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Exam Exercises

Analysis IV

June 28, 2024

1 Solutions

1.1 E1 (Fatou’s Lemma - 6 points)

1. (3 points). State and prove Fatou’s lemma.

2. (1 point). Give an example of a sequence {fn}n∈N, fn : [0, 1] → R, satisfying the assumptions
of Fatou’s lemma and such that strict inequality occurs.

3. (2 points). Let f be a non-decreasing function on [0, 1] and assume that for a.e. x ∈ [0, 1]
there exists the following limit:

f ′(x) = lim
h→0+

f(x+ h)− f(x)

h
.

Prove that ∫ 1

0

f ′(x) dx ⩽ f(1)− f(0).

Solution:

1. See Lecture Notes.

2. Here is an example of correct solution: let us define the sequence {fn}n∈N as follows:

f2n−1(x) = 1[0,1/2](x),

f2n(x) = 1(1/2,1)(x).

Then
lim inf
n→∞

fn(x) = 0, for all x ∈ R,

but ∫ 1

0

fn(x) dx = 1, for all n ∈ N.

Therefore,

0 =

∫ 1

0

lim inf
n→∞

fn(x) dx < lim inf
n→∞

∫ 1

0

fn(x) dx = 1.

Many students proposed an example on Rn; points were not given in this case.

3. First, we extend the definition of f by letting f(x) = f(1) for x > 1. Since f is non-decreasing,
it is differentiable almost everywhere and, for almost every x, the representation

f ′(x) = lim
h→0+

f(x+ h)− f(x)

h

holds. Since f is non-decreasing, we note that its difference quotient f(x+h)−f(x)
h is non-

negative for every x and every h. Thus, by Fatou’s lemma, we deduce∫ 1

0

f ′(x) dx =

∫ 1

0

lim
h→0+

f(x+ h)− f(x)

h
dx ⩽ lim inf

h→0+

∫ 1

0

f(x+ h)− f(x)

h
dx

= lim inf
h→0+

1

h

∫ 1+h

1

f(x) dx− 1

h

∫ h

0

f(x) dx

⩽ f(1)− f(0)

where we used the fact that f is non-decreasing again in the last inequality.

Note that the dominated convergence theorem could not be applied here to swap limit and
integral.
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1.2 E2 (Dominated Convergence - 4 points)

(4 points). Let {fn}+∞
n=1 be a sequence of functions defined as follows:

fn(x) =

{
n
√
x

1+n2x2 , x ∈ [0, 1),

e−x2/n, x ∈ [1,+∞).

Compute limn→+∞ fn(x) for all x ∈ [0,+∞),

lim
n→+∞

∫ +∞

1

fn(x) dx and lim
n→+∞

∫ 1

0

fn(x) dx

Solution:

1. The sequence of functions {fn}+∞
n=1 converges pointwise to

f(x) =

{
0, x ∈ [0, 1),

1, x ∈ [1,+∞).

2. In [0, 1), fn is dominated by g(x) = 1√
x
. Indeed, we have that

nx ≤ 1 + n2x2 ⇔ (1− nx)2 + nx ≥ 0

which is true for all x ∈ [0, 1]. Since g is Lebesgue integrable on [0, 1], we deduce by Lebegue’s
dominated convergence theorem and the pointwise convergence to 0 that:

lim
n→∞

∫ 1

0

fn(x) dx = 0.

In [1,+∞), we have 0 ≤ fn ≤ fn+1 because

x2

n+ 1
≤ x2

n
⇒ −x2

n
≤ − x2

n+ 1
.

By the monotone convergence theorem, we conclude

lim
n→+∞

∫ +∞

1

fn(x) dx =

∫ +∞

1

1 dx = +∞.

Note that we cannot apply dominated convergence with dominant e−x2

, because it does not
dominate the sequence.

1.3 E3 (Fubini’s Theorem - 5 points)

Let f : (0, 1) → R be a measurable function and let 1 ≤ p < +∞.

1. (1 point). Prove that, for all y > 0, we have

ypm({x ∈ (0, 1) : |f(x)| ⩾ y}) ⩽
∫ 1

0

|f(x)|p dx .

2. (2 points). Show that∫ 1

0

|f(x)|p dx = p

∫ ∞

0

yp−1m({x ∈ (0, 1) : |f(x)| ⩾ y}) dy .

Hint: Notice that |f(x)|p =
∫ |f(x)|
0

pyp−1 dy.

