Physics 2nd year — Analysis IV Juhan Aru

Exercise sheet 10

Disclaimer: the exercises are arranged by theme, not by order of difficulty.

Exercise 1 (Some properties, revisited). Recall that a property P is said to hold almost everywhere
in R, or for almost all x € R, if the set of x € R for which P does not hold is measurable and of
Lebesgue measure zero. Show the following form of linearity:

Theorem. Let f, g, h be measurable, integrable and suppose that h = f + g holds almost
everywhere. Then h is integrable and

/hd)\:/fd)\—i-/gd)\.

Show also the following stronger formulation of the monotone convergence theorem:

Theorem. Let (f,)n>1 be a sequence of measurable and integrable functions from R to
R*, that is almost everywhere increasing, i.e. such that for all n > 1, almost every-
wherd|fn, < fant1. Suppose also that there exists f measurable such that f, —— f

n—oo
almost everywhere. Then

lim [ fod)\ = / Fd.
n—oo

Proof. The idea of this proof is to exploit that the Lebesgue measure does not see the difference
between cleverly-chosen modifications of the given functions. More precisely, let

N = {zeR:h(z) # f(z) +9(z)}.
By assumption N is measurable and A(N) = 0. Define modified functions

f,(x):{f(x), zg N, g,(x):{g@), rg N,

h/ — ! /
0. zeN, 0. zeN, () = f'(z) + g'(x)

(these are modifications of f and g, respectively, not to be confused with their derivatives). Since
N has measure zero, each of f/,¢’, h' is measurable, and each is further integrable by monotonicity
as f,g,h are integrable. Furthermore, property 3 of Lemma 2.26 and linearity imply that

/f’d)\:/fdA, /g'd)\:/gdA, /h’d)\:/hdA.

But now h' = f’ + ¢’ everywhere on R, by linearity of the Lebesgue integral,

/h’d)\:/(f’+g’)d)\:/f’d)\+/g’d)\.



Substituting back the equalities of the integrals shows

/hd)\:/fd/\—i-/gd)\,
as desired.

We now extend the monotone convergence theorem. Since for each n the inequality f, < fn41
and the pointwise convergence f,, — f hold only almost everywhere, let us first remove a null set.
By hypothesis there exists a measurable set

N CR, AN) =0,
such that for every x ¢ N and every n > 1 we haveEI
fole) < fosa(e) and Tim fu(@) = f(2).

Define for n > 1 the “cut-off” functions

fa(@) = fo(z) g (2), f(z) = f(z) 1N (2).

Each f, (and f ) is measurable, nonnegative or integrable just as f,, (resp. f) was, and by the same
argument as in the previous sub-exercise

/fndA = /fnd)\, /fd/\ = /fd)\

(changing a function on a set of measure zero does not affect its integral).
Moreover, by construction f,(z) < fny1(x) for every x € R, and f,(z) — f(z) for every z € R.

Hence the "classical" Monotone Convergence Theorem applies to the sequence (f,):

lim [ f,d\ = /(nm fn) a\ = /fd/\.
Substituting back [ f, = [ f, and [ f = [ f yields the desired conclusion:

lim [ fod) = /fd)\.

n— oo

O

Exercise 2 (Reminder: switching sums). Provide examples of double sequences (anm)n,men Such
that one of the limits below converges, but not the others; or that they all converge but to different
limits:

n=1 \m=1 n= m=1
“+o0 “+o0 M N
2) g an.m | = lim lim g An.m
M —o0 N—o0
m=1 \n=1 m=1 n=
K K
3) lim E E A
K—oo
m=1n=1

On the other hand, prove that if (an m)n,men s absolutely summable, i.e. if one of these limits
above exists when replacing an, , With |am, »|, then the others do as well and all the results are the
same.

21f one considered that for each n > 1, there is a measurable set N, with A(N,) = 0 and fn(z) < fnt1(x) for
all ¢ Np, then the union | J,,~, Nn is still measurable and of Lebesgue measure zero by subadditivity.



Proof. Define

+1, m =2n,
Qnom = —1, m=2n-1,
0, otherwise

(make a drawing of R? partitioned into a grid with the natural numbers to get a visual under-
standing of where this is going). Then:

1. For each fixed n € N,

00
Z Ap,m = Qn2n—1 + Qn,2n = (_1) + (+1) =0.

m=1

Hence

i(ian,m) :iozo.

n=1 m=1 n=1

2. For each fixed m, there is at most one n with ay, , # 0. In fact, it is

1
{m; , m odd,
n =

m even

and

ia ) =1, modd,
— e +1, m even.

Therefore, the partial sums

M

Z(ia"vm) =1-141-1+--- (M terms)

m=1 n=1

oo o0

do not converge as M — oo. Hence, Z (Z an’m) does not exist.

m=1 n=1

3. Double sum over the "square": For each K € N, consider

K K
Sk = ZZan,m.

n=1m=1

Note that
K

Sk = Z(an,Qn—l + an,2n)a

n=1

where we take a, 2,—1 only when 2n — 1 < K, and similarly for 2n < K. One can see that
Sor, =0, Sor41 = —1.
Hence limg_, o, Sk does not exist, as there exist two subsequences with different limits.

