Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 11

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Translations and dilations). Let f € L'(R), o € R, u € R*. Prove that

/fx—ad)\ /f YdA(z
/f,ua:d)\ /f YdA(z

Proof. Consider first E/' a measurable set. From translation invariance and the dilation property
of the Lebesgue measure (see the construction in the notes), which follows from A([a — a,b—a]) =
(a—a)— (b—a) = Xa,b]) and A([ua, pb)) = ub — pa = pA([a,b]), one has that the two equations
in the statement hold for f = 1p. More generally, it follows by linearity of these equations for all
[ finite simple functions f = >"""  a;1pg;:

/ flz—a)dX(z / ZazlE radA(z) = ;aiA(Ewa) =) ailE) = /R F)d(z)
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To conclude in the general case, take f € Ll(R)7 and take an increasing sequence of simple
functions (fy,)n>1 such that f, — fin L*(R). One has for the first property:
n—

/fna:—ad)\ /fn YA (z

and the right-hand side converges to [, f(z — a)dA(z) as n — oo by the monotone convergence
theorem (which also shows that f(- — a)) is integrable), and the right-hand side to [, f(x)dA(x)
as n — o0o. The second property follows almost identically. O

sin?(z)

Exercise 2. The aim is to calculate I = / exp(—x)———=d\(x). To do this, we define

(0,00)
f(z,y) = exp(—2x) sin(2zy) and use Fubini:
e Show that f(x,y) is integrable over (0,00) x [0, 1]
e Show that when first integrating y over [0,1] we obtain exactly I.

e On the other hand, calculate explicitly the integral by first integrating over x. Integration by
parts might be useful.

Proof. Recall that we have seen with Fubini’s theorem that g = f1(0,100)x(0,1) 18 integrable on
R? if the integral of its absolute value is finite when integrating first one variable, then the other.
Here, we have

/R(/R|f($,y)1(0,+oo)x(o,1)|d)\(y)> d\(z) < /ReXp( 2)1(0 400 AN (@) < +00

which is finite as seen in previous exercise sheets.



For the second part of the exercise we first integrate f(x,y) over y for x € (0,400) fixed. Since
f(z,-) is continuous on [0, 1] we can use standard integration techniques.

ﬂamw@»=wmﬂw/ sin(2y)dA(y)

[0,1] [0,1]

= exp(—x) [%(— cos(2zy)] Z:J

1 —cos(2z) sin2(x).

= exp(—a) 22 = exp(—a) T

Integrating the above expression over x, we recover I, which proves the second part of the exercise.

For the third part, we use integration by parts twice. For N > 1, we have that

N N N

/ exp(—a) sin(2zy)dA(z) = [ — exp(—x) sin(ny)}i;o - / —exp(—x)2y(— cos(2xy))dA(z)
0 0
N
= —Qy/ exp(—z) cos(2zy)dA(z) — exp(—N) sin(2Ny).
0
We apply integration by parts again.
N N N

/ exp(—x) cos(2zy)dA(z) = [ — exp(—z) cos(2xy)]i;0 —/ —exp(—z)2y sin(2zy)dA(x)

0 0

N
=-1+4 2y/ exp(—x) sin(2zy)dA(z) — exp(—N) cos(2Ny).
0

We can now take the limit N — oo as all terms individually converge, and the integral does by
the dominated convergence theorem: exp(—-)sin(2 - y)1 o,y converges pointwise to exp(—-)sin(2 - ¥)1(g,4-o0)
and is bounded in absolute value by exp(—-)1(g 4+o0) Which is integrable.

We therefore get that

o0 . 2y
/0 exp(—xz) sin(2zy)dA(z) = T4

Now, using Fubini we conclude that

b2y log(1+4y*) 11 _ log(5)
I_/O 1+4y2dA(y)_[ 4 }0_ 1

using standard integration techniques here again since the integrand is continuous. O

Remark 1. It’s important here to carry out the integration by parts on a bounded interval first,
then taking the limit using convergence theorems, to avoid any integration issue. It’s the same for
functions only continuous over an open interval (for instance, f: x+— x~% on [0,1]).

