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CHAPTER 1

Measure theory

In this chapter, we follow closely the content of [Taol6, Chapter 7].

1.1. Motivation

Studying integration in several variables, the general question we wish to answer is this:

Given some subset Q of R, and some real-valued function f: Q — R,
1s it possible to integrate f on ) and therefore define fQ fe

In the case d = 1, we have already developed the notion of Riemann integral, which answers
the above question when € is an interval Q = [a,b] C R, and [ is Riemann integrable. However,
the class of Riemann integrable functions is rather unsatisfactorily small and the extension of this
notion to higher dimensions is possible but requires quite a bit of effort. For such reasons, we must
look beyond the Riemann integral and introduce the notion of the Lebesgue integral, which will be
the central topic of the first two chapters of the course.

Before we turn to the details, we begin with an informal discussion. In order to understand
how to compute an integral fQ f, we must first understand a more basic and fundamental question:

How does one compute the length, area, or volume of a subset E C R%?

This question is connected to that of integration, because if one integrates the function 1 on the
set F, then one should obtain the length of E (if it is one-dimensional), the area of E (if it is
two-dimensional), or the volume of F (if it is three-dimensional). To avoid splitting into cases
depending on the dimension, we shall refer to the measure of E as either the length, area, volume,
or hypervolume of E, depending on what Euclidean space R? we are working in.

Ideally, to every subset E of R? we would like to associate a nonnegative number m (E), which
will be the measure of E. We allow the possibility for m (F) to be zero (that happens, for example,
when FE is just a single point or is the empty set) or for m (E) to be infinite (e.g., if E is all of R?).
This measure should obey certain reasonable properties, for instance

(i) (Empty set) m(@) = 0.
(i) (Positivity) 0 < m(E) < 400 VE C R4
(iii) (Normalization) being (0,1)¢ := {(z1,...,74) : 0 < 2; < 1} the unit cube, m((0,1)?) = 1.
(iv) (Additivity) m (EU F) =m (E) +m (F) if E and F are disjoint.
(v) (Monotonicity) m (E) < m (F) whenever E C F,
(vi) (Translation invariance) m (z + E) = m (E) for any z € R? (i.e., if we shift E by the vector
x the measure should be the same).

Remarkably, it turns out that such a measure does not exist; one cannot assign a non-negative
number to every subset of R? which has the above properties. This is quite a surprising fact, as it
goes against one’s intuitive concept of volume, but we will prove it later in these notes. An even
more dramatic example of this failure of intuition is the Banach-Tarski paradox, in which a unit ball
in R? is decomposed into five pieces, and then the five pieces are reassembled via translations and
rotations to form two complete and disjoint unit balls, thus violating any concept of conservation
of volume; however we will not discuss this paradox here.

1



2 1. MEASURE THEORY

What such paradoxes mean is that it is impossible to find a reasonable way to assign a measure
to every single subset of R?. However, we can rescue the situation by only measuring a certain
class of sets in R?, that we will define measurable sets. These are the only sets F for which we will
define the measure m(E), and once one restricts one’s attention to measurable sets, one recovers
all the above properties again.

1.2. The goal: Lebesgue measure

Let R? be a Euclidean space. Our goal in this chapter is to define a concept of measurable set,
which will be a special category of subset of R? and for every such measurable set £ C R%, we will
then define the Lebesgue measure m (E) to be a certain number in [0, co].

The concept of measurable set will obey the following properties:
(i) (Borel property) every open set and every closed set in R? are measurable.
(ii) (Complementarity) if £ is measurable, then R?\ E is also measurable.

(iii) (Boolean algebra property) if (£j),.; is any finite collection of measurable sets (with J

finite), then the union (J,c; £; and intersection [, ; £; are also measurable.

(iv) (o-algebra property) if (Ej;);_; is any countable collection of measurable sets (with J
countable), then the union (J,.; E; and intersection (;_; E; are also measurable.
Remark 1.1. Some of these properties are redundant: for instance, (iv) will imply (iii), and once

one knows all open sets are measurable, (ii) will imply that all closed sets are measurable also.

To every measurable set F, we associate the Lebesgue measure m(FE) of E, which will obey the
following properties:

(i) (Empty set) m(2) = 0.
(ii) (Positivity) 0 < m(E) < 4o0 for every measurable set E.
(iii) (Monotonicity) if E C F, and E and F' are both measurable, then m(FE) < m(F)
(iv) (Finite sub-additivity) if (E}),. , is a finite collection of measurable sets, thenm (U, E; ) <
2 jesm (Ej).
(v) (Finite additivity) if (E}),. ; is a finite collection of disjoint measurable sets, then m (U]EJ Ej) =
> jeg m (Ej).
(vi) (Countable sub-additivity) if (£;)
m(Ujes ) < Sjesm (By).
(vii) (Countable additivity) if (Ej),
m(Ujes Bs) = Ljesm (B).
(viii) (Normalization) The unit cube [0,1] = {(z1,...,24) € R*: 0 < 2; < 1forall 1 <j <d}
has measure m ([0, 1]%) = 1.

(ix) (Translation invariance) If F is a measurable set, and z € R?, then 2+ F == {x+y : y € E}
is also measurable, and m(x + E) = m(FE).

jed is a countable collection of measurable sets, then

is a countable collection of disjoint measurable sets, then

Remark 1.2. Many of these properties are redundant; for instance the countable additivity
property can be used to deduce the finite additivity property, which in turn can be used to derive
monotonicity (when combined with the positivity property). One can also obtain the subadditivity
properties from the additivity ones.

Remark 1.3. Note that m(E) can be +00, and so in particular some of the sums in the above
properties may also equal +oo (and since everything is positive we will never have to deal with
indeterminate forms such as —oo + +00).

Our goal for this chapter can then be stated in the following:
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THEOREM 1.1 (Existence of Lebesgue measure). There ezists a notion of a measurable set,
and a way to assign a number m(E) to every measurable subset E C R, which satisfies all of the

properties (i)-(ix).

1.3. First attempt: Outer measure

Before we construct Lebesgue measure, we first discuss a somewhat naive approach to finding
the measure of a set - namely, we try to cover the set by boxes, and then add up the volume of
each box. This approach will almost work, giving us a concept called outer measure which can be
applied to every set and obeys all of the properties (i)-(ix) except for the additivity properties (v),
(vii). Later we will have to restrict the outer measure to a class of special sets (called measurable
sets) to recover the additivity property.

We begin with the notion of an open box.

DEFINITION (Open box). An open box (or box for short) B in R? is any set of the form
d
B = H(ai,bi) = {(xl,...,xd) cRY:2; € (a5, b;) forall 1 <i< d},
i=1

where b; > a; are real numbers. We define the volume vol(B) of this box to be the number

d
vol(B) = [ (b — a;) = (b1 — a1) (b2 — a2) ... (by — aa)
i=1
Remark 1.4. The unit cube (0,1)? is a box, and has volume 1.
Remark 1.5. In one dimension d = 1, boxes are the same as open intervals. One can easily check
in general dimension that open boxes are indeed open.
Remark 1.6. Note that if we have b; = a; for some i, then the box becomes empty, and has
volume 0 , but we still consider this to be a box.
We of course expect the measure m(B) of a box to be the same as the volume vol(B) of that
box. This is a natural fact that will be proved below and it is in fact an inevitable consequence of
the axioms (i)-(viii).

