CORRECTION
First part: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has exactly one
correct answer.

Question 1 ~ Which of the following statements is true?

- The set of points where the function 1}y 4 is not continous has measure zero.
[ ] The function 10,40 is a.e. equal to a continuous function.
|:| There exists a simple function that coincides a.e. with a continuous non-constant function.

|:| If f:R— Ris a.e. equal to a continuous function, then f is a.e. continuous.
Question 2 f(z) = log(z) € LP((0,1)) if and only if

Bl +x).

[]pe@, +]
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Question 3  Let A be the set of those numbers in (0, 1) that have a decimal expansion containing at least
one digit 7. Which of the following statements is true?

|:| A is not measurable.

[ ] A is measurable and 0 < m(A4) < 1.

[ ] A is measurable and m(A) = 0.

B 4 is measurable and m(A) = 1.

Question 4  Consider the Fourier series :2 =5 cos(nx). Which of the following statements is true?

[ ] It is the Fourier series of a function u € C3(R), but not in C*°(R).
B 1t is the Fourier series of a function u € C*(R), but not in C3(R).
|:| It converges pointwise, but not uniformly, on R.

|:| It cannot be the Fourier series of any 27— periodic function in L2.
Question 5  Let C denote the Cantor set. Which of the following statements is true?

[ ] If E C R is a measurable set, then m(E N [z,00)) — 0 as & — 400.
[ ] For any E C R, it holds m*(E) = m*(E).

[ ] If E C R is not measurable, then £ N C can be not measurable.
- If E C R is not measurable, then E N C° can be not measurable.
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Question 6 Let fi be a smooth, compactly supported function, fa(z) = e, f3(z) = 1j_y (=) for
x € R. The Fourier transform belongs to L':

|:| for one of the three functions.

|:| for none of the three functions.

[ ] for all of the three functions.

- for two of the three functions.



CORRECTION
Question 7 Let u: R? - R solving Au = zy and v(z,y) = u(2z,2y) + 22 — y*. Then, v solves:
|:| Av = 8zy — 2.
D Av = 2zy + 2.
[ ] Av=2azy—2.
- Av = 8zy + 2.
Question 8  What are the real Fourier coefficients {a,} and {b,} of sign(sin(z))?
|:| an = 07 b2n = %7 b2n+1 =0.
D A2p = %; A2p4+1 = 0; b2n = O; b2n+1 = ﬁ
. CLn - 0, bgn = O, b2n+1 = ﬁ.
|:| Aon = 0; A2n+1 = %; bn =0.

o2
Question 9  Let F(z) = Zi:o e?mnz | Which of the following statements is true?

B fol F(z)dr =5.
[ ]Ve>0 36 <1/2such that |F(z)| < e for all z € [6,1— 4].

|:| F' is not a trigonometric polynomial.
[] fol F(z)%dz = 25.
Question 10  Let f, g be two 1—periodic functions in L2([0, 1]). Assume that f % g = 0. Then:
B /. ; are orthogonal in L2(]0,1]), namely fol fg=0.
|:| Either f =0 or g = 0.

[ ] f and g have the same L2— norm, namely || f||.> = [lg]l.2.

[]fg=o0.



Exam Exercises

Analysis IV
June 28, 2024

Solutions

1.1 E1 (Fatou’s Lemma - 6 points)
1. (3 points). State and prove Fatou’s lemma.
2. (1 point). Give an example of a sequence {fp, }nen, fn :[0,1] = R, satisfying the assumptions
of Fatou’s lemma and such that strict inequality occurs.
3. (2 points). Let f be a non-decreasing function on [0, 1] and assume that for a.e. = € [0,1]
there exists the following limit:
. +h)— f(x)
e S |
Fe= =
Prove that .
| @< - o)
0
Solution:
1. See Lecture Notes.

2. Here is an example of correct solution: let us define the sequence { f,, }nen as follows:

fon—1(z) = ]1[0,1/2] (m>7
Jon(z) = L(1/2,1) ().

Then

lilrgioréf fo(x) =0, forall xz € R,
but

/ fo(zx)dz =1, forallneN.
Therefore,

O:/ hmlnffn( dx<hm1nf/ fu(z =
0

n— oo

Many students proposed an example on R"; points were not given in this case.

