
Physics 2nd year – Analysis IV Juhan Aru

Exercise sheet 10
Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Some properties, revisited). Recall that a property P is said to hold almost everywhere
in R, or for almost all x ∈ R, if the set of x ∈ R for which P does not hold is measurable and of
Lebesgue measure zero. Show the following form of linearity:

Theorem. Let f, g, h be measurable, integrable and suppose that h = f + g holds almost
everywhere. Then h is integrable and∫

hdλ =

∫
fdλ+

∫
gdλ.

Show also the following stronger formulation of the monotone convergence theorem:

Theorem. Let (fn)n≥1 be a sequence of measurable and integrable functions from R to
R+, that is almost everywhere increasing, i.e. such that for all n ≥ 1, almost every-
where1fn ≤ fn+1. Suppose also that there exists f measurable such that fn −−−−→

n→∞
f

almost everywhere. Then

lim
n→∞

∫
fndλ =

∫
fdλ.

Proof. The idea of this proof is to exploit that the Lebesgue measure does not see the difference
between cleverly-chosen modifications of the given functions. More precisely, let

N = {x ∈ R : h(x) ̸= f(x) + g(x)}.

By assumption N is measurable and λ(N) = 0. Define modified functions

f ′(x) =

{
f(x), x /∈ N,

0, x ∈ N,
g′(x) =

{
g(x), x /∈ N,

0, x ∈ N,
h′(x) = f ′(x) + g′(x)

(these are modifications of f and g, respectively, not to be confused with their derivatives). Since
N has measure zero, each of f ′, g′, h′ is measurable, and each is further integrable by monotonicity
as f, g, h are integrable. Furthermore, property 3 of Lemma 2.26 and linearity imply that∫

f ′ dλ =

∫
f dλ,

∫
g′ dλ =

∫
g dλ,

∫
h′ dλ =

∫
h dλ.

But now h′ = f ′ + g′ everywhere on R, by linearity of the Lebesgue integral,∫
h′ dλ =

∫ (
f ′ + g′

)
dλ =

∫
f ′ dλ+

∫
g′ dλ.



Substituting back the equalities of the integrals shows∫
h dλ =

∫
f dλ+

∫
g dλ,

as desired.
We now extend the monotone convergence theorem. Since for each n the inequality fn ≤ fn+1

and the pointwise convergence fn → f hold only almost everywhere, let us first remove a null set.
By hypothesis there exists a measurable set

N ⊂ R, λ(N) = 0,

such that for every x /∈ N and every n ≥ 1 we have2

fn(x) ≤ fn+1(x) and lim
n→∞

fn(x) = f(x).

Define for n ≥ 1 the “cut-off” functions

f̃n(x) = fn(x)1R\N (x), f̃(x) = f(x)1R\N (x).

Each f̃n (and f̃) is measurable, nonnegative or integrable just as fn (resp. f) was, and by the same
argument as in the previous sub-exercise∫

f̃n dλ =

∫
fn dλ,

∫
f̃ dλ =

∫
f dλ

(changing a function on a set of measure zero does not affect its integral).
Moreover, by construction f̃n(x) ≤ f̃n+1(x) for every x ∈ R, and f̃n(x) → f̃(x) for every x ∈ R.

Hence the "classical" Monotone Convergence Theorem applies to the sequence (f̃n):

lim
n→∞

∫
f̃n dλ =

∫ (
lim

n→∞
f̃n

)
dλ =

∫
f̃ dλ.

Substituting back
∫
f̃n =

∫
fn and

∫
f̃ =

∫
f yields the desired conclusion:

lim
n→∞

∫
fn dλ =

∫
f dλ.

Exercise 2 (Reminder: switching sums). Provide examples of double sequences (an,m)n,m∈N such
that one of the limits below converges, but not the others; or that they all converge but to different
limits:

1)
+∞∑
n=1

(
+∞∑
m=1

an,m

)
:= lim

N→∞

N∑
n=1

(
lim

M→∞

M∑
m=1

an,m

)

2)

+∞∑
m=1

(
+∞∑
n=1

an,m

)
:= lim

M→∞

M∑
m=1

(
lim

N→∞

N∑
n=1

an,m

)

3) lim
K→∞

K∑
m=1

K∑
n=1

an,m

On the other hand, prove that if (an,m)n,m∈N is absolutely summable, i.e. if one of these limits
above exists when replacing am,n with |am,n|, then the others do as well and all the results are the
same.

