

First part: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question 1 Consider the triangle $T \subset \mathbb{R}^2$ with vertices in $A = (0, 0), B = (1, 1), C = (1, -1)$.

What is the value of $\int_T (x + y)^2$?

 8/9 2/3 It is not defined because $(x + y)^2$ is not absolutely integrable. 1/3

Question 2 Let $f(x) = \frac{e^{-x}}{\sqrt{x}}$. f belongs to $L^p(0, 1)$ if and only if

 $p \in [1, 2)$ $p \in [2, +\infty)$ $p = 2$ $p = +\infty$

Question 3 Let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence of non-negative functions in $L^2(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$. Which of the following statements is **true**?

 If $\liminf_{n \rightarrow \infty} \|f_n\|_{L^1} = 0$, then, for all $\varepsilon > 0$, we have $m(\{x \in \Omega : \liminf_{n \rightarrow \infty} f_n(x) < \varepsilon\}) = m(\Omega)$. If $\|f_n\|_{L^2} \rightarrow +\infty$, then $\|f_n\|_{L^1} \rightarrow +\infty$. If $\|f_n\|_{L^2} = C > 0$, then, for all $M > 0$, we have $m(\{x \in \mathbb{R}^d : |f_n(x)| \leq M\}) \leq \frac{C^2}{M^2}$. If $f_n \rightarrow 0$ almost everywhere, then $\|f_n\|_{L^1} \rightarrow 0$.

Question 4 Let $\alpha \in \mathbb{R}$. With Hölder's inequality, determine: the function $\frac{f(x)}{x^\alpha}$ belongs to $L^1(1, +\infty)$ for all $f \in L^2(1, +\infty)$ if and only if

 $\alpha \leq 0$ $0 \leq \alpha \leq 1/2$ $\alpha = 1/2$ $\alpha > 1/2$

Question 5 Which of the following statements is **true**?

 Every function $F : \mathbb{R} \rightarrow \mathbb{R}$ that vanishes outside the Cantor set is measurable. Every function $F : \mathbb{R} \rightarrow \mathbb{R}$ that vanishes on the Cantor set is measurable. If the function $F : \mathbb{R} \rightarrow \mathbb{R}$ is measurable, then the set $\{x \in \mathbb{R} : F(x) = x\}$ can be not measurable. Every function $F : \mathbb{R} \rightarrow \{0\} \cup \{1\}$ is measurable.

Midterm Exercises Solutions

Analysis IV

April 17, 2024

1 Exercises

1.1 E1 (Fat Cantor Set)

Solution:

1. The set $C_{n,\gamma}$ is Lebesgue measurable, since it consists of 2^n disjoint intervals of equal length, and has measure $m(C_{n,\gamma}) = m(C_{n-1,\gamma}) - 2^{n-1}\gamma^n$ for all $n \geq 1$, with $m(C_{0,\gamma}) = 1$. Hence,

$$m(C_{n,\gamma}) = 1 - \sum_{k=1}^n 2^{k-1}\gamma^k = 1 - \frac{1}{2} \sum_{k=1}^n (2\gamma)^k = 1 - \frac{1}{2} \left(\frac{1 - (2\gamma)^{n+1}}{1 - 2\gamma} - 1 \right) = 1 - \frac{\gamma(1 - (2\gamma)^n)}{1 - 2\gamma}.$$

As a result $C_\gamma = \bigcap_{n=1}^{\infty} C_{n,\gamma}$ is Lebesgue measurable with measure

$$m(C_\gamma) = \lim_{n \rightarrow \infty} m(C_{n,\gamma}) = 1 - \frac{\gamma}{1 - 2\gamma}.$$

2. The statement is false. Let us disprove it. For any $x \in \mathbb{R}$ we have $m(C + x) = m(C) = 0$. We then deduce that, for any sequence $\{x_i\}_{i \in \mathbb{N}} \subset \mathbb{R}$,

$$m\left(\bigcup_{i=1}^{\infty} (C + x_i)\right) = 0.$$

If, by contradiction, $[0, 1] \subset \bigcup_{i=1}^{\infty} (C + x_i)$, then

$$1 = m([0, 1]) \leq m\left(\bigcup_{i=1}^{\infty} (C + x_i)\right) = 0,$$

which is absurd.