. First, we extend the definition of f by letting f(x) = f(1) for x > 1. Since f is non-decreasing,

it is differentiable almost everywhere and, for almost every z, the representation
/ - flzth) - f(z)
)= lim ————————~=
f( ) h—0+ h
holds. Since f is non-decreasing, we note that its difference quotient w
negative for every x and every h. Thus, by Fatou’s lemma, we deduce

1 1
/Of’(x)dx:/o h]lrg+Wd <1}Lrg%)r+1f/ fx—i—h ()dx
1+h
“mipt [ s [
< f(1) = f(0)

where we used the fact that f is non-decreasing again in the last inequality.

is non-

Note that the dominated convergence theorem could not be applied here to swap limit and
integral.



1.2 E2 (Dominated Convergence - 4 points)
(4 points). Let {f, :: be a sequence of functions defined as follows:

fule) = T T €D,
" e~/ e [l,400).

Compute lim,_, 4 fn(x) for all z € [0, +00),
+oo 1
nll}r_sr_loo : fa(z)dz and nEI-iI-loo/O fu(z)de
Solution:

+oo

n=1

Fa) = {0, z e [0,1),

1. The sequence of functions {f,} converges pointwise to

1, z€]l,400).

2. In [0,1), f, is dominated by g(x) = ﬁ Indeed, we have that

nr<l+n?z?e (1—nz)?+nz>0

which is true for all € [0, 1]. Since g is Lebesgue integrable on [0, 1], we deduce by Lebegue’s
dominated convergence theorem and the pointwise convergence to 0 that:

1
lim [ fy(z)dz =0.

n—roo 0

In [1,400), we have 0 < f,, < f,41 because

1’2 T T T

<— = —— < — .
n+1l " n n - n+1

(V)
(V)

2

By the monotone convergence theorem, we conclude

+oo +oo
lim fo(z)de = / ldz = +o0.
1

n—-+o0o 1

. . . 2 .
Note that we cannot apply dominated convergence with dominant e~" | because it does not
dominate the sequence.

1.3 E3 (Fubini’s Theorem - 5 points)

Let f:(0,1) — R be a measurable function and let 1 < p < 4o0.

1. (1 point). Prove that, for all y > 0, we have
1
o 0.1 |f@)] =) < [ 1f@lrds.
0

2. (2 points). Show that
1 00
[ ir@rds=p [ (e € 0.1)¢ 17| > ) dy.
0 0
Hint: Notice that |f(z)|P = fo‘f(gc)‘pyp_1 dy.
3. (2 points). Let 1 < ¢ < p < +00 and assume that f satisfies
ym({o € (0,1): [f(@)] > y}) <1, forall y € Ry (1)

Show that f € L4((0,1)).



4. (1 point). Consider f(z) = 27'/P for 1 < p < +oo. Show that f satisfies (1), but f ¢
LP((0,1)).

Solution:

1. Recalling Chebyshev’s inequality, i.e. considering the integral of the simple function yl,.|f(z) >y} <

f, we have

m(fe € 01): f@I >0 <= [ P,
Yo Ji1zy

We deduce

1
Pm{z € (0,1): ()] > v}) < /W @) dz < / (@) da.

2. Noticing that |f(x)[P = folf(m)l pyP~ ! dy and using Tonelli’s theorem, we deduce

' L | f ()] )
0 0 . O [
1
:P/ </ Li(z,y)ere: 0<y<|f(x)|}(x,y) d:v) ypﬂdy
R 0

—p / m({z € (0.1) : 1£(@)] > ) L0400y )~ dy
R

= p/ooo y'im({z € (0,1) : [f(2)] > y}) dy.

3. From the previous point, we have the representation
1 o)
/ |f ()| dx = Q/ y T im({z € (0,1) : [f(2)] = y}) dy.
0 0

We compute
/0 Ty ((r e (0,1): |f (@)] > 9)) dy = / y=m ({z € (0,1) ¢ | (1) > v}) dy

n / Ty im e e (0,1): f (@)] > 9}) dy

1 (e’
</ yq‘ldy+/ Yty P dy
0 1

—p |0
yqp

1

o 4—Ph
1 p
p—q qlp—q)

yd

g
1
q

We stress that we used ¢ < p in the chain of inequalities above.

Note that the integral must be split, else we cannot prove it is finite because the conditions on
integrability are different at zero and at infinity.
Moreover, you cannot prove that f € LP (see point 3 for the counterexample).