2If one considered that for each n ≥ 1, there is a measurable set Nn with λ(Nn) = 0 and fn(x) ≤ fn+1(x) for
all x /∈ Nn, then the union

⋃
n≥1 Nn is still measurable and of Lebesgue measure zero by subadditivity.



Proof. Define

an,m =


+1, m = 2n,

−1, m = 2n− 1,

0, otherwise

(make a drawing of R2 partitioned into a grid with the natural numbers to get a visual under-
standing of where this is going). Then:

1. For each fixed n ∈ N,

∞∑
m=1

an,m = an,2n−1 + an,2n = (−1) + (+1) = 0.

Hence
∞∑

n=1

( ∞∑
m=1

an,m

)
=

∞∑
n=1

0 = 0.

2. For each fixed m, there is at most one n with an,m ̸= 0. In fact, it is

n =

{
m+1
2 , m odd,

m
2 , m even

and
∞∑

n=1

an,m =

{
−1, m odd,
+1, m even.

Therefore, the partial sums

M∑
m=1

( ∞∑
n=1

an,m

)
= 1− 1 + 1− 1 + · · · (M terms)

do not converge as M → ∞. Hence,
∞∑

m=1

( ∞∑
n=1

an,m
)

does not exist.

3. Double sum over the "square": For each K ∈ N, consider

SK =

K∑
n=1

K∑
m=1

an,m.

Note that

SK =

K∑
n=1

(
an,2n−1 + an,2n

)
,

where we take an,2n−1 only when 2n− 1 ≤ K, and similarly for 2n ≤ K. One can see that

S2L = 0, S2L+1 = −1.

Hence limK→∞ SK does not exist, as there exist two subsequences with different limits.

On the other hand, assume

A :=

∞∑
n=1

∞∑
m=1

∣∣an,m∣∣ < ∞.



We first note that A′ =
∑∞

m=1

∑∞
n=1

∣∣an,m∣∣ < ∞ since

M∑
m=1

N∑
n=1

|an,m| ≤
M∑

m=1

+∞∑
n=1

|an,m| ≤
+∞∑
m=1

+∞∑
n=1

|an,m|

and we can first take the limit n → ∞, then m → ∞ on the left term, which is jointly increasing.
This implies that A′ ≤ A and the symmetric argument shows that A ≤ A′.

For the signed version, set

TN,M =

N∑
n=1

M∑
m=1

an,m,

and notice that since absolute convergence of a series implies convergence, for all N ≥ 1 fixed we
have that TN,M −−−−→

M→∞

∑N
n=1

∑∞
m=1 an,m. Furthermore, (limM→∞ TN,M )N≥1 = (

∣∣∣∑N
n=1

∑+∞
m=1 an,m

∣∣∣)N≥1

is absolutely convergent by finiteness of A, so it again implies convergence of limN→∞ limM→∞ TN,M =∑+∞
n=1

∑+∞
m=1 an,m =: B. Similarly, limM→∞ limN→∞ TM,N =

∑+∞
m=1

∑+∞
n=1 an,m =: B′ is well-

defined and it remains to be shown that B = B′.
Given ε > 0, choose N0 so large that

∑
n>N0

∞∑
m=1

∣∣an,m∣∣ <
ε

2
,

∑
m>N0

∞∑
n=1

∣∣an,m∣∣ <
ε

2
.

Now, fix any N ≥ N0 and let M ≥ N . Then

∣∣∣TN,M − TM,N

∣∣∣ = ∣∣∣ N∑
n=1

M∑
m=1

an,m −
N∑

m=1

M∑
n=1

an,m

∣∣∣
≤

N∑
n=1

M∑
m=N+1

∣∣an,m∣∣ +

N∑
m=1

M∑
n=N+1

∣∣an,m∣∣
≤

M∑
m=N0+1

N∑
n=1

∣∣an,m∣∣ +

M∑
n=N0+1

N∑
m=1

∣∣an,m∣∣
<

ε

2
+

ε

2
= ε.