3. (2 points). Let 1 ≤ q < p < +∞ and assume that f satisfies

ypm({x ∈ (0, 1) : |f(x)| ⩾ y}) ⩽ 1, for all y ∈ R+. (1)

Show that f ∈ Lq((0, 1)).
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4. (1 point). Consider f(x) = x−1/p, for 1 ≤ p < +∞. Show that f satisfies (1), but f /∈
Lp((0, 1)).

Solution:

1. Recalling Chebyshev’s inequality, i.e. considering the integral of the simple function y1{x: |f(x)|⩾y} ≤
f, we have

m({x ∈ (0, 1) : |f(x)| ⩾ y}) ≤ 1

yp

∫
|f |⩾y

|f(x)|p dx.

We deduce

ypm({x ∈ (0, 1) : |f(x)| ⩾ y}) ⩽
∫
|f |⩾y

|f(x)|p dx ⩽
∫ 1

0

|f(x)|p dx.

2. Noticing that |f(x)|p =
∫ |f(x)|
0

pyp−1 dy and using Tonelli’s theorem, we deduce∫ 1

0

|f(x)|p dx =

∫ 1

0

(∫ |f(x)|

0

p yp−1 dy

)
dx = p

∫ 1

0

(∫
R
yp−11[0,|f(x)|](y) dy

)
dx

= p

∫
R

(∫ 1

0

1{(x,y)∈R2: 0⩽y⩽|f(x)|}(x, y) dx

)
yp−1 dy

= p

∫
R
m({x ∈ (0, 1) : |f(x)| ⩾ y})1[0,+∞)(y)y

p−1 dy

= p

∫ ∞

0

yp−1m({x ∈ (0, 1) : |f(x)| ⩾ y}) dy.

3. From the previous point, we have the representation∫ 1

0

|f(x)|q dx = q

∫ ∞

0

yq−1m({x ∈ (0, 1) : |f(x)| ⩾ y}) dy.

We compute∫ ∞

0

yq−1m ({x ∈ (0, 1) : |f (x)| ⩾ y}) dy =

∫ 1

0

yq−1m ({x ∈ (0, 1) : |f (x)| ⩾ y}) dy

+

∫ ∞

1

yq−1m ({x ∈ (0, 1) : |f (x)| ⩾ y}) dy

⩽
∫ 1

0

yq−1dy +

∫ ∞

1

yq−1y−p dy

=
yq

q

∣∣∣∣1
0

+
yq−p

q − p

∣∣∣∣∞
1

=
1

q
+

1

p− q
=

p

q(p− q)
< +∞.

We stress that we used q < p in the chain of inequalities above.

Note that the integral must be split, else we cannot prove it is finite because the conditions on
integrability are different at zero and at infinity.
Moreover, you cannot prove that f ∈ Lp (see point 3 for the counterexample).

4. For all p ≥ 1, we have that f /∈ Lp((0, 1)), because |f |p = x−1 /∈ L1((0, 1)). On the other hand,

m({x ∈ (0, 1) : x−1/p ≥ y}) = m((0, y−p)) = y−p.

Hence, ypm({x ∈ (0, 1) : x−1 ≥ y}) = yp−p = 1.
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1.4 E4 (Fourier Series - 5 points)

Consider the 2π− periodic function f : R → R defined as:

f(x) =
ex + e−x

2
for x ∈ (−π, π],

1. (1 point). Compute the norm ∥f∥L2((−π,π]).

2. (1 point). Determine for which values of x ∈ (−π, π] the Fourier Series converges pointwise to
f(x).

3. (2 points). Compute the Fourier series of f .

4. (1 point). Compute the value of
+∞∑
k=0

1

(1 + k2)2
.

Solution:

1. We have that

∥f∥2L2 =

∫ π

−π

|f(x)|2dx =
1

4

∫ π

−π

(e2x + e−2x + 2)dx =
1

4
(e2π − e−2π) + π =

sinh(2π)

2
+ π.

Hence, ∥f∥L2 =
√

sinh(2π)
2 + π.

2. We have that

cn =
1

2π

∫ π

−π

f(x)e−inx dx =
1

4π

(∫ π

−π

ex(1−in)dx+

∫ π

−π

ex(−1−in)dx

)
=

1

2π

(
1

1− in
sinh(π − inπ) +

1

1 + in
sinh(π + inπ)

)
=

1

π(1 + n2)
(sinh(π − inπ)(1 + in) + sinh(π + inπ)(1− in))

=
1

π(1 + n2)
(n cosh(π) sin(nπ) + cos(nπ) sinh(π))

=
(−1)n

π(1 + n2)
sinh(π).