4. For all p > 1, we have that f ¢ LP((0,1)), because |f|P = 27! ¢ L1((0,1)). On the other hand,
m({z € (0,1) : a™? > y}) =m((0,y")) = y*.

Hence, yPm({z € (0,1) 1271 > y}) =¢yPP = 1.



1.4 E4 (Fourier Series - 5 points)
Consider the 27— periodic function f: R — R defined as:

e +e "

flay =

for x € (—m, ],

1. (1 point). Compute the norm || f||z2((—r,x)-

[N)

. (1 point). Determine for which values of x € (—m, ] the Fourier Series converges pointwise to

f(@).

3. (2 points). Compute the Fourier series of f.

4. (1 point). Compute the value of
S

232"
= (1+k?)
Solution:
1. We have that
T 1 [ 1 sinh(2
13 = [ 1f@Par = [ (@4 e e opte = 1@ - e = I
Hence, ||f||z2 = y/ 222C7) 4 7.

2. We have that
1 " —inz 1 " z(1—in) " z(—1—in)
Cp = — f(z)e dz = o e dx + e dx

2m -7 0 - —7

1 1 1
= ( sinh(7 — inm) + — sinh(m + mﬂ'))

2r \1—in 141n
1 , _ o | |
= m (sinh(w — inm)(1 + in) + sinh(7w + in7)(1 —in))
1 . '
- m (n cosh(r) sin(nm) + cos(n) sinh(r))

= 7(,1)n sinh (7w
(14 n?) h(m).

— (=n" 3 inx
Hence, f(z) =3,z A sinh(7)e™*.
In many cases, you forgot the square root in the norm.

3. By Dirichlet’s Theorem, the pointwise convergence holds for all « € [—m, 7.

4. We have that f(z) =>_ ) sinh(7)e™®. Hence, by Parseval’s identity,

(=n"
n€Z zw(1+n?
1 [ sinh(27) 1
Sl =or [ f@Pe — TSl

nek - nez

In many cases, you forgot the multiplicative constant in Parseval’s identity.
Now, define § :== 32> L Tt solves the equation 25 +1 = usd (S‘“h(2”)

1
n=1 (14+n2)2" sinh()? 47 + §> - Hence,

+§ 1 g1 w2 sinh(27) +1 +1
(1+n2)2 ~ 2sinh(7r)2 4 2 2’

n=0



1.5 E5 (Fourier Coefficients of Translation - 5 points)
Let f be a 1-periodic function on R such that f”[o I belongs to L2((0,1)). Let ¢, be the complex
Fourier coefficients of f. For every h € R, let us define the function f; by f(z) = f(z — h).

1. (1 point). Give the Fourier expansion of fj,.

2. (1 point). Find all C! functions that are 1-periodic and satisfy f’(z) = f(z — 1/2) for all
z € R.

3. (3 points). Prove that
1fn = fllz20,1)

lim inf >0,
h—0 ‘h|
unless f is constant almost everywhere.
Solution:
1. We have
+o0 400
@)= flx—h)= Z Cne27rm(9£7h) — Z Cn672mnh62mnm.
n=-—oo n=—oo

2. The Fourier coefficients of f satisfy

(2min — em")cn =0,

so ¢, = 0 for all n € N, which implies f = 0.
You cannot use Fourier transform, because the periodic function is not L!(R).
3. Using Part 1 and Parseval’s identity, we compute

; b b :
I1fn = FllL20.1y) = ( Z ‘cnef%mh —Cn > = ( Z (e 2minh _1)? cn|2> = ( Z 4 sin(mwhn)? |cn|2> .

n=-—oo n=-—oo n=-—00

If f is constant almost everywhere, then ¢, = 0 for all n € Z\ {0}. As a consequence, we have
fn=f and, thus, [[fn = fll12((0,2x)) = O-
If f is not constant almost everywhere, then there exists n # 0 such that ¢, # 0.

Then we compute

L inf fn — fHLz((o,1)) > lim 2| sin(mwhn)||cy|
h—0 || h—0 ||

= 2mnlcy| > 0.

Using Fatou’s lemma did not enable you to reach the conclusion. Moreover, the existence of
/' is not guaranteed by the available hypothesis.