DEFINITION (Covering by boxes). Let £ C R? be a subset of R?. We say that a collection

(Bj), e of boxes cover I iff

Ec|]B;.
jeJ

Suppose E C R can be covered by a finite or countable collection of boxes (Bj)j oy If we wish
E to be measurable, and if we wish to have a measure obeying the monotonicity and sub-additivity
properties (iii), (iv), (vi) and if we wish m (B;) = vol (B;) for every box j, then we must have

m(E) <m (U Bj> <> m(B;) =) vol(By)

= jeJ jeJ

We thus conclude

m(E) < inf {Zvol (Bj) : (Bj),e; covers E;J at most countable } .
jeJ

Inspired by this, we define
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DEFINITION (Outer measure). If F is a set, we define the outer measure m*(E) of E to be the
quantity

m*(F) = inf {ZVOI (Bj) : (B)),e; covers E;J at most countable } :

jedJ

Remark 1.7. Since ) 77, vol (B;) is non-negative, we know that m*(£) > 0 for all £. However, it
is quite possible that m*(E) equal +o0.
Remark 1.8. We are allowing ourselves to use a countable number of boxes, because every subset
of R? has at least one countable cover by boxes; in fact R itself can be covered by countably many
translates of the unit cube (0,1)%.
Remark 1.9. The outer measure can be defined for every single set (not just the measurable ones),
because we can take the infimum of any non-empty set.

The outer measure obeys several of the desired properties of a measure:

Lemma 1.2 (Properties of outer measure). The outer measure has the following properties:

(i) (Empty set) The empty set & has outer measure m*(&) = 0.

(11) (Positivity) We have 0 < m*(E) < +oo for every measurable set E.

(iii) (Monotonicity) If A C B C R?, then m*(A) < m*(B).

(iv) (Translation invariance) If E is a subset of R, and x € R?, then m*(x + E) = m*(E).
(v) (Countable sub-additivity) If (A;).., is a countable collection of subsets of RY, then

m (Ujes 43) € Sjesm” (49),
(vi) (Homogeneity) If E is a subset of R, and a € R, then m*(aE) = |a|*m*(E).

jed

PROOF. (i) We can cover @ with (0, €)? for any € > 0. It means
m* (@) < vol ((0,€)%) = €.

We conclude that m*(@) = 0 by the fact that € is arbitrary.

(ii) Follows from the definition of the volume, as observed in Remark 1.7.

(iii) Follows from the fact that any cover of B is a cover of A.

(iv) Similarly, (B;),., is a cover for E if and only if (x + B;),; is a cover for x + E. Moreover,
vol(z + B;) = vol(B;). We then deduce the claim, because:

m*(F) = inf {Z vol (B;) : (B)),, covers E}

jed

= inf {Z vol (z + Bj) : (Bj),c; covers E}

jeJ
= inf {Z vol (B;) : (B;)jeJ covers x —+ E}
jeJ

=m*(x + E).

(v) For any j € N, by definition of the outer measure as an infimum, there exists (Bf )ie ;2
J

countable cover of A; by boxes such that

> vol(BY) < m(4)) + o

2"
iEIj
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Taking (Bf )

el jen &S & cover for Uj s Aj, it follows

m" (U A]) < ZZVOI BJ Z( m(A;) + 2%) = e—i—Zm*(Aj)

JeEN iel;

And we conclude by the fact that € is arbitrary and we can take ¢ — 0.

(vi) Assume that a is not 0, otherwise the claim follows from Remark 1.10. (B;);c; is a cover
for £ if and only if (aB;);c; is a cover for aF. Moreover, vol(aB;) = |a|? vol(B;). We then
deduce the claim, because:

la|m*(E) = |a|®inf {Zvol i) covers E}

jeJ
= |a‘dinf{ e Zvol (aBj) : (Bj);c; covers E}
jeJ
= inf {Z vol (B;) : (B})jEJ covers aE}
jed
=m*(aF).

O

Remark 1.10. With a proof similar to (i), we can prove that sets containing only one point
zo € R? have outer measure 0: m*({x¢}) =0 Vo € R Indeed, we can consider coverings of the
form (zo — &, 20 +€)? Ve > 0.

The outer measure of a closed box is also what we expect:

Proposition 1.3 (Outer measure of closed box). For any closed box

B= Hauz = {(z1,..., 24 ) € R z; € [a;, by] foralll1 <i<d},
=1
we have
B d
m*(B) =[] (b — @)
i=1

Example 1.1. m*([0,1]%) = 1.

PROOF. Clearly, we can cover the closed box B = [[, [a;, b;] by the open boxes

=

s
I
—

a; —&,b;+¢) Ve>0.

01( (a; —e,b; + ¢) )
i=1 =1

for every ¢ > 0. Taking limits as ¢ — 0, we obtain

d

Thus we have

=
:]&

—a; + 2¢)
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To finish the proof, we need to show that

d
Hb—az.
=1

By the definition of m*(B), it is equivalent to show that

d
Zvol (B(j)) > H (b — a;)
jet i=1
whenever (B(]))je 5
BU) because we will need the subscripts to denote components.

Since B is closed and bounded, it is compact (by the Heine-Borel theorem), and in particular
every open cover has a finite subcover. Thus to prove the above inequality for countable covers, it
suffices to do it for finite covers.

To summarize, our goal is now to prove that

Zvol( H (b; — a;) (1.1)

jeJ

is a finite or countable cover of B. We use the notation with the superscript

whenever ( B(j))jE , is a finite cover of H;l:l [a;, bi].

To prove the inequality (1.1), we shall use induction on the dimension d. First we consider

the base case d = 1. Here B is just a closed interval B = [a, b], and each box BY is just an open
interval BY) = (a;,b;). We have to show that

S —a) 2 (-0

jeJ
To do this we use the Riemann integral. For each j € J, let 1(4,,) : R — R be the function such
that 1(4,4,)(7) = 1 when z € (a;,b;) and 14, 5,)(z) = 0 otherwise. Then we have that 14, 5,) is
Riemann integrable (because it is piecewise constant, and compactly supported) and

o0
/ Lia; 0, = bj — a;

Summing this over all j € J, and interchanging the integral with the finite sum, we have
/ > Ly = 2 (b5 = a5).
o jeJ jeJ

But since the intervals (a;, b;) cover [a,b], we have )
other values if x, we have ) ., 1(q,s,)(7) > 0. Thus

a > 1=b-
[ Xtz [ 1=b-a

JjeJ

et Ly (z) = 1 for all z € [a,b]. For all

=

and the claim follows by combining this inequality with the previous equality. This proves (1.1)
when d = 1.

Now assume inductively that d > 1, and we have already proven the inequality (1.1) for
dimensions d — 1. We shall use a similar argument to the preceding one. Each box BY) is now of

the form
d
BY =] (a@, b@)

=1
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We can write this as
BU) — AG) (a&ﬁ,bg))

=1 1?@

where AY) is the d — 1-dimensional box AY) = []%! ( by ) Note that

vol (BY)) = voly_1 (A7) (1 ~ )

where we have subscripted vol;_; by d — 1 to emphasize that this is d — 1-dimensional volume being
referred to here. We similarly write

B = /_1 X [(ld, bd]
where A = [[Z] [a;, b)), and again note that
VOI(B) = VOldfl(A) (bd — ad) s

where A is the interior of A.
For each j € J, let fU) be the function such that f9) (z4) = volg_; (A(j)) ]l(a(j) b(j))(:vd). Then
d d

fU) is Riemann integrable and

/ f(j) = voly_; (A(j)) (bg) - agj)> = vol (B(j))
and hence

> " vol (B / > . (1.2)

JjeJ © jeJ

Now let z4 € [aq,b4] and (xy,...,24-1) € A. Then (z1,...,z4) lies in B, and hence lies in one of

the BY). Clearly we have x4 € (a(j) b&j)), and (21,...,74_1) € AU, In particular, we see that for