Hence, f(x) =
∑

n∈Z
(−1)n

π(1+n2) sinh(π)e
inx.

In many cases, you forgot the square root in the norm.

3. By Dirichlet’s Theorem, the pointwise convergence holds for all x ∈ [−π, π].

4. We have that f(x) =
∑

n∈Z
(−1)n

π(1+n2) sinh(π)e
inx. Hence, by Parseval’s identity,

∑
n∈Z

|cn|2 =
1

2π

∫ π

−π

|f(x)|2dx =⇒ sinh(2π)

4π
+

1

2
=
∑
n∈Z

|cn|2.

In many cases, you forgot the multiplicative constant in Parseval’s identity.

Now, define S :=
∑+∞

n=1
1

(1+n2)2 . It solves the equation 2S+1 = π2

sinh(π)2

(
sinh(2π)

4π + 1
2

)
. Hence,

+∞∑
n=0

1

(1 + n2)2
= S + 1 =

π2

2 sinh(π)2

(
sinh(2π)

4π
+

1

2

)
+

1

2
.
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1.5 E5 (Fourier Coefficients of Translation - 5 points)

Let f be a 1-periodic function on R such that f
∥∥
[0,1]

belongs to L2((0, 1)). Let cn be the complex

Fourier coefficients of f . For every h ∈ R, let us define the function fh by fh(x) = f(x− h).

1. (1 point). Give the Fourier expansion of fh.

2. (1 point). Find all C1 functions that are 1-periodic and satisfy f ′(x) = f(x − 1/2) for all
x ∈ R.

3. (3 points). Prove that

lim inf
h→0

∥fh − f∥L2((0,1))

|h|
> 0,

unless f is constant almost everywhere.

Solution:

1. We have

fh(x) = f(x− h) =

+∞∑
n=−∞

cne
2πin(x−h) =

+∞∑
n=−∞

cne
−2πinhe2πinx.

2. The Fourier coefficients of f satisfy

(2πin− eπin)cn = 0,

so cn = 0 for all n ∈ N, which implies f = 0.

You cannot use Fourier transform, because the periodic function is not L1(R).

3. Using Part 1 and Parseval’s identity, we compute

∥fh − f∥L2((0,1)) =

(
+∞∑

n=−∞

∣∣∣cne−2πinh − cn

∣∣∣2) 1
2

=

(
+∞∑

n=−∞

(e−2πinh − 1)2 |cn|2
) 1

2

=

(
+∞∑

n=−∞

4 sin(πhn)2 |cn|2
) 1

2

.

If f is constant almost everywhere, then cn = 0 for all n ∈ Z \ {0}. As a consequence, we have
fh = f and, thus, ∥fh − f∥L2((0,2π)) = 0.

If f is not constant almost everywhere, then there exists n ̸= 0 such that cn ̸= 0.

Then we compute

lim inf
h→0

∥fh − f∥L2((0,1))

|h|
⩾ lim

h→0

2| sin(πhn)| |cn|
|h|

= 2πn|cn| > 0.

Using Fatou’s lemma did not enable you to reach the conclusion. Moreover, the existence of
f ′ is not guaranteed by the available hypothesis.

1.6 E6 (PDE with Fourier (vanishing viscosity version) - 8 points)

Let g ∈ S(R) and ε > 0. Let us consider the following Cauchy problems:{
∂tu

ε(t, x) + ∂xu
ε(t, x)− ε∂2

xxu
ε(t, x) = 0, t > 0, x ∈ R,

uε(0, x) = g(x), x ∈ R,
(CPε)

and {
∂tu(t, x) + ∂xu(t, x) = 0, t > 0, x ∈ R,
u(0, x) = g(x), x ∈ R.

(CP)

1. (2 point). For a fixed ε > 0, write the formal solution uε of (CPε).

2. (1 point). Use the Fourier transform to write a formula for the solution u of (CP). In particular,
observe that u(t, ·) is given by a suitable translation of g.
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3. (2 points). Prove that, for ε > 0,

∥uε(t, ·)∥L2(R) ≤ ∥g∥L2(R) for all t ⩾ 0.

4. (1 point). Show that uε ∈ C∞((0,+∞)× R).

5. (2 points). Prove that the solutions uε of (CPε) converge to the solution u of (CP) in L2(R)
as ε → 0, namely, for every t > 0,

∥uε(t, ·)− u(t, ·)∥L2(R) → 0 as ε → 0.