1.6 E6 (PDE with Fourier (vanishing viscosity version) - 8 points)
Let g € S(R) and & > 0. Let us consider the following Cauchy problems:

Ous (t, o) + Opus(t,x) — ed2 uf(t,z) =0, t>0, z€R, (CP.)
UE(O,{E):g(.’E), zr €R, :
and
Opu(t, z) + Ozu(t,x) =0, t>0, z €R, (cP)
u(0,z) = g(z), z eR.

1. (2 point). For a fixed € > 0, write the formal solution u® of (CP.).

2. (1 point). Use the Fourier transform to write a formula for the solution « of (CP). In particular,
observe that u(t,-) is given by a suitable translation of g.



3. (2 points). Prove that, for ¢ > 0,

|u®(t, )2y < llgllz2®) for all ¢ > 0.

4. (1 point). Show that u® € C*°((0, +o0) x R).

5. (2 points). Prove that the solutions u® of (CP.) converge to the solution u of (CP) in L?(R)
as ¢ — 0, namely, for every t > 0,

[us(t, ) —ult, M 2@ =0 ase—0.

Solution:

1. By applying the Fourier transform to the problem (CP.), we have

{ataﬁ(t,@ + (2mi € + edn?|€?)ac(t,€) =0, t >0, @

,&8(0’5) = g(€)7
where 4° and ¢ denote the Fourier transforms of u® and g with respect to the z-variable,
respectively.

Separation of variables was not applicable here.

Solving (2), we get
@°(t,€) = g(¢)e CmEHTE >0, e R, (3)

Recalling that g € S(R) the properties of the Gauss—Weierstrass kernel Hy, the behavior of the
Fourier transform with respect to shifting, and the convolution theorem, we apply the inverse
Fourier transform to deduce

ue(t,z) _ Fﬁl[ﬂs(t,f)](l‘) _ ]:71 [g(g) 67(27ri§+47r25\£\2)t (JC)

1 / let—ywz (v)d
= (& et
Varet Jr gy

— g(x) + Hf (z — 1),

Not recognizing the tranlsation was not penalized, but then we removed points for not justifying
Plancherel rigorously.

2. By applying the Fourier transform to the problem (CP), we have

{ata(t,g) Fomifa(t,) =0, t>0, @

a(0,€) = 9(¢),

where 4 and g denote the Fourier transforms of w and g with respect to the z-variable, respec-
tively. Here, we use the notation

F1A1(E)

f(e) = / fl@)e e e,

FUf)) = fa) = / Fe)EiE de,

for the Fourier transform of a function f and its inverse.

Solving (4), we get

a(t,€) = §(€)e™*™, £ 20, LR (5)
Since g € S(R), recalling the behavior of the Fourier transform with respect to shifts, we
obtain
u(t, ) = F 1 [3(§)e™*™] (2) = / gla)e >0 dg = gl — 1),



3. We observe that, for all t > 0, u(t, ) = g(x) * H (- — t) belongs to L?(R). Indeed,
lu(t )2y = llg * Hy (- = )l 2wy
<|lgllzz@ 1 Hs (- = Ollzr®)y = 9l 22wy,

where we used that, in particular, g € L?(R) and ||Hj (- — t)|| L1 (z) = 1.
Alternatively, one can observe that u¢(t,-) € L%(R) (because Hj (- —t) € S(R) and g € S(R)
and then apply Parseval-Plancherel’s identity:

[ (M L2 @y = 1187 ) 2wy

_ He—(27ri~+47r2a|~\2)tg‘

L2(R)
< HQHL?(R) = HgHL2(]R)'
4. The result follows from Theorem 6.1 (i) of the Lecture Notes when observing that
ut(t,x) = (g + Hp)(z — 1)
is equal to a solution of the heat equation

Ou—0%,u=0, t>0, z€R,
u(0,2) =g(z), =€R,

upon translation and rescaling.
5. From (3) and (5), we know that
(£)e~@mictan®ele)t
(e 2mie,

>

im In
S~—" S~—"
i
NaPNY

For any ¢ > 0, we compute

. 2 2 —i 2
||ﬁ6(t, ) — ’d(t, ')||i2(R) :/R Q(ﬁ) (6*(27T1§+47r elél)t _ e té)‘ df

- [ lator

As g € S(R) (and, in particular, it belongs to L?(R)), using Lebesgue’s dominated convergence
theorem and then Parserval’s equality, we deduce that

6747r28|§|2t o 1‘2 df

Hug(tv')fv(tf)HLZ(]R) —0 ase—0.

Many students found a dominant not in L*.