{49 j e siage (a0}

of d — 1-dimensional boxes covers A. Applying the inductive hypothesis (1.1) at dimension d — 1

we thus see that
39 (2a) = > volg_1 (A9) > voly_y(A).
i€ jEJ:xd€<a&j)7b(gj))

each x4 € [ag, by|, the set

Integrating this over [ag, by], we obtain
/ S 79 > voly 1(4) (ba — a4) = vol(B)
laa;bd] je

and in particular
/ SS9 > voly_1(A) (b — ag) = vol(B)
jeJ

since ) . ; f () is always non-negative. Combining this with (1.2) we obtain (1.1), and the induction
is complete.
O

Once we obtain the measure of a closed box, the corresponding result for an open box is easy:
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Corollary 1.4. For any open box
d
B = Hau —{xl,..., ) €RY: x; € (a;,b )forall1<z<d}
=1

we have

d
H (b; — a;)
=1

In particular, outer measure obeys the normalization property.
PROOF. Note that we may assume that b; > a; for all i, since if b; = a; this follows from
Lemma 1.2 (i). Now observe that

d

[ai +€,b2‘ — 8] C H (ai,bi) C H [(Ii,bi]

i=1 =1 i=1

=

for all € > 0, assuming that ¢ is small enough that b; —e > a; + ¢ for all i. Applying Proposition 1.3
and Lemma 1.2 (iii) we obtain

I —ai—2e) <m” (H (ai,bi)> <] (b — a;) .

=1 =1

Sending € — 0 one obtains the result. 0

We now compute some examples of outer measure on the real line R.
Example 1.2. Let us compute the one-dimensional measure of R. Since (—R, R) C R for all
R > 0, we have

m*(R) > m*((—R, R)) = 2R

by Corollary 1.4. Letting R — 400 we thus see that m*(R) = +o0.

Example 1.3. Now let us compute the one-dimensional measure of Q. From Remark 1.10 we see
that for each rational number Q, the point {q} has outer measure m*({q}) = 0. Since Q is clearly
the union Q = |J,o{q} of all these rational points ¢, and Q is countable, we have

Q<Y m{ah) =3 0=0

qeQ q€Q

and so m*(Q) must equal zero. In fact, the same argument shows that every countable set has
measure zero. (This, incidentally, gives another proof that the real numbers are uncountable.)
Remark 1.11. One consequence of the fact that m*(Q) = 0 is that given any £ > 0, it is possible
to cover the rationals Q by a countable number of intervals whose total length is less than €. For
example, writing Q = (¢;)ien, We can take an interval with length /2" around each ¢; € Q, thus
obtaining that the total length of the intervals is )_, ye/2' = e.

Example 1.4. Now let us compute the one-dimensional measure of the irrationals R\Q. From
finite sub-additivity we have

m*(R) <m*(R\Q) +m™(Q).

Since Q has outer measure 0 , and m*(R) has outer measure +oo, we thus see that the irrationals
R\Q have outer measure +o0o. A similar argument shows that [0, 1]\Q, the irrationals in [0, 1],
have outer measure 1.
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Example 1.5. By Proposition 1.3, the unit interval [0, 1] in R has one-dimensional outer measure
1, but the unit interval {(z,0) : 0 < x < 1} in R? has two-dimensional outer measure 0. Thus
one-dimensional outer measure and two-dimensional outer measure are quite different. Note that
the above remarks and countable additivity imply that the entire x-axis of R? has two-dimensional
outer measure 0, despite the fact that R has infinite one-dimensional measure.

1.4. Outer measure is not additive

In light of Lemma 1.2, it would seem now that all we need to do is to verify the additivity
properties, and we have everything we need to have a usable measure. Unfortunately, these properties
fail for outer measure, even in one dimension, as it can be proved with Vitali’s construction.

Proposition 1.5 (Failure of countable additivity). There exists a countable collection (A;),.; of

disjoint subsets of R, such that m* (UjEJ Aj) # D ies M (4).

PROOF. We shall need some notation. Let Q be the rationals, and R be the reals. We say that
a set A C R is a coset of Q if it is of the form A = x + Q for some real number x. For instance,
V2 + Q is a coset of R, as is Q itself, since Q = 0 + Q. Note that a coset A can correspond to
several values of x; for instance 2 + Q is exactly the same coset as 0 + Q. Also observe that it is
not possible for two cosets to partially overlap; if x + Q intersects y + Q in even just a single point
z, then = — y must be rational (use the identity x —y = (z — z) — (y — 2)), and thus x + Q and
y + Q must be equal. So any two cosets are either identical or distinct.

We observe that every coset A of the rationals Q has a non-empty intersection with [0, 1].
Indeed, if A is a coset, then A = x + Q for some real number z. If we then pick a rational number
q in [—z,1 — z| then we see that  + ¢ € [0, 1], and thus AN [0, 1] contains z + g¢.

Let R/Q denote the set of all cosets of Q; note that this is a set whose elements are themselves
sets (of real numbers). For each coset A in R/Q, let us pick an element x4 of AN [0, 1]. (This
requires us to make an infinite number of choices, and thus requires the axiom of choice.) Let E be
the set of all such x4, i.e., E = {x4: A € R/Q}. Note that £ C [0, 1] by constrution.

Now consider the set

X= |J (+E) (1.3)
qeQN[-1,1]
Clearly this set is contained in [—1, 2] (since ¢+ € [—1, 2] whenever ¢ € [-1,1] and z € E C [0, 1]).
We claim that this set contains the interval [0, 1]. Indeed, for any y € [0, 1], we know that y must
belong to some coset A (for instance, it belongs to the coset y + Q). But we also have 24 belonging
to the same coset, and thus y — x4 is equal to some rational ¢. Since y and x4 both live in [0, 1],
then ¢ lives in [—1,1]. Since y = ¢+ x4, we have y € ¢+ F, and hence y € X as desired.
We claim that
m'(X)# Y. m'(q+E)
q€Qn[-1,1]

which would prove the claim. To see why this is true, observe that since [0,1] C X C [—1, 2], that
we have 1 < m*(X) < 3 by monotonicity and Proposition 1.3. For the right hand side, observe

from translation invariance that
Z m*(q+ E) = Z m*(E).
qum[_Ll] qEQﬂ[—l,l]

The set QN [—1, 1] is countably infinite. Thus the right-hand side is either 0 (if m*(E) = 0) or
+oo (if m*(E) > 0). Either way, it cannot be between 1 and 3, and the claim follows. 0
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The above proof used the axiom of choice. This turns out to be necessary; one can prove using
some advanced techniques in mathematical logic that if one does not assume the axiom of choice,
then it is possible to have a mathematical model where outer measure is countably additive.

One can refine the above argument, and show in fact that m* is not finitely additive either:
Proposition 1.6 (Failure of finite additivity). There exists a finite collection (A;)._, of disjoint
subsets of R, such that

jedJ

m’ (U Aj) # > m"(4).

jeJ jedJ

PROOF. This is accomplished by an indirect argument. Suppose for sake of contradiction that
m* was finitely additive. Let E and X be the sets introduced in Proposition 1.5. From countable
sub-additivity and translation invariance we have

m(X)< Y. mig+E)= Y  m(E).

qum[flvl] qum[flvl}

Since we know that 1 < m*(X) < 3, we thus have m*(E) # 0, since otherwise we would have
m*(X) <0, a contradiction.