1.2 E2 (Dominated Convergence)

Solution:

1. See Lecture Notes.
2. We have that $\lim_{n \rightarrow +\infty} f_n(x) dx = 0$. We have, for all $n \in \mathbb{N}$,

$$\frac{e^{-x}}{n^3} \leq \frac{1}{n^2}, \quad \text{for all } x \in \mathbb{R},$$

and hence $f_n(x) \geq 0$. Then,

$$|f_n(x)| = \left(\frac{1}{n^2} - \frac{e^{-x}}{n^3} \right) \chi_{[1,n]}(x) \leq \frac{1}{n^2} \chi_{[1,n]}(x) \leq \frac{1}{x^2} \chi_{[1,n]}(x) \leq \frac{1}{x^2}.$$

3. By point (2), $|f_n(x)| \leq x^{-2} \in L^1([1, +\infty))$. Hence, we can apply the dominated convergence theorem to conclude that

$$\lim_{n \rightarrow +\infty} \int_1^{+\infty} f_n(x) dx = \int_1^{+\infty} \lim_{n \rightarrow +\infty} f_n(x) dx = 0.$$

4. Since $f_n \geq 0$ in $[1, +\infty)$ for every n , the sequence of partial sums is non-decreasing. Therefore, by the monotone convergence theorem, we have

$$\int_1^{+\infty} \sum_{n=1}^{+\infty} \frac{f_n(x)}{n^\alpha} dx = \sum_{n=1}^{+\infty} \int_1^{+\infty} \frac{f_n(x)}{n^\alpha} dx.$$

Now, we compute

$$0 \leq \int_1^{+\infty} \frac{f_n(x)}{n^\alpha} dx \leq \frac{1}{n^\alpha} \int_1^n \left(\frac{1}{n^2} - \frac{e^{-x}}{n^3} \right) dx \leq \int_1^n \frac{1}{n^{2+\alpha}} dx \leq \frac{1}{n^{1+\alpha}};$$

hence, by the comparison principle for numerical series,

$$\sum_{n=1}^{+\infty} \frac{f_n(x)}{n^\alpha} \in L^1([1, +\infty)), \quad \text{for all } \alpha > 0.$$

On the other hand, for every n sufficiently large,

$$\int_1^{+\infty} \frac{f_n(x)}{n^\alpha} dx \geq \frac{1}{n^\alpha} \int_1^n \left(\frac{1}{n^2} - \frac{e^{-1}}{n^3} \right) dx \geq \int_1^n \frac{e n - 1}{e n^{2+\alpha}} dx \geq \frac{1}{2 e n^{1+\alpha}};$$

hence, again by the comparison principle for numerical series,

$$\sum_{n=1}^{+\infty} \frac{f_n(x)}{n^\alpha} \notin L^1([1, +\infty)), \quad \text{for all } \alpha \leq 0.$$

5. It would not have been possible to use the monotone convergence theorem. Indeed, $\{f_n\}_{n \in \mathbb{N}}$ is a sequence of non-negative functions, but it is not monotone with respect to n a.e. in $[1, +\infty)$. Note that each f_n is non-negative and strictly positive on a set of positive measure, while $f_n \rightarrow 0$ a.e. Moreover, if $x \in [1, n]$, then

$$\begin{aligned} f_{n+1}(x) - f_n(x) &= \frac{1}{(n+1)^2} - \frac{1}{n^2} + e^{-x} \left(\frac{1}{n^3} - \frac{1}{(n+1)^3} \right) \\ &= -\frac{2n+1}{n^2(n+1)^2} + e^{-x} \frac{3n^2 + 3n + 1}{n^3(n+1)^3} \\ &\leq -\frac{1}{(n+1)^3} + \frac{7}{n^4} < 0, \quad \text{for } n \text{ large enough.} \end{aligned}$$

1.3 E3 (Lebesgue Measure)

Solution: Consider a Lebesgue measurable set $E \subseteq [0, 1]$ with $m(E) \geq \theta$.

For every $n \in \mathbb{N}$, let $E_n := \{x \in [0, 1] : f(x) > \frac{1}{n}\}$. We note that $E_n \subset E_{n+1}$ for every $n \in \mathbb{N}$, and then $\lim_{n \rightarrow +\infty} m(E_n) = m(\bigcup_{n \geq 1} E_n) = m([0, 1]) = 1$.

Then, there exists $N \in \mathbb{N}$ such that

$$0 < m(E_N^c) < \frac{\theta}{2},$$

and, thus,

$$m(E \cap E_N) = m(E) - m(E^c \cap E) \geq m(E) - \frac{\theta}{2} \geq \frac{\theta}{2}.$$

Now, we conclude

$$\int_E f(x) dx \geq \int_{E \cap E_N} f(x) dx \geq \frac{\theta}{2N} > 0.$$