Solution:

1. By applying the Fourier transform to the problem (CPε), we have{
∂tû

ε(t, ξ) + (2πi ξ + ε4π2|ξ|2)ûε(t, ξ) = 0, t > 0,

ûε(0, ξ) = ĝ(ξ),
(2)

where ûε and ĝ denote the Fourier transforms of uε and g with respect to the x-variable,
respectively.

Separation of variables was not applicable here.

Solving (2), we get

ûε(t, ξ) = ĝ(ξ)e−(2πi ξ+4π2ε|ξ|2)t, t ≥ 0, ξ ∈ R. (3)

Recalling that g ∈ S(R) the properties of the Gauss–Weierstrass kernel Ht, the behavior of the
Fourier transform with respect to shifting, and the convolution theorem, we apply the inverse
Fourier transform to deduce

uε(t, x) = F−1[ûε(t, ξ)](x) = F−1
[
ĝ(ξ) e−(2πi ξ+4π2ε|ξ|2)t

]
(x)

=
1√
4πεt

∫
R
e−

|x−t−y|2
4εt g(y) dy

= g(x) ∗Hε
t (x− t).

Not recognizing the tranlsation was not penalized, but then we removed points for not justifying
Plancherel rigorously.

2. By applying the Fourier transform to the problem (CP), we have{
∂tû(t, ξ) + 2πi ξ û(t, ξ) = 0, t > 0,

û(0, ξ) = ĝ(ξ),
(4)

where û and ĝ denote the Fourier transforms of u and g with respect to the x-variable, respec-
tively. Here, we use the notation

F [f ](ξ) = f̂(ξ) =

∫
R
f(x)e−2πix ξ dx,

F−1[f ](x) = f̌(x) =

∫
R
f(ξ)e2πix ξ dξ,

for the Fourier transform of a function f and its inverse.

Solving (4), we get

û(t, ξ) = ĝ(ξ)e−2πiξt, t ≥ 0, ξ ∈ R. (5)

Since g ∈ S(R), recalling the behavior of the Fourier transform with respect to shifts, we
obtain

u(t, x) = F−1
[
ĝ(ξ)e−2πiξt

]
(x) =

∫ ∞

−∞
ĝ(x)e−2πiξ(x−t) dξ = g(x− t).

6



3. We observe that, for all t ≥ 0, uε(t, ·) = g(x) ∗Hε
t (· − t) belongs to L2(R). Indeed,

∥uε(t, ·)∥L2(R) = ∥g ∗Hε
t (· − t)∥L2(R)

≤ ∥g∥L2(R)∥Hε
t (· − t)∥L1(R) = ∥g∥L2(R),

where we used that, in particular, g ∈ L2(R) and ∥Hε
t (· − t)∥L1(R) = 1.

Alternatively, one can observe that uε(t, ·) ∈ L2(R) (because Hε
t (· − t) ∈ S(R) and g ∈ S(R)

and then apply Parseval–Plancherel’s identity:

∥uε(t, ·)∥L2(R) = ∥ûε(t, ·)∥L2(R)

=
∥∥∥e−(2πi ·+4π2ε|·|2)tĝ

∥∥∥
L2(R)

≤ ∥ĝ∥L2(R) = ∥g∥L2(R) .

4. The result follows from Theorem 6.1 (i) of the Lecture Notes when observing that

uε(t, x) = (g ∗Hε
t )(x− t)

is equal to a solution of the heat equation{
∂tu− ∂2

xxu = 0, t > 0, x ∈ R,
u(0, x) = g(x), x ∈ R,

upon translation and rescaling.

5. From (3) and (5), we know that

ûε(t, ξ) = ĝ(ξ)e−(2πi ξ+4π2ε|ξ|2)t,

û(t, ξ) = ĝ(ξ)e−2πitξ.

For any t > 0, we compute

∥ûε(t, ·)− û(t, ·)∥2L2(R) =

∫
R

∣∣∣ĝ(ξ)(e−(2πi ξ+4π2ε|ξ|2)t − e−itξ
)∣∣∣2 dξ

=

∫
R
|ĝ(ξ)|2

∣∣∣e−4π2ε|ξ|2t − 1
∣∣∣2 dξ.

As g ∈ S(R) (and, in particular, it belongs to L2(R)), using Lebesgue’s dominated convergence
theorem and then Parserval’s equality, we deduce that

∥uε(t, ·)− v(t, ·)∥L2(R) → 0 as ε → 0.

Many students found a dominant not in L1.
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