Since m*(E) # 0, there exists a finite integer n > 0 such that m*(E) > 1/n. Now let J be a
finite subset of Q N [—1,1] of cardinality 3n. If m* were finitely additive, then we would have

m* (Uq—l—E) :Zm*(q+E) :Zm*(E) >3n% = 3.

qeJ qeJ qeJ

But we know that (J . ; ¢+ E is a subset of X, which has outer measure at most 3. This contradicts
monotonicity. Hence m* cannot be finitely additive. 0

Remark 1.12. The examples here are related to the Banach-Tarski paradox, which demonstrates
(using the axiom of choice) that one can partition the unit ball in R? into a finite number of pieces
which, when rotated and translated, can be reassembled to form two complete unit balls! Of course,
this partition involves non-measurable sets. We will not present this paradox here as it requires
some group theory which is beyond the scope of the course.

1.5. Measurable sets

As we mentioned in the introduction to this chapter and rigorously proved in section 1.4, m*
cannot be countably or finite additive on all subsets of R%. We need to exclude pathological sets to
recover finite and countable additivity. Fortunately, this can be done, thanks to a clever definition
by Constantin Carathéodory (1873-1950):

DEFINITION (Lebesgue measurability). Let E be a subset of R?. We say that E is Lebesgue
measurable, or measurable for short, iff we have the identity

m*(A) = m*(AN E) + m*(A\E)

for every subset A of R? If E is measurable, we define the Lebesgue measure of £ to be
m(FE) =m*(E); if E is not measurable, we leave m(E) undefined.

Remark 1.13. In other words, F being measurable means that if we use the set E to divide up
an arbitrary set A into two parts, we keep the additivity property.
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The above definition is somewhat hard to work with, and in practice one does not verify a set
is measurable directly from this definition. Instead, we will use this definition to prove various
useful properties of measurable sets (Lemmas 1.7-1.14), and after that we will rely more or less
exclusively on the properties in those lemmas, and no longer need to refer to the above definition.

We begin by showing that a large number of sets are indeed measurable. The empty set £ = &
and the whole space £ = R? are clearly measurable:

m*(A) = m* (AN @) + m* (ANRY) = m*(2) + m*(A) = m*(A).
Here is another example of a measurable set:
Lemma 1.7 (Half-spaces are measurable). The half-space
{(xl,...,a:d) eRY: z, > 0}
s measurable.

PROOF. [This proof is the content of Series 2, ex. 2 — 3] We first handle the case d = 1. Note
that since we are working in one dimension the volume of a cube corresponds to the length of
an interval. We have already proved that m*(A) < m*(A N (0,00)) + m*(A\ (0,00)), by finite
subadditivity of m*. Now, we prove the reverse inequality. Fix ¢ > 0 and consider {B;}°; a
countable familly of intervals such that

ZvolBi <m"(A)+¢e and AC UB""
: i=1
Now, for all i = 1,2, ..., define
le =B N (07 00)7
B} = B;N (—00,2/2").
Note that B} and B? are open intervals and vol B} + vol B? < vol B; +¢/2'. Observe that

[e.9]

AN (0,00) C [ B = JB: N (0,00)] UB1

=1

In a similar way, we can prove A\ (O, o) C ;2 B?. Finally, by definition of outer measure,
o0 o0 oo e
m (AN (0,00)) +m*(A\ (0,00)) <S vol Bl + 3 vol B2 < [voleL—l < m*(A) + 2.
(AN (0,00)) +m*(A\ (0, 00)) ; ; ; 5 (4)

Since this inequality is true for any € > 0, we deduce
m* (AN (0,00)) +m*(A\ (0,00)) <m*(A).

This proves the claim when the dimension is one. We now deal with the case d > 1. We have
m*(A) < m*(ANE)+m*(A\ E) by finite subadditivity of m*. Then we prove the reverse inequality.
le e > 0. There is a countable family of open boxes {B;}:2, such that

ZvolBi <m*(A)+e, AC UB’L‘

Every B; is an open box of the form B; = szl(ag), b,(j)). Define for any 1 = 1,2,.. .,
€

= o rrd—1, G D,
2T oy — o))
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and correspondingly,

d—1

B! =T, 8) x [0 ) 1 (0,00)]
k=1

B2 =TT b") x [(@, ) 1 (=00,2)] -
k=1

Notice that B} and B? are open boxes and

d—1 d
vol B + vol B2 < [ lay” — 0| (|a§;'> — 0| + 5i) =I]lay’ — b +¢/2" = vol B, + /2!
k=1 k=1

We can prove that AN E C U2, B} and A\ £ C UX, B?. Finally,
m*(ANE)+m*(A\ E) < ZvolBi1 + Zvole < Z [vol B; +£/2'] < m*(A) + 2¢.
i=1 i=1 i—1

Since this inequality is true for any ¢, we deduce

m(ANE)+m*(A\ E) <m*(A).

Remark 1.14. A similar argument will also show that any half-space of the form
{(1,...,2q) ER*:2; > 0} or {(z1,...,749) € R?: 2; <0} (1.4)

for some 1 < j < d is measurable.
Now we present some more properties of measurable sets.

Lemma 1.8 (Properties of measurable sets). The following properties hold.

(i) If E is measurable, then RI\E is also measurable.
(ii) (Translation invariance) If E is measurable, and v € R, then x + E is also measurable,
and m(z + E) = m(E).
(1i) (Homogeneity) If E is measurable, and a € R, then aFE is also measurable, and m(aFE) =
la|m(E).
(i) If Ey and Ey are measurable, then Ey N Ey and Ey U Ey are measurable.
(v) (Boolean algebra property) If Ey, Es, ..., Ex are measurable, then Uﬁvzl E; and ﬂ;vzl E;
are measurable.
(vi) Every open bozx, and every closed boz, is measurable.
(vii) Any set E of outer measure zero (i.e., m*(E) = 0) is measurable.

PROOF. (i) We write, for any A C R%, by measurability of F
m*(A) =m* (AN E)+m"(A\ E) =m* (AN (E°)°) + m*(A\ E)
=m"(A\ E°) +m" (AN E°).
(ii) By translation invariance of m* (Lemma 1.2, (iv)), we have
m'(A)=m*"(A—z)=m"(A—2)NE)+m*((A—=z)\ E)
=m"(AN(z+ E))+m*(A\ (z + E)).
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(iii) Assume that a is not 0, otherwise the claim follows from (vii). By homogeneity of m*
(Lemma 1.2, (vi)), we have

o= (4 s o (1)) o (10)10)
= m* (AN (aE)) +m" (A\ (aE)).
(iv) We have to prove that
m*(A) > m* (AN (Ey U Ey)) +m™(A\ (B4 U Ey)),

the other inequality being always true. We write, by measurability of F; and F5, and by
subbaditivity of the outer measure (Lemma 1.2, (v)),

m*(A) =m*" (AN Ey) +m* (AN EY)
=m"(ANE NEy)+m* (ANE{NEy) +m" (AN E;NES) +m* (AN E{ N EY)
>m* (AN (EyUEy)) +m* (AN EfN ES),
which yields the claim.
(v) Follows from (iii) by induction.

(vi) Open boxes can be seen as intersections of half-spaces, therefore by Lemma 1.7 and (iii)
we prove their measurability. In particular, we define

H[(LZ) = {(:vl,...,xd) ERdZIj >aj}, G,()j) = {(xl,...,xd) ERd:xj <bj}.