Taking the limit in the previous equation (since it exists) yields∣∣∣∣∣
N∑

n=1

+∞∑
m=1

an,m −
N∑

m=1

+∞∑
n=1

an,m

∣∣∣∣∣ ≤ ε

for all N ≥ N0, which shows that L = L′ by arbitrariness of ε. The argument for the diagonal
summation is identical.

Exercise 3. Let f(x1, . . . , xn) : Rn → R be (Borel-)measurable. Then for any 0 < m < n
and any (x1, . . . , xm) ∈ Rm, we have that fx1,...,xm : Rn−m → R, fx1,...,xm(y1, . . . , yn−m) :=
f(x1, . . . , xm, y1, . . . , yn−m) is also measurable.

Proof. The function g : Rn−m → Rn, (y1, . . . , yn−m) 7→ (x1, . . . , xm, y1, . . . yn−m) is measurable
since it is continuous. Note that fx1,...,xm

= f ◦ g, so that for any Borel set B ⊂ R, it holds that
f−1
x1,...,xm

(B) = g−1(f−1(B)). Since f is Borel-measurable, f−1(B) is a Borel set, and therefore so
is g−1(f−1(B)) since g is continuous. It follows that fx1,...,xm is measurable.



Exercise 4. Show that f : (0, 1) → R, x 7→ xα is integrable if and only if α > −1. What
about f : (1,+∞) → R, x 7→ xα? Revisit the Example 2.41 in the notes of finding a function
f : (−1, 1)2 → R that is integrable, but so that there is some point x ∈ (−1, 1) for which f(x, ·) :
(−1, 1) → R is not integrable.

Proof. For any ε ∈ (0, 1), the function x 7→ xα on [ϵ, 1] is continuous and therefore Riemann
integrable. Thus, by Prop. 2.39, it is also Lebesgue integrable and both integrals coincide. It
therefore suffices to calculate the Riemann integral with the usual techniques. For any 0 < ε < 1
we have ∫ 1

ε

xα dx =


1− εα+1

α+ 1
, α ̸= −1,

− ln ε, α = −1.

Let now f : x 7→ xα on [0, 1]. If α > −1, then by the monotone convergence theorem applied to
the sequence (f1[1/n,1])n≥1, it holds that f is integrable and∫ 1

0

fdλ = lim
n→∞

∫ 1

0

fndλ =
1

α+ 1
< ∞.

If α ≤ −1, then f cannot be integrable, since otherwise its integral would bound that of fn for any
n ≥ 1 by monotonicity; but (

∫ 1

0
fndλ) diverges to +∞. Hence,

f is integrable ⇐⇒ α > −1.

Now, consider g : x 7→ xα on [1,∞). For any 1 < R < ∞, we can compute the Riemann integral

∫ R

1

xα dx =


Rα+1 − 1

α+ 1
, α ̸= −1,

lnR, α = −1.

A similar argument with the monotone convergence theorem gives that

g is integrable ⇐⇒ α < −1.

Finally, recall Exa. 2.41: Define

f(x, y) = 1Q∩(−1,1)(x)
1

y
1(−1,1)(y), (x, y) ∈ (−1, 1)2.

Since Q ∩ (−1, 1) is countable, (Q ∩ (−1, 1)) × (−1, 1) is a countable union of segments (having
Lebesgue measure 0 in R2), and therefore

λ
(
{(x, y) : f(x, y) ̸= 0}

)
= λ

(
(Q ∩ (−1, 1))× (−1, 1)

)
= 0.

Thus, f = 0 almost everywhere, so it is Lebesgue-integrable and∫
(−1,1)2

f(x, y) dx dy = 0.

On the other hand, take x ∈ Q ∩ (−1, 1). Then

fx(y) := f(x, y) =
1

y
1(−1,1)(y)

which is not integrable as we’ve just seen.


