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Analysis IV Exercises

April 9, 2025

1 Midterm 2025

1.1 Open questions

Exercise 1.1 (6 points). Let {fn}n∈N be a sequence of functions in L1((0, 1)) which converges in L1 to
f ∈ L1((0, 1)).

1. (4 points). Prove that there exists a subsequence {fnk
}k∈N and a function F ∈ L1((0, 1)) such that

|fnk
(x)| ≤ F (x) for a.e. x ∈ (0, 1) and every k ∈ N.

2. (2 points). Let {gn}n∈N ⊂ L1((0, 1)) be a sequence of functions that converge pointwise a.e. to g and
such that |gn(x)| ≤ |fn(x)| for a.e. x ∈ (0, 1) and every n ∈ N. Prove that

ˆ
(0,1)

gn(x)dx →
ˆ
(0,1)

g(x)dx.

Solution.

1. See Lecture Notes.

2. Suppose by contradiction that this is not the case. Then, there must exist a subsequence nk ↑ ∞ and
some ϵ > 0 for which ∣∣∣∣∣

ˆ
(0,1)

gnk
(x)dx−

ˆ
(0,1)

g(x)dx

∣∣∣∣∣ ≥ ϵ ∀k ∈ N. (1.1)

By point 1. applied to the sequence {fnk
}k∈N, we can extract a further subsequence nkj ↑ ∞ such that

|gnkj
(x)| ≤ |fnkj

(x)| ≤ F (x) for every j ∈ N and almost every x ∈ (0, 1), where F is some function in
L1((0, 1)). Then, from the dominated convergence theorem we deduce that

lim
j→∞

ˆ
(0,1)

gnkj
(x)dx =

ˆ
(0,1)

g(x)dx,

which is in contradiction with (1.1) above.

Exercise 1.2 (6 points). Consider the set E =
{
(x, y) ∈ (0,∞)× R : |y| < 1

x4+x6

}
and the function f : E →

R defined as f(x, y) = x7y.

1. (2 points). Prove that ˆ
E

|f | =
ˆ ∞

0

x7

(x4 + x6)2
dx.
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2. (1 point). Show that f ̸∈ L∞(E).

3. (3 points). Determine all the values of p ∈ [1,∞) for which f ∈ Lp(E).

Solution.

1. Let us call ℓ(x) := 1/(x4 +x6). We can apply Tonelli’s Theorem to the nonnegative function |f | to get
ˆ
E

|f(x, y)|dxdy =

ˆ +∞

0

ˆ ℓ(x)

−ℓ(x)

|f(x, y)|dydx = 2

ˆ +∞

0

ˆ ℓ(x)

0

|f(x, y)|dydx,

where in the second equality we used the even symmetry of |f(x, y)| in y. Now observe that, for any
x > 0, we have

ˆ ℓ(x)

0

|f(x, y)|dy =

ˆ ℓ(x)

0

x7ydy =
1

2
ℓ(x)2x7 =

1

2

x7

(x4 + x6)2
.

Plugging this equality in the formula above we conclude point 1.

2. To prove that f ̸∈ L∞(E) it is enough to show that m({(x, y) ∈ E : f(x, y) > n}) > 0 for every n ∈ N.
We have,

{(x, y) ∈ E : f(x, y) > n} =
{
(x, y) ∈ (0,∞)2 : nx−7 < y < (x4 + x6)−1

}
which contains, for example, the set{

(x, y) ∈ (0,∞)2 : x > 3n, nx−7 < y < (x4 + x6)−1
}

that is nonempty since 3−7n−6 < (34n4 + 36n6)−1. By using Tonelli again, we may compute

m({(x, y) ∈ E : f(x, y) > n}) ≥ m(
{
(x, y) ∈ (0,∞)2 : x > 3n, nx−7 < y < (x4 + x6)−1

}
)

=

ˆ ∞

3n

ˆ ℓ(x)

nx−7

1dydx =

ˆ ∞

3n

(ℓ(x)− nx−7)dx > 0,

because ℓ(x) > nx−7 for all x > 3n, as observed above.

3. Let p ∈ [1,∞). Proceeding analogously as in point 1., we apply Tonelli to the nonnegative function
|f |p to get

ˆ
E

|f(x, y)|pdxdy =

ˆ ∞

0

ˆ ℓ(x)

−ℓ(x)

|f(x, y)|pdydx = 2

ˆ +∞

0

ˆ ℓ(x)

0

|f(x, y)|pdydx

= 2

ˆ +∞

0

ˆ ℓ(x)

0

x7pypdydx =
2

p+ 1

ˆ ∞

0

x7p

(x4 + x6)p+1
dx.