We can then write an open box as:

d
B=(HY NG,
j=1 '
therefore by the boolean algebra property (iii) B is measurable. The proof for closed boxes
is analogue by taking the half-planes

_{.CCl,.. ER jzaj}, G])_{ ERd ]Sbj}
(vii) Flnally, if m*(E) = 0, we have
m* (ANE)<m"(E)=0
and
m*(ANE) <m*(A).
Therefore,
m*(A) >m*(ANE)+m"(A\ E),
which yields the claim as the reverse inequality is always true.
O

With Lemma 1.8, we have proved many properties on our wish list of measurable sets, and we
are making progress towards finite additivity. We can actually prove it:

Lemma 1.9 (Finite additivity). If (Ej)jeJ is a finite collection of disjoint measurable sets and A
is any set (not necessarily measurable), we have

m* (Aﬂ UE]) => m' (ANE;). (1.5)

jeJ jeJ
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Furthermore, we have
m (U Ej) => m(E;). (1.6)
jeJ jeJ

PROOF. The equality in (1.6) follows from (1.5) by setting A := R?. To prove (1.5), we show
the case |J| = 2, the general case following by induction. We know, by the measurability of F; that

For the general case, we reason by induction, proving the case |J| = N and supposing true the case
|J| = N — 1. We write

N N N
m* (AOUEj) = m"* (AOUEijN> +m* (AmUEijfv>
j=1

j=1 j=1

N-1
=m" (AN Ex)+m” <Am U Ej)

j=1
N-1

=m*(ANEy)+ Y _ m*(AN Ej)
j=1

N
=> m'(ANE)),
j=1

which conludes the proof. 0

Remark 1.15. Lemma 1.9 and Proposition 1.6 combined can imply that there exist non-measurable
sets.

Corollary 1.10. If A C B are two measurable sets, then B\ A is also measurable and, if in addition
m(A) < +oo, we have

m(B\A) = m(B) — m(A)
PROOF. Remark that B = AU (B \ A). By finite additivity (Lemma 1.9) we obtain
m(B) = m(A) +m(B\ A),
which yields the claim. 0

Now we show countable additivity.

Lemma 1.11 (Countable additivity). If (Ej)jej is a countable collection of disjoint measurable
sets, then J;c; Ej is measurable, and

m (U Ej> => m(E)) (1.7)
jeJ jeJ
PROOF. Let E = J,.; E;. Our first task will be to show that E is measurable. Thus, let A be
an arbitrary set (not necessarily measurable); we need to show that

m*(A) =m* (AN E) +m"(A\E). (1.8)
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Since J is countable, we can assume without loss of generality J = N. Note that

ANE=|J(ANnE))
j=1
and hence by countable sub-additivity

m*(ANE) < Zm* (ANE;).
j=1

We rewrite this as
N

m*(ANE) <sup Zm* (ANE)).
N>19
Let Fy be the set Fiy = U;\;l E;. Since the AN E; are all disjoint, and their union is A N Fy, we
see by finite additivity (Lemma 1.9) that

> m*(ANE;) =m* (AN Fy)

and hence

m* (AN E) <supm” (AN Fy).
N>1

Now we look at A\E. Since Fy C FE, we have A\F C A\ Fy. By monotonicity, we thus have
m*(A\E) < m” (A\Fy)
for all N. In particular, we see that
m* (AN E)+m*(A\E) <supm” (AN Fy) +m*(A\E)

N>1
<supm* (AN Fy)+m" (A\Fn)

N>1
= m*(A)
where in the last line we used that F) is measurable thanks to the finite additivity. But from finite
sub-additivity we have
m*(ANE)+m*"(A\E) > m*(A)
and the claim (1.8) follows. This shows that F is measurable.
To finish the lemma, we need to show (1.7). We first observe from countable sub-additivity that

BT il
jeJ
On the other hand, by finite additivity and monotonlclty we have

(E)>supm(FN)—supZm Zm

N>1 N>1

and thus we have (1.7) as desired. O
Next, we prove measurability for countable unions and intersections.

Lemma 1.12 (o-algebra property). If (Ej),.; is any countable collection of measurable sets (so J

is countable), then the union \J,_; E; and the intersection (.., E; are also measurable.

jed jcJ
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ProOOF. We remark that

GEJ:ElU(E2\E1)U<E3\(E1UE2))U---,

where the unions are disjoint unions. Combining finite additivity, Corollary 1.10 and countable
additivity, we obtain the claim for countable unions of measurable sets. For the case of the

intersection, note that
E = <U E;) .
j=1 j=1

Using the measurability of the complement of a measurable set (Lemma 1.8 (i)) we conclude by the
property just obtained for unions. 0

To finally prove measurability for open and closed sets, first need a preliminary lemma.
Lemma 1.13. Every open set can be written as a countable or finite union of open boxes.

PROOF. [This proof is the content of Series 1, ex. 3 (iii)]. We first need some notation. Call
a box B = H?Zl (a;, b;) rational if all of its components a;, b; are rational numbers. Observe that
there are only a countable number of rational boxes (this is since a rational box is described by 2d
rational numbers, and so has the same cardinality as Q?¢. But Q is countable, and the Cartesian
product of any finite number of countable sets is countable).

We make the following claim: given any open ball B(z,r), there exists a rational box B which
is contained in B(z,r) and which contains z. To prove this claim, write x = (z1,...,z4). For each
1 <i <d, let a; and b; be rational numbers such that

r b r
in—a<a¢<l‘i< Z'<CIZZ‘+C—Z

Then it is clear that the box H?Il (a;, b;) is rational and contains x. A simple computation
using Pythagoras’ theorem (or the triangle inequality) also shows that this box is contained in
B(z,r).

Now let E be an open set, and let > be the set of all rational boxes B which are subsets of
E, and consider the union gy, B of all those boxes. Clearly, this union is contained in F, since
every box in X is contained in E by construction. On the other hand, since F is open, we see that
for every x € FE there is a ball B(x,r) contained in E, and by the previous claim this ball contains
a rational box which contains x. In particular, x is contained in | Jz s, B. Thus we have

E = UB
BeX

as desired; note that X is countable or finite because it is a subset of the set of all rational boxes,
which is countable. O

Lemma 1.14 (Borel property). Every open set, and every closed set, is Lebesque measurable.

PROOF. It suffices to do this for open sets, since the claim for closed sets then follows by
measurability of complements (Lemma 1.8(i)). Let E be an open set. By Lemma 1.13, F is the
countable union of boxes. Since we already know that boxes are measurable, and that the countable
union of measurable sets is measurable, the claim follows. O

The construction of Lebesgue measure and its basic properties are now complete. Now we
make the next step in constructing the Lebesgue integral - describing the class of functions we can
integrate.
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1.6. Measurable functions

In the theory of the Riemann integral, we are only able to integrate a certain class of functions -
the Riemann integrable functions. We will now be able to integrate a much larger range of functions,
for instance, non-negative measurable functions.

DEFINITION (Measurable functions). Let © be a measurable subset of R? and let f: Q — R™
be a function. A function f is measurable iff f~!(V) is measurable for every open set V C R™.

As discussed earlier, most sets that we deal with in real life are measurable, so it is only natural
to learn that most functions we deal with in real life are also measurable. For instance, continuous
functions are automatically measurable:

Lemma 1.15 (Continuous functions are measurable). Let Q be a measurable subset of R?, and let
f:Q —= R™ be continuous. Then f is also measurable.

PROOF. Let V be any open subset of R™. Then since f is continuous, f~'(V) is open relative
to Q, i.e., f7HV) =W NQ for some open set W C RZ Since W is open, it is measurable; since
is measurable, W N €} is also measurable. O

Because of Lemma 1.13, we have an easy criterion to test whether a function is measurable or
not:

Lemma 1.16. Let Q be a measurable subset of R, and let f : Q — R™ be a function. Then f is
measurable if and only if f~'(B) is measurable for every open bor B.

