g\|_1$, can also be computed as

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(y)g(x - y)dy \right) dx = \int_{\mathbb{R}} (f * g)(x)dx.$$

Consequently, $f * g$ is indeed in L^1 (and $\|f * g\|_1 \leq \|f\|_1 \|g\|_1$).

Lastly, to check that the convolution product is well-defined on $\mathcal{L}^1(\mathbb{R})$, we must check that if $f, h \in L^1(\mathbb{R})$ are such that $f = h$ almost everywhere, then $f * g = h * g$. Indeed, for all $x \in \mathbb{R}$,

$$|(f * g)(x) - (h * g)(x)| \leq C \int_{\mathbb{R}} |f(y) - h(y)|dy = 0$$

since $|f - h| = 0$ a.e.

2. If $f, h \in L^1$, $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta h \in L^1$ and linearity follows directly:

$$((\alpha f + \beta h) * g)(x) = \int_{\mathbb{R}} (\alpha f + \beta h)(y)g(x - y)dy = \alpha(f * g)(x) + \beta(h * g)(x).$$

Commutativity follows from a change of variables:

$$(f * g)(x) = \int_{\mathbb{R}} f(y)g(x - y)dy = \int_{\mathbb{R}} f(x - y)g(y)dy = (g * f)(x).$$

□

Exercise 4. Find a function $f : \mathbb{R} \rightarrow \mathbb{R}$ that is integrable but not square integrable. Find also a function $f : \mathbb{R} \rightarrow \mathbb{R}$ that is square-integrable, but not integrable.

However, prove that if E satisfies $\lambda(E) < \infty$, then $L^1(E) \supset L^2(E)$.

Proof. Consider $f : x \mapsto x^{-1/2} \mathbf{1}_{0 < x < 1}$, $g : x \mapsto 1/x \cdot \mathbf{1}_{x > 1}$. We have already seen in previous exercise sheets that f and g^2 are Lebesgue (and Riemann) integrable, whereas f^2 and g are not.

If $\lambda(E) < \infty$, then for any $f \in L^2(E)$, we can decompose:

$$|f| = |f| \mathbf{1}_{|f| \leq 1} + |f| \mathbf{1}_{|f| > 1} \leq |f| \mathbf{1}_{|f| \leq 1} + |f|^2 \mathbf{1}_{|f| > 1} \leq 1 + |f|^2,$$

and the latter is integrable by the assumptions, with integral $\lambda(E) + \|f\|_2^2$ by linearity. We conclude that $|f|$ is integrable (i.e. $f \in L^1$) and $\|f\|_1 \leq \lambda(E) + \|f\|_2^2$. □

Exercise 5. Show that for all $p \geq 1$, there exists c_p such that for all $f, g \in L^p$,

$$\int |f + g|^p d\lambda \leq c_p \left(\int |f|^p d\lambda + \int |g|^p d\lambda \right)$$

Hint: you might want to use the inequality that for all $p \geq 1$ there exists c_p such that for all $a, b > 0$:

$$(a + b)^p \leq c_p(a^p + b^p).$$

Prove this inequality by for example using convexity of $x \mapsto x^p$ or otherwise.

Proof. Let $p \geq 1$ and suppose $f, g \in L^p(\mathbb{R})$, so that

$$\int_{\mathbb{R}} |f(x)|^p dx < \infty \quad \text{and} \quad \int_{\mathbb{R}} |g(x)|^p dx < \infty.$$

Since $t \mapsto t^p$ is convex on $[0, \infty)$, for all $a, b \geq 0$ we have

$$(a + b)^p = \left(2 \cdot \frac{a+b}{2}\right)^p = 2^p \left(\frac{a+b}{2}\right)^p \leq 2^p \cdot \frac{a^p + b^p}{2} = 2^{p-1}(a^p + b^p).$$

Thus,

$$|f(x) + g(x)|^p \leq 2^{p-1}(|f(x)|^p + |g(x)|^p).$$

Integrating over \mathbb{R} gives

$$\int_{\mathbb{R}} |f + g|^p dx = \int_{\mathbb{R}} |f(x) + g(x)|^p dx \leq 2^{p-1} \int_{\mathbb{R}} (|f(x)|^p + |g(x)|^p) dx < \infty,$$

as wanted. □