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Midterm Exercises Solutions

Analysis IV

April 17, 2024

1 Exercises

1.1 E1 (Fat Cantor Set)

Solution:

1. The set Cn,γ is Lebesgue measurable, since it consists of 2n disjoint intervals of equal length,
and has measure m (Cn,γ) = m (Cn−1,γ)− 2n−1γn for all n ≥ 1, with m (C0,γ) = 1.
Hence,

m (Cn,γ) = 1−
n∑

k=1

2k−1γk = 1− 1

2

n∑
k=1

(2γ)k = 1− 1

2

(
1− (2γ)n+1

1− 2γ
− 1

)
= 1− γ(1− (2γ)n)

1− 2γ
.

As a result Cγ =
⋂∞

n=1 Cn,γ is Lebesgue measurable with measure

m (Cγ) = lim
n→∞

m (Cn,γ) = 1− γ

1− 2γ
.

2. The statement is false. Let us disprove it. For any x ∈ R we have m(C + x) = m(C) = 0. We
then deduce that, for any sequence {xi}i∈N ⊂ R,

m

( ∞⋃
i=1

(C + xi)

)
= 0.

If, by contradiction, [0, 1] ⊂
⋃∞

i=1 (C + xi), then

1 = m([0, 1]) ≤ m

( ∞⋃
i=1

(C + xi)

)
= 0,

which is absurd.

1.2 E2 (Dominated Convergence)

Solution:

1. See Lecture Notes.

2. We have that limn→+∞ fn(x) dx = 0. We have, for all n ∈ N,

e−x

n3
≤ 1

n2
, for all x ∈ R,

and hence fn(x) ≥ 0. Then,

|fn(x)| =
(

1

n2
− e−x

n3

)
χ[1,n)(x) ≤

1

n2
χ[1,n](x) ≤

1

x2
χ[1,n](x) ≤

1

x2
.

3. By point (2), |fn(x)| ≤ x−2 ∈ L1([1,+∞)). Hence, we can apply the dominated convergence
theorem to conclude that

lim
n→+∞

∫ +∞

1

fn(x) dx =

∫ +∞

1

lim
n→+∞

fn(x) dx = 0.
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4. Since fn ≥ 0 in [1,+∞) for every n, the sequence of partial sums is non-decreasing. Therefore,
by the monotone convergence theorem, we have∫ +∞

1

+∞∑
n=1

fn(x)

nα
dx =

+∞∑
n=1

∫ +∞

1

fn(x)

nα
dx.

Now, we compute

0 ≤
∫ +∞

1

fn(x)

nα
dx ≤ 1

nα

∫ n

1

(
1

n2
− e−x

n3

)
dx ≤

∫ n

1

1

n2+α
dx ≤ 1

n1+α
;

hence, by the comparison principle for numerical series,

+∞∑
n=1

fn(x)

nα
∈ L1([1,+∞)), for all α > 0.

On the other hand, for every n sufficiently large,∫ +∞

1

fn(x)

nα
dx ≥ 1

nα

∫ n

1

(
1

n2
− e−1

n3

)
dx ≥

∫ n

1

e n− 1

e n2+α
dx ≥ 1

2 e n1+α
;

hence, again by the comparison principle for numerical series,

+∞∑
n=1

fn(x)

nα
/∈ L1([1,+∞)), for all α ≤ 0.

5. It would not have been possible to use the monotone convergence theorem. Indeed, {fn}n∈N is
a sequence of non-negative functions, but it is not monotone with respect to n a.e. in [1,+∞).
Note that each fn is non-negative and strictly positive on a set of positive measure, while
fn → 0 a.e. Moreover, if x ∈ [1, n], then

fn+1(x)− fn(x) =
1

(n+ 1)2
− 1

n2
+ e−x

(
1

n3
− 1

(n+ 1)3

)
= − 2n+ 1

n2(n+ 1)2
+ e−x 3n

2 + 3n+ 1

n3(n+ 1)3

≤ − 1

(n+ 1)3
+

7

n4
< 0, for n large enough.

1.3 E3 (Lebesgue Measure)

Solution: Consider a Lebesgue measurable set E ⊆ [0, 1] with m(E) ⩾ θ.
For every n ∈ N, let En :=

{
x ∈ [0, 1] : f(x) > 1

n

}
. We note that En ⊂ En+1 for every n ∈ N,

and then limn→+∞ m(En) = m
(⋃

n⩾1 En

)
= m([0, 1]) = 1.

Then, there exists N ∈ N such that

0 < m(Ec
N ) <

θ

2
,

and, thus,

m(E ∩ EN ) = m(E)−m(Ec ∩ E) ≥ m(E)− θ

2
≥ θ

2
.

Now, we conclude ∫
E

f(x) dx ⩾
∫
E∩EN

f(x) dx ⩾
θ

2N
> 0.

2