PROOF. The only if statement is trivial, so we only prove the other direction. By Lemma 1.13,
every open set V' C R™ can be expressed as a countable union of open boxes, namely

i=1
Therefore
)= (U Bz) =Jr By
i=1 i=1

is measurable by Lemma 1.11. O

Corollary 1.17. Let Q2 be a measurable subset of R, and let f : Q — R™ be a function. Suppose
that f = (f1,..., fm), where f; : Q@ — R is the j™ co-ordinate of f. Then f is measurable if and
only if all of the f; are individually measurable.

PRrOOF. If f is measurable, by the fact that
-1 = f I Rx---xR Rx---xR
£ @h) = F R x B x (a,b) x Rx - x )
7—1 times
we get that fj_l((a, b)) is measurable, so we can conclude by Theorem 1.16 and the fact that
Rx---xRx(ab) xRx---xR

is open.
If f; is measurable Vj, then

. (H(ajabj>> =) f; (a5, b;)

Jj=1 Jj=1

is measurable and again we conclude via Theorem 1.16. 0J
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Unfortunately, it is not true that the composition of two measurable functions is automatically
measurable; however we can do the next best thing: a continuous function applied to a measurable
function is measurable.

Lemma 1.18. Let Q) be a measurable subset of R, and let W be an open subset of R™. If
f:Q — W is measurable, and g : W — RP is continuous, then go f: ) — RP is measurable.

PROOF. Take a open subset V' C RP. We have
(go H'V)=f" (g (V).
As g is continuous, g7'(V) is open, and as f is measurable, f~' (¢7!(V')) is measurable. O
This has an immediate corollary:

Corollary 1.19. Let Q) be a measurable subset of R%. If f : Q — R is a measurable function, then
so is | f|, max(f,0), and min(f,0).

PROOF. Apply Lemma 1.18 with ¢g(z) = |z|, g(x) := max(x,0), and g(x) := min(z, 0) O
A slightly less immediate corollary:
Corollary 1.20. Let Q be a measurable subset of R If f: Q — R and g : Q — R are measurable

functions, then so is f + g, f — g, fg, max(f,g), and min(f, g). If g(x) # 0 for all x € Q, then f/g
15 also measurable.

PROOF. Consider f + g. We can write this as k o h, where h : Q — R? is the function
h(z) = (f(z),g(z)), and k : R* — R is the function k(a,b) := a+b. Since f, g are measurable, then
h is also measurable by Corollary 1.17. Since k is continuous, we thus see from Lemma 1.18 that
k o h is measurable, as desired. A similar argument deals with all the other cases; the only thing
concerning the f/g case is that the space R? must be replaced with {(a,b) € R? : b # 0} in order
to keep the map (a, b) — a/b continuous and well-defined. O

Another characterization of measurable functions is given by

Lemma 1.21. Let Q be a measurable subset of RY, and let f : Q — R be a function. Then f is
measurable if and only if f~'((a,00)) is measurable for every real number a.

PROOF. The implication = is trivial. To prove the implication <, by Theorem 1.16 it suffices
to show that f~!((a,b)) is measurable Va < b € R. Note that

R ()}

measurable by hypothesis

We conclude that f~1([b, +00)) is measurable by measurability of countable intersections of mea-
surable sets (Theorem 1.8 (iv)). Then, we have that

FH(a,0)) = f~H((a, +00)) N f (=00, b) = f7H((a, +00)) N fH([b, +00))°,
which are both measurable sets. ]

Inspired by this lemma, we extend the notion of a measurable function to the extended real
number system R* := R U {400} U {—0c0} :

DEFINITION (Measurable functions in the extended reals). Let {2 be a measurable subset of
R?. A function f: € — R* is said to be measurable iff f~!((a,+00c]) is measurable for every real
number a.
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Note that Lemma 1.21 ensures that the notion of measurability for functions taking values in
the extended reals R* is compatible with that for functions taking values in just the reals R.
Measurability behaves well with respect to limits:

Lemma 1.22 (Limits of measurable functions are measurable). Let Q be a measurable subset of
R?. For each positive integer n, let f, : Q — R* be a measurable function. Then the functions
sup,,~y fn, inf,>1 fn, limsup,,_, o fn, liminf, , f, are also measurable. In particular, if the f,
converge pointwise to another function f : Q0 — R*, then f is also measurable.

PROOF. We first prove the claim about sup,,s; f,. Call this function g. We have to prove that
g ((a, +0o0]) is measurable for every a. But by the definition of supremum, we have

g ((a, +o0]) U 1 ((a, +00)),
n>1
and the claim follows since the countable union of measurable sets is again measurable.
A similar argument works for inf,~; f,,. The claim for lim sup and liminf then follow from the
identities
limsup f, = mf sup fn

n— 00 n>N
and

hm 1nf fn =sup mf fn-
N>172

1.7. The Cantor set

In this section, we introduce the Cantor (ternary) set', a famous example of a Borel set which
has Lebesgue measure 0 and yet the cardinality of the continuum.
We define it inductively as follows. As a base case, we let

CO = [0, 1] )

Cy:=10,1/3]U[2/3,1],

Gy = [0,1/9] U[2/9.1/3] U [2/3,7/9] U [8/9.1].
that is, for k& € N5y, the set Cy is the union of 2* disjoint closed intervals of length 37 and, to
obtain Cy,q from C}, we remove the open middle third from each of the intervals in Cy. The
interval I, ; = (3, g) which is removed from Cj at the 1st stage to obtain C}, will be called the
removed (or complementary) interval of Cy. In general, the 2* intervals that are removed from Cj,
to obtain Cyq will be called the removed (or complementary) intervals of Cyy1 and will be labeled,
from left to right, as I;;1j, where j € {1,...,2"}.

We remark that, by induction, it is possible to show that
3i+1 3i+2
I ;= T3k 0T 3k
and that the intervals that remain to make up Cj, after the I ; are removed are of the form
{3j+0 3j+1} {3j+2 3j+3]
and )

) for some i € N, with 0 <i <311,

3k ) 3k Sk ) 3k (19)

Now {Cj},cy is a nested sequence of non-empty compact sets:
'CCk+1CCkC"’CCQC01CCO.

Tt was introduced by Henry John Stephen Smith [Smi75], Vito Volterra [Vol81], and Georg Cantor [Can84]. See
[F1e94] for a more detailed historical account.
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FIGURE 1. First few stages of the construction of the Cantor set.

The Cantor set is defined as

k=0
If we denote by Ej the union of the open intervals that are removed at the k-th stage, then
00 oo 2k—1
C=01\{JE =01\ | U U &
k=1 k=1 j=1

In the following proposition, we present some further properties of the Cantor set.

THEOREM 1.23 (Properties of the Cantor set). The Cantor set C' has the following properties:

(i) C is compact and non-empty.
(ii) C is measurable and its Lebesque measure is 0.
(iii) C is nowhere dense®.

(iv) C is equal to the set of all x € [0, 1] which have a ternary expansion containing only the
digits 0 and 2, i.e.,

C= {Zg—::ane{O,Q} fornEN*}
n=1

= {a €[0,1] : a = (0.a1az...)3 with a; € {0,2} forie N*},

where (0.ajay . ..)s denotes a possible ternary expansion of a € [0, 1].
(v) C is perfect.
(vi) C is totally disconnected".
(vii) C is uncountable.

Remark 1.16. The ternary expansion mentioned in (iv) is not unique (see Exercise 5 of Series 2).
Notice, however, that while it may be possible for x € R to have two different ternary representations
(check that 5 = (0.1000...);5 = (0.0222...)3, as an example), 2 cannot be written in more than one
way without using the digit 1. That is, we claim that, if $°° 2 = $°° 5n where each of ay,

n=1 3n n=1 3n>
and (3, is either 0 or 2, then «,, = 3, for every n. Suppose that there exists an n such that «,, # 3,.