Therefore, f ∈ Lp(E) if and only if the function h(x) := x7p/(x4 + x6)p+1 has finite integral in (0,∞).
We split this integral in the two domains of integration (0, 1) and (1,∞) and treat the two quantities
separately.

Firstly, observe that x4 ≥ x6 in (0, 1), which implies that

x3p−4

2p+1
≤ h(x) ≤ x3p−4 ∀x ∈ (0, 1).

Therefore, h(x) is integrable in (0, 1) if and only if x3p−4 is integrable in (0, 1):
ˆ 1

0

h(x)dx < ∞ ⇐⇒ 3p− 4 > −1 ⇐⇒ p > 1.
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Secondly, observe that x4 ≤ x6 in (1,∞), which implies that

xp−6 ≤ h(x) ≤ xp−6

2p+1
∀x ∈ (1,∞).

Therefore, h(x) is integrable in (1,∞) if and only if xp−6 is integrable in (1,∞):
ˆ ∞

1

h(x)dx < ∞ ⇐⇒ p− 6 < −1 ⇐⇒ p < 5.

Combining the two conditions we get that f ∈ Lp(E) if and only if 1 < p < 5.

Exercise 1.3 (6 points). Let Br(x) ⊂ R2 be the open ball of radius r > 0 and center x ∈ R2 whose measure
is m(Br(x)) = πr2.

1. (1 point). Prove that there exists a positive constant c1 > 0 such that, for every ball Br(x) ⊂ R2 one
can find an open rectangle R that satisfies

Br(x) ⊂ R and m(R) ≤ c1m(Br(x)).

2. (2 points). Prove that there exists a constant c2 > 0 such that, for every open rectangle R ⊂ R2 one
can find balls {Brn(xn)}Nn=0 that satisfy

R ⊂
N⋃

n=0

Brn(xn) and
N∑

n=0

m(Brn(xn)) ≤ c2m(R).

3. (1 point). For every set E ⊆ R2, define

σ∗(E) := inf

{ ∞∑
n=0

m(Brn(xn)) : {Brn(xn)}n∈N covering of E

}
∈ [0,∞].

Prove that m∗(E) ≤ c1σ
∗(E) and σ∗(E) ≤ c2m

∗(E).

4. (2 points). Let F : R2 → R2 be such that

|F (x)− F (y)| ≤ |x− y| ∀x, y ∈ R2.

Prove that m∗(F (E)) ≤ c1c2m
∗(E) for every E ⊂ R2.

Solution.

1. Let x = (x1, x2); take R = (x1 − r, x1 + r)× (x2 − r, x2 + r). Then, clearly Br(x) ⊂ R and

m(R) = 4r2 = c1m(Br(x)),

where c1 = 4/π.

2. Without loss of generality assume that R = (0, ℓ1)× (0, ℓ2), with 0 < ℓ1 ≤ ℓ2 < ∞. We choose

N =

⌊
ℓ2
ℓ1

⌋
, rn = r = 2ℓ1, xn = (0, nℓ1).

By this choice, R ⊂
⋃N

n=0 Br(xn). Moreover,

N∑
n=0

m (Br(xn)) = (N + 1)4πℓ21 ≤ 8πℓ1ℓ2 = 8πm(R),

because the N + 1 balls have the same measure and (N + 1)ℓ1 ≤ (ℓ1 + ℓ2) ≤ 2ℓ2 by definition of N .
Hence we have point 2. with c2 = 8π.
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3. We prove the first inequality, the second being analogous. Let E ⊆ R2, and let {Brn(xn)}n∈N be
a covering of E. Then, by point 1. we can find rectangles Rn with Brn(xn) ⊂ Rn and m(Rn) ≤
c1m(Brn(xn)). Then, by definition of outer measure, we have:

m∗(E) ≤
∑
n∈N

m(Rn) ≤ c1
∑
n∈N

m(Brn(xn)).

By the arbitrariness of the covering {Brn(xn)}n∈N we deduce that m∗(E) ≤ c1σ
∗(E).

To prove the other implication, it suffices to repeat the same argument using point 2. instead of 1.

4. First observe that for any ball Br(x) ⊂ R2, since F is a 1-Lipschitz function, we have

F (Br(x)) ⊂ Br(F (x)).

Let now E ⊂ R2 be any set. Consider a covering {Brn(xn)}n∈N of E. Then {Brn(F (xn))}n∈N is a
covering of F (E). Hence,

σ∗(F (E)) ≤
∑
n∈N

m(Brn(F (xn))) =
∑
n∈N

m(Brn(xn)),

and by the arbitrariness of the covering we deduce that

σ∗(F (E)) ≤ σ∗(E).

In order to conclude point 4. we use point 3. together with the latter inequality:

m∗(F (E)) ≤ c1σ
∗(F (E)) ≤ c1σ

∗(E) ≤ c1c2m
∗(E).
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