
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 11
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Translations and dilations). Let f ∈ L1(R), α ∈ R, µ ∈ R∗. Prove that∫
R
f(x− α)dλ(x) =

∫
R
f(x)dλ(x),∫

R
f(µx)dλ(x) =

1

µ

∫
R
f(x)dλ(x).

Proof. Consider first E a measurable set. From translation invariance and the dilation property
of the Lebesgue measure (see the construction in the notes), which follows from λ([a−α, b−α]) =
(a− α)− (b−α) = λ([a, b]) and λ([µa, µb]) = µb− µa = µλ([a, b]), one has that the two equations
in the statement hold for f = 1E . More generally, it follows by linearity of these equations for all
f finite simple functions f =

∑n
i=0 αi1Ei :∫

R
f(x− α)dλ(x) =

∫
R

n∑
i=0

αi1Ei+αdλ(x) =

n∑
i=0

αiλ(Ei + α) =

n∑
i=0

αiλ(Ei) =

∫
R
f(x)dλ(x),

∫
R
f(µx)dλ(x) =

∫
R

n∑
i=0

αi1Ei/µdλ(x) =

n∑
i=0

αiλ(Ei/µ) =

n∑
i=0

αi
1

µ
λ(Ei) =

1

µ

∫
R
f(x)dλ(x).

To conclude in the general case, take f ∈ L1(R), and take an increasing sequence of simple
functions (fn)n≥1 such that fn −−−−→

n→∞
f in L1(R). One has for the first property:∫

R
fn(x− α)dλ(x) =

∫
R
fn(x)dλ(x),

and the right-hand side converges to
∫
R f(x − α)dλ(x) as n → ∞ by the monotone convergence

theorem (which also shows that f(· − α)) is integrable), and the right-hand side to
∫
R f(x)dλ(x)

as n → ∞. The second property follows almost identically.

Exercise 2. The aim is to calculate I =

∫
(0,∞)

exp(−x)
sin2(x)

x
dλ(x). To do this, we define

f(x, y) = exp(−x) sin(2xy) and use Fubini:

• Show that f(x, y) is integrable over (0,∞)× [0, 1]

• Show that when first integrating y over [0, 1] we obtain exactly I.

• On the other hand, calculate explicitly the integral by first integrating over x. Integration by
parts might be useful.

Proof. Recall that we have seen with Fubini’s theorem that g = f1(0,+∞)×(0,1) is integrable on
R2 if the integral of its absolute value is finite when integrating first one variable, then the other.
Here, we have∫

R

(∫
R

∣∣f(x, y)1(0,+∞)×(0,1)

∣∣dλ(y))dλ(x) ≤
∫
R
exp(−x)1(0,+∞)dλ(x) < +∞

which is finite as seen in previous exercise sheets.



For the second part of the exercise we first integrate f(x, y) over y for x ∈ (0,+∞) fixed. Since
f(x, ·) is continuous on [0, 1] we can use standard integration techniques.∫

[0,1]

f(x, y)dλ(y) = exp(−x)

∫
[0,1]

sin(2xy)dλ(y)

= exp(−x)
[ 1

2x
(− cos(2xy)

]y=1

y=0

= exp(−x)
1− cos(2x)

2x
= exp(−x)

sin2(x)

x
.

Integrating the above expression over x, we recover I, which proves the second part of the exercise.

For the third part, we use integration by parts twice. For N ≥ 1, we have that∫ N

0

exp(−x) sin(2xy)dλ(x) =
[
− exp(−x) sin(2xy)

]x=N

x=0
−
∫ N

0

− exp(−x)2y(− cos(2xy))dλ(x)

= −2y

∫ N

0

exp(−x) cos(2xy)dλ(x)− exp(−N) sin(2Ny).

We apply integration by parts again.∫ N

0

exp(−x) cos(2xy)dλ(x) =
[
− exp(−x) cos(2xy)

]x=N

x=0
−
∫ N

0

− exp(−x)2y sin(2xy)dλ(x)

= −1 + 2y

∫ N

0

exp(−x) sin(2xy)dλ(x)− exp(−N) cos(2Ny).

We can now take the limit N → ∞ as all terms individually converge, and the integral does by
the dominated convergence theorem: exp(−·) sin(2 · y)1(0,N) converges pointwise to exp(−·) sin(2 · y)1(0,+∞),
and is bounded in absolute value by exp(−·)1(0,+∞) which is integrable.

We therefore get that ∫ ∞

0

exp(−x) sin(2xy)dλ(x) =
2y

1 + 4y2
.

Now, using Fubini we conclude that

I =

∫ 1

0

2y

1 + 4y2
dλ(y) =

[ log(1 + 4y2
)

4

]1
0
=

log(5)

4
,

using standard integration techniques here again since the integrand is continuous.

Remark 1. It’s important here to carry out the integration by parts on a bounded interval first,
then taking the limit using convergence theorems, to avoid any integration issue. It’s the same for
functions only continuous over an open interval (for instance, f : x 7→ x−α on [0, 1]).

Exercise 3 (Convolutions, I). Fix g a bounded integrable function on R and consider the convo-
lution product f ⋆ g on L1(R) (i.e. for f ∈ L1), defined by

(f ⋆ g)(x) :=

∫
R
f(y)g(x− y)dy.

1. Show that f ⋆ g on L1(R) is well-defined. Is it also well-defined on L1(R)?

2. Show that the convolution product is bilinear, and commutative if f, g are both bounded and
in L1.



Proof. 1. We have to show that the integral makes sense, i.e. that f(·)g(x− ·) is integrable for
all x ∈ R. By assumption, let C > 0 be such that |g| ≤ C. Note first that∣∣∣∣∫

R
f(x− y)g(y)dy

∣∣∣∣ ≤ C

∫
R
|f(x− y)|dy = C

∫
R
|f(y)|dy = C∥f∥L1 < +∞.

In the first equality, we used the translation invariance of the Lebesgue measure. Now
by a change of variables (a translation once again) this shows that

∫
R f(y)g(x− y)dy is also

well-defined and therefore the convolution product makes sense. We now need to see whether
f ∗g ∈ L1. We claim that (x, y) 7→ f(y)g(x−y), which is clearly measurable as a composition
and product of measurable functions, is integrable over R2. Indeed,∫

R

(∫
R
|f(y)g(x− y)|dx

)
dy =

∫
R
|f(y)|

(∫
R
|g(x− y)|dx

)
dy = ∥f∥1∥g∥1 < +∞

where we have used translation invariance. It now follows from Fubini’s theorem (or rather,
the converse thereof) that (x, y) 7→ f(y)g(x − y) is integrable and its integral, bounded by
∥f∥1∥g∥1, can also be computed as∫

R

(∫
R
f(y)g(x− y)dy

)
dx =

∫
R
(f ∗ g)(x)dx.

Consequently, f ∗ g is indeed in L1 (and ∥f ∗ g∥1 ≤ ∥f∥1∥g∥1).
Lastly, to check that the convolution product is well-defined on L1(R), we must check that
if f, h ∈ L1(R) are such that f = h almost everywhere, then f ∗ g = h ∗ g. Indeed, for all
x ∈ R,

|(f ∗ g)(x)− (h ∗ g)(x)| ≤ C

∫
R
|f(y)− h(y)|dλ(y) = 0

since |f − h| = 0 a.e.

2. If f, h ∈ L1, α, β ∈ R, then αf + βh ∈ L1 and linearity follows directly:

((αf + βh) ⋆ g)(x) =

∫
R
(αf + βh)(y)g(x− y)dy = α(f ⋆ g)(x) + β(h ⋆ g)(x).

Commutativity follows from a change of variables:

(f ⋆ g)(x) =

∫
R
f(y)g(x− y)dy =

∫
R
f(x− y)g(y)dy = (g ⋆ f)(x).

Exercise 4. Find a function f : R → R that is integrable but not square integrable. Find also a
function f : R → R that is square-integrable, but not integrable.

However, prove that if E satisfies λ(E) < ∞, then L1(E) ⊃ L2(E).

Proof. Consider f : x 7→ x−1/210<x<1, g : x 7→ 1/x · 1x>1. We have already seen in previous
exercise sheets that f and g2 are Lebesgue (and Riemann) integrable, whereas f2 and g are not.

If λ(E) < ∞, then for any f ∈ L2(E), we can decompose:

|f | = |f |1|f |≤1 + |f |1|f |>1 ≤ |f |1|f |≤1 + |f |21|f |>1 ≤ 1 + |f |2,

and the latter is integrable by the assumptions, with integral λ(E)+∥f∥22 by linearity. We conclude
that |f | is integrable (i.e. f ∈ L1) and ∥f∥1 ≤ λ(E) + ∥f∥22.



Exercise 5. Show that for all p ≥ 1, there exists cp such that for all f, g ∈ Lp,∫
|f + g|pdλ ≤ cp

(∫
|f |pdλ+

∫
|g|pdλ

)
Hint: you might want to use the inequality that for all p ≥ 1 there exists cp such that for all a, b > 0:

(a+ b)p ≤ cp(a
p + bp).

Prove this inequality by for example using convexity of x 7→ xp or otherwise.

Proof. Let p ≥ 1 and suppose f, g ∈ Lp(R), so that∫
R
|f(x)|p dx < ∞ and

∫
R
|g(x)|p dx < ∞.

Since t 7→ tp is convex on [0,∞), for all a, b ≥ 0 we have

(a+ b)p =
(
2 · a+b

2

)p
= 2p

(
a+b
2

)p

≤ 2p · ap+bp

2 = 2p−1(ap + bp).

Thus,
|f(x) + g(x)|p ≤ 2p−1

(
|f(x)|p + |g(x)|p

)
.

Integrating over R gives∫
R
|f + g|p dx =

∫
R
|f(x) + g(x)|p dx ≤ 2p−1

∫
R

(
|f(x)|p + |g(x)|p

)
dx < ∞,

as wanted.