Exercise 3 (Convolutions, I). Fiz g a bounded integrable function on R and consider the convo-
lution product f g on LY*(R) (i.e. for f € L), defined by
(F+9)@) = [ Fwle - .
R

1. Show that f x g on L*(R) is well-defined. Is it also well-defined on L'(R)?

2. Show that the convolution product is bilinear, and commutative if f,g are both bounded and
in L',



Proof. 1. We have to show that the integral makes sense, i.e. that f(-)g(z — ) is integrable for
all z € R. By assumption, let C' > 0 be such that |g| < C. Note first that

[ = dy‘<C/|ffc— Ny =€ [ 15)ldy = Il < +oc.

In the first equality, we used the translation invariance of the Lebesgue measure. Now
by a change of variables (a translation once again) this shows that fR fy)g(x —y)dy is also
well-defined and therefore the convolution product makes sense. We now need to see whether
f*g € L*. We claim that (x,y) — f(y)g(x —1y), which is clearly measurable as a composition
and product of measurable functions, is integrable over R2. Indeed,

J (Lt —wiae)av= [[1701( [ 1ot iaz)as = il < o

where we have used translation invariance. It now follows from Fubini’s theorem (or rather,
the converse thereof) that (x,y) — f(y)g(z — y) is integrable and its integral, bounded by
Il f1l11lg]l; can also be computed as

/R(/Rf(y)g(x—y)dy> dx:/R(f*g)(x)dx

Consequently, f x g is indeed in L' (and || f = g, < | fll,llgll,)-

Lastly, to check that the convolution product is well-defined on £!(R), we must check that
if f,h € L'(R) are such that f = h almost everywhere, then f * g = h x g. Indeed, for all
z € R,

(F * 9)(@) — (h* g)(x |<C/\f h(y)]dA(y) =
since |f — h| =0 a.e.

2. If f,h € L', o, B € R, then af + Bh € L' and linearity follows directly:
((ef + Bh) % g)(x) = / (af + BR W)z — y)dy = a(f * g) () + Bl x ) (2).

Commutativity follows from a change of variables:

(f % 9)(a /f oz -y dy—/fx— y)dy = (g% f)(z).

O

Exercise 4. Find a function f : R — R that is integrable but not square integrable. Find also a
function f: R — R that is square-integrable, but not integrable.
However, prove that if E satisfies \(E) < oo, then L'(E) D L*(E).

Proof. Consider f : x + 7 ?1gcp<1, g : @ + 1/x - 1,51. We have already seen in previous
exercise sheets that f and g? are Lebesgue (and Riemann) integrable, whereas f? and g are not.
If \(E) < oo, then for any f € L?(E), we can decompose:

2 2
Ll =1f1L 1<+ 111 < UFIL < + 11 L g1 S T+ F]5,

and the latter is integrable by the assumptions, with integral A\(E)+ || f Hg by linearity. We conclude
that | f| is integrable (i.e. f € L') and || f], < A(E) + || f]l3- O



Exercise 5. Show that for all p > 1, there exists c, such that for all f,g € L?,

[1r+arar<e, ( Jy gm)

Hint: you might want to use the inequality that for all p > 1 there exists ¢, such that for all a,b > 0:
(a4 D)P < cp(a? + V).
Prove this inequality by for example using convexity of x — xP or otherwise.

Proof. Let p > 1 and suppose f,g € LP(R), so that

/|f(x)\pdx<oo and /|g(m)|pdx<oo.
R R

Since t — tP is convex on [0, 00), for all a,b > 0 we have

p p P
(a+b)" = (2- 252)" = 20 ((of2)" <o 24— o0l a ),

Thus,
[f(@) +g(@)[P < 2271 (| ()P + [g(a)[P).

Integrating over R gives

/R I+ glPde = / (@) + g de < 2 / (IF @I + lg(@)]?) do < oo,

as wanted. O