On the other hand, assume

A= i i{an7m| < 00.

n=1m=1



We first note that A" =>"_, Zle‘an,m’ < 00 since

M +oo 400 +oo
)IPITED 95 SITIES 3b ol
m=1n=1 m=1n=1 m=1n=1

and we can first take the limit n — oo, then m — oo on the left term, which is jointly increasing.
This implies that A’ < A and the symmetric argument shows that A < A’.
For the signed version, set

N M
TN,M = § g An,m,

n=1m=1

and notice that since absolute convergence of a series implies convergence, for all N > 1 fixed we
N . N
have that T as = Y o1 Doy - Furthermore, (mas—oo Tn,ar)n>1 = (D=1 ;Ool Apom | )N>1
is absolutely convergent by finiteness of A, so it again implies convergence of impy 00 limps 00 T, =
:z 7-;0:01 Op,m =: B. Similarly, limy_eo imy oo TNy = 1 Zn 1 Gnm = - B’ is well-
defined and it remains to be shown that B = B’.

Given ¢ > 0, choose Ny so large that

> Ylanml < 50 X D anm| < 5

n>Ng m=1 m>Ngn=1

Now, fix any N > Ny and let M > N. Then

N M
‘TNM TMN’*‘ZZanm* Zzan,m‘

m=1n=1
Z Z |lan,m| + Z Z | @
n=1m=N+1 m=1n=N+1

M

<3 Slonnl + 3 o

n=Np+1m=1

_|_

w\mS
w\m‘:

Taking the limit in the previous equation (since it exists) yields

N +4oo N +4oo
E E amm - E § an,m S €
n=1m=1 m=1n=1

for all N > Ny, which shows that L = L’ by arbitrariness of e. The argument for the diagonal
summation is identical.
O

Exercise 3. Let f(x1,...,2,) : R" — R be (Borel-)measurable. Then for any 0 < m < n

and any (z1,...,%Tm) € R™, we have that fg, 2. : R = R, for o (U1, Yn—m) =
f@1, e Ty Y1y -+ Ynem) 1S also measurable.
Proof. The function g : R®™™ — R™ (y1,..-,Yn-—m) = (T1,-- s Tm, Y1, - - Yn—m) 1S measurable

since it is continuous. Note that f;, . ... = f o g, so that for any Borel set B C R, it holds that
. (B) =g 1 (f~1(B)). Since f is Borel-measurable, f~1(B) is a Borel set, and therefore so

L1,.-
is g i( f71(B)) since g is continuous. It follows that f., ., is measurable. O

5Im



Exercise 4. Show that f : (0,1) —» R, x — x® is integrable if and only if o > —1. What
about f : (1,400) = R, x — x*? Revisit the Example 2.41 in the notes of finding a function
f:(=1,1)%2 — R that is integrable, but so that there is some point x € (—1,1) for which f(z,-) :
(=1,1) = R is not integrable.

Proof. For any € € (0,1), the function z — z® on [e, 1] is continuous and therefore Riemann
integrable. Thus, by Prop. 2.39, it is also Lebesgue integrable and both integrals coincide. It
therefore suffices to calculate the Riemann integral with the usual techniques. For any 0 < e < 1
we have

1 —eatl

1

- 1

/ zdr=<¢ a+1 "’ a7 -1
€ —lne, a=—1.

Let now f : x — z on [0,1]. If @ > —1, then by the monotone convergence theorem applied to
the sequence (f1[1/p,1))n>1, it holds that f is integrable and

1 1
1

:1. = — .

/Ofd)\ ngrolo/o fndA a+1<oo

If « < —1, then f cannot be integrable, since otherwise its integral would bound that of f, for any
n > 1 by monotonicity; but ( fol fndA) diverges to +oo. Hence,

f is integrable <«— a> -1.

Now, consider ¢ :  — z® on [1,00). For any 1 < R < 0o, we can compute the Riemann integral

Rt —1

R

L -1
/ % dx = a+1 "’ a7 -1,
1 InR, a=-—1.

A similar argument with the monotone convergence theorem gives that
g isintegrable <= a< —1.

Finally, recall Exa. 2.41: Define
1
f(z,y) = Lon-1,1(x) ; 1-1,1)(), (z,y) € (—1,1)2-

Since Q N (—1,1) is countable, (Q N (—1,1)) x (—1,1) is a countable union of segments (having
Lebesgue measure 0 in R?), and therefore

)\({(x,y) : f(xvy) 7£ 0}) = /\((Qﬂ (_171)) X (_13 1)) =0.

Thus, f = 0 almost everywhere, so it is Lebesgue-integrable and
/ f(z,y)dxdy = 0.
(_171)2
On the other hand, take x € QN (—1,1). Then

L) = flay) = ; 1)

which is not integrable as we’ve just seen. O