Let m be the smallest integer such that «,, # S,,. Then |, — G| = 2 and |a, — B,] < 2 for every

2We say that a set E C R is nowhere dense (in R) if the interior of the closure of E (in R) is the empty set.

3We say that a set E is perfect if it is closed and each point of F is a limit point of E.

We say that a set F is totally disconnected if, for each distinct z € E and y € S, there exist disjoint open sets
Uand Vsuchthat z e U,yeV,and E= (UNE)U(VNE).
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n, so that

| [V]
£
%
A

Oy, — ﬁm - Qn — Bn
|O~/m - Bm| = ap — Bn
B 3m n:;rl 3"
|t — B S oo, — [y
>
B Sm n:Zm;rI 3”
1 = 2
Zg_m’am_ﬁm’_ Z ‘an
n=m-+1
1
= 3m’

which yields a contradiction. Hence, «,, = 3, for every n € N*.

PROOF.

(i)

For every k € N, the set C} is closed. Since any intersection of closed sets is closed, then
the Cantor set C' := (), Ck is closed. Finally, C' is compact since it is both closed and
bounded (as subset of [0, 1]).

It remains to show that C' # @. For each k € N, let x, € Cj. Then {z3},. € C1. By
compactness, there is a convergent subsequence {xkﬂ'}jeN with limit z¢y € C. However,

{xkj}j; C (5. Thus zy € (5. An analogous reasoning shows that zo € Cj for all
k=1,2,.... In conclusion, zy € (,cy Ck = C.

For every k € N, the set ('}, is measurable. Since any countable intersection of measurable
sets is measurable, then the Cantor set C' := [, , C) is measurable. By construction, Cj
is formed by 2* disjoint intervals of length 37*, so m(Cy) = (2/3)*. Since C C C}, for any
k € N, we deduce

2

0<m(C) < m(Cy) = (g)k.

Letting k — oo, we conclude m(C) = 0.

By (i), C is closed. By contradiction, let us suppose that C' contains a (non-empty) open
interval /. By the monotonicity of the Lebesgue measure, we have m(I) < m(C); however,
by (ii), m(C) = 0 which yields a contradiction.

Let us consider the map

f:4{0,2}"" — 0,1]

a s ST an

n=13n"*

To prove the claim of (iv), we need to show that f is a bijection between {0,2}"" and C.
First, we note that f actually takes values in C' C [0, 1]. By structure of Cj,
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As a result, for a € {0,2},

+oo

k
k~>+oo Z
n= 1 n=1

Second, we prove that f is injective. Let o/, a” € {0,2}"" such that

a,=a; forl<j<N, dy<dy.

(2

Then, we have a/y =0, a’;, = 2 and

F

_l’_

o0 a a” +oo a
N — _n _ _” _”
i=1 n=1 i=N+
N-1
a 2
<y mggNl_ 2
=l 1-1/3
N-1
= g—% +37N
n=1
N a’
<2 g =S,

Finally, we prove that f is surjective. Let x € C, we need to show that there exists
a € {0,2} such that x = f(a). We start by observing that, since = € [0, 1], we have

+o0o
x<
0,1]22x=) = f ; €{0,1,2}. 1.10
0,1] >z ;BZ or some x; € { } (1.10)
We need to show that x; # 1 for all 1 € N*. Since z € C it belongs to an interval of the
form (1.9), i.e., for all n € N*, there exists a(™ = (ag ). ,a%")) € {0,2}" such that

—n
Tom) KT < Ty +377,

n

with the notation z, := ;" 5, which implies

n_ ()
. . a;
r= lim z,n = lim E — | .
n—-+oo n——+oo \ 4 3
K2

We now consider three cases. If z = x,x) for some n > 1, then
r=f <agn),...,ag"),0,0,...) )

If 2 =x,0) + 37" for some n > 1, then

n (n) +oo
N U 2 (n) (n)
x—z;gj + 21§ —f(al s Gy, 2,2, >,
1= 1=n-+
_3—n—1 2 =3—n
1-1/3

The third case is z,m) < T < T m + 37". We first note that (because of (1.10))

OS:E—Z <Z 3”12 L T =3",
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and then (because of z,m) < * < Z,m) +37")

3" L < 3ng < 3n 41, 3"y < 3" < 3"z, + 1.
1213 Z (n) (n)
—— eN
eN

This implies

n
E 23" = 3"x ) E a")?)” ‘
i—1

and, thus,

L + sz?)l L= a§”) Z (n)g1—i

EN ‘ , GN \ v/
€[0,6x3-2x3)=[0,1) €[0,1)
Taking the floor function (or integer part function) of each side of the last identity, we get
xr, = agn); similarly, we deduce z; = a§”) for 1 <i < n, so that each z; belongs to {0,2}.
(v) To prove that C' is perfect, we need to show that it is closed (which follows from (i)) and

that every x € C is a limit point of C'. Let x € C and let € > 0. We choose an integer n
such that 37% < ¢. Since x € C}, there exists a closed interval I of length 37* such that
x € I C Cy. Let a be an endpoint of I that is distinct from x and note that a € C' and
0 < |z —a| < e. Hence, x is a limit point of C.

(vi) To prove that C' is totally disconnected, we argue as follows. Let x,y € C be distinct and
assume, without loss of generality, that © < y. Let € = |z — y|. We choose k so large that
3% < e. Then z,y € Cy, but z and y cannot both be in the same interval of O, (since
these intervals are of length 37% ). Then there exists ¢t between z and y that does not
belong to Cj, (and, in particular, is not an element of C'). Let us define U := {s : s < t}
and V := {s:s > t}. Then x € UNC, hence UNC # &; analogously, V N C # &.
Moreover, (UNC)N(VNC)=@. As a result, we conclude that C' = (CNU)U (CNV)
(i.e., that C is totally disconnected).

(vii) The bijectivity of the map f defined in (iv) shows that card C' = card{0,2}". In turn, we
have card{0, 2} = card{0, 1}''" = card[0, 1] = card R. Since these sets are uncountable’,
C' is also uncountable.

O

Remark 1.17 (Alternative proofs of the uncountability of the Cantor set). We point out that (v)

actually implies (vii)®.

5This is the content of Cantor’s theorem on the uncountability of the real numbers. For the sake of completeness,
let us provide a quick proof of the uncountability of P := {0,1} = [1,2,{0,1} (which, in turn, is in bijection
with the subset of real numbers in [0, 1] whose decimal expansions consist of only digits 0 and 1). We suppose, for
the sake of finding a contradiction, that it is countable. Then we can write P = {a, : n € N}. We can rewrite
an = {@n,m},,cy for all n. We then construct a sequence z = {,,} such that

1 ifay,,=0,
Ty =
0 ifap,=1

Then z is a sequence with terms either 0 or 1, but « # a,, for any n € N, i.e., z € P\ {a, : n € N} = &, which is a
contradiction.
6Let us sketch a proof of this fact. Let E C R be a (non-empty) perfect set. Since F has accumulation points, it
cannot be finite. Therefore it is either countable or uncountable. We will prove that it is uncountable.
Let us suppose, for the sake of finding a contradiction, that E' is countable instead, i.e. E = {a;}ien.
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Another proof of (vii) is essentially contained in Section 1.9: indeed, the uncountability of C
follows from the construction of the Cantor-Lebesgue function. Since it maps the Cantor ternary
set C' onto the interval [0, 1], card C' > card[0, 1]. On the other hand, card C' < card|0, 1] because
C' C [0, 1]. By Cantor—Bernstein-Schroder’s theorem, we then deduce that card C' = card|0, 1].

1.8. o-algebras

Measures are defined for families of sets that satisfy specific properties. For this reason, we
introduce the structure of o-algebra.

DEFINITION (o-algebra). Let X (usually, X = R%) be a set, A C 2% is a o-algebra if:
i) Xe A

i) FeA=E%€ A

(i) (B} C A= U EicA

Remark 1.18. @ € A and {E;};% C A= N7 E; € A, using the fact that complements and
countable unions of elements of A belong to A as well.
Remark 1.19. By the properties in Lemma 1.8, measurable sets form a o-algebra. Let us denote
it with M.

On o-algebras, we can define measures:

DEFINITION (Measure). Let (F,.A) be a measurable space. A map p : A — [0,400] is a
measure on (£, A), if it satisfies the following conditions:

(i) p(2) =0;
(i) g (Upen An) = >omey 1(Ay)  V{A,}nen C A countable family of pairwise disjoint sets.

Remark 1.20. Positive linear combinations of measures are measures.
Example 1.6. Some examples of measure spaces are:

(i) (R, M,m) that is the Lebesgue measure space;
(ii) (R,P(R),d,,), where &y is the Dirac Delta centered at xo = 0 (recall that ¢,, is such that
Je 0(2)0x, (v)da = (x0) Vo € CF(R));
(iti) (R,P(R), >N | 6,) is a measure space;
(iv) (R,P(R),> > 6,) is a measure space.

DEFINITION (o-algebra generated by a collection). Let E be a set and A C 2¥. The o-algebra
generated by A is the smallest o-algebra containing all elements of A.

This o-algebra corresponds to the intersection of all the o-algebras containing all elements of A,
and one could check that the intersection of o-algebras is still a o-algebra.

DEFINITION (Borel g-algebra). The Borel o-algebra B is the o-algebra generated by open sets.

Remark 1.21. Equivalently, the Borel o-algebra B is the o-algebra generated by the collection of
boxes.

The set Uy := (a1 — 1,a1 + 1) is a neighborhood of a;. Since a; is a limit point of F, there exist infinitely many
elements of F belonging to U;. Next, we take a bounded open interval U, such that Uy C Uy, Us N E # &, and
a1 € U,. Inductively, we find U;;1 such that U;;1 C U;, a; € Ui 1, and U1 N E # @.

For every i € N, the sets V; := U; N E are compact (closed and bounded) and non-empty (by construction).
However, a;_1 ¢ V;. As a consequence, ay ¢ V = [),cy Vi (because a1 € V), az ¢ V (because ay ¢ V3), and,
inductively, a; ¢ V for all i € N. Hence V, being a subset of F = {a;}ien, is empty. However, V' cannot be empty
because it is obtained as the intersection of non-empty nested compact sets (the proof that such an intersection is
not empty follows along the same lines as the proof of the second half of (i)); this yields a contradiction.
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1.9. BC M

First of all, we know that B C M, because M is a o-algebra containing open sets. We will now
prove that the inclusion is strict, because there exists measurable sets that are not Borel.

Let P be the Cantor set.
We define the Lebesgue function f : [0,1] — R.
Given z € (0, 1], we can write its binary expansion

=) —=0. ... a;€{0,1} VieN 1.11
T ; o 10203 a; €{0,1} Vi ( )
The binary expansion can be made unique if we identify the expansions
0.ay...a_101...1... and 0O.a;...a;_110...0...,

and assume that the expansions are of the first form (therefore, infinitely many a, are equal to 1,
except for x = 0). With this convention, we can define:

o0

fla)=Y" 23‘; (1.12)

=1

.

........

FIGURE 2. First few stages of the construction of the Cantor-Lebesgue function.

Lemma 1.24. We can prove for f the following properties:
(1) f([0,1]) € P;

(i) f is strictly monotone;
(i1i) f is measurable.

PROOF. Let us prove the various points of the lemma:
(i) since 2a; € {0,2}, it follows from the definition of the Cantor set that f([0,1]) C P.
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(ii) to prove monotonicity, we take 0 < x < y < 1 and consider their binary expansions (unique
with our convention):
o0 o0
N W b
r = — Yy = 5;.

2n
n=1 n=1

We have that if z < y, then there exists 1 < k < +oo such that a; =b; Vj=1,...,k—1

and ap < b, which implies ap = 0 and b, = 1.

We then have

2 = 2(b, —an) _ 2 =2
Fy) = fla) = o + >, (3—n2—k— > 3—=—>0
n=k+1 n=k+1

(iii) from the previous point, we have that f is strictly increasing, and therefore it is measurable.
O

Lemma 1.25. Let f: R — R* be measurable. Then, f~'(B) is measurable VB € B.

PROOF. We claim that
Ap={BCR : f7!(B) is measurable.}
is a o-algebra containing intervals.
We can prove the claim using the fact that f is measurable:
(i) f7'(R) =R, that is measurable;
(ii) B€ Ay = R\ B € Ay because f"}(R\ B) = R\ f~'(B). Since B € Ay, f~1(B) is
measurable, and therefore its complement is measurable as well;
(iii) {Bn}nen C Af = U,en Bn € Ay, because [ (U, Bn) = Upen / H(Bn), and the

countable union of measurable sets is measurable.
Then, since B is the smallest o-algebra containing open sets, we can conclude the proof.

Now we can show that there exists measurable sets which are not Borel:
THEOREM 1.26. There exists a Lebesgue-measurable set A € M such that A ¢ B.

PROOF. Take the Vitali set V' C [0, 1], that is non-measurable, and the Lebesgue function f.
Let
B=f(V)cf(o1)=r
We can prove that B is measurable: indeed, B C P, and P is a measurable set with measure 0.
Therefore, its subset B is measurable as well by Lemma 1.8.

Let us now prove that B is not Borel: we assume by contradiction that B is Borel. Then f~!(B)
is measurable by Lemma 1.25. However, since f is injective, we have that f~'(f(V)) =V, which is
not measurable and therefore leads to a contradiction. 0



CHAPTER 2

Lebesgue integration

In this chapter, we follow closely the content of [Taol6, Chapter §].

For the Riemann integral, the typical approach consists in first integrating a particularly simple
class of functions (the piecewise constant functions). Once one learns how to integrate them, one
can then integrate other Riemann integrable functions by a similar procedure and we shall use a
similar philosophy to construct the Lebesgue integral.

We begin by considering a special subclass of measurable functions, called simple functions.
Then we will show how to integrate simple functions, and then from there we will integrate all
measurable functions (or at least the absolutely integrable ones).

2.1. Simple functions

DEFINITION (Simple functions). Let © be a measurable subset of R? and let f: Q — R be
a measurable function. We say that f is a simple function if the image f(€2) is finite. In other
words, there exists a finite number of real numbers ¢y, ¢, ..., ¢y such that for every z € €2, we have
f(x) =cj for some 1 < j < N.
Example 2.1. Let Q be a measurable subset of R? and let E be a measurable subset of . We
define the characteristic function 1z : Q — R by setting 1g(z) := 1 if x € E, and 1g(x) := 0
if z ¢ E. Then 1g is a measurable function because E is measurable, and is a simple function,
because the image 15(Q2) is {0,1} (or {0} if E is empty, or {1} if £ = Q).

We remark on three basic properties of simple functions: they form an algebra, they are linear
combinations of characteristic functions, and they approximate non-negative measurable functions.
More precisely, we have the following three lemmas:

Lemma 2.1. Let Q be a measurable subset of R, and let f : Q@ — R and g : @ — R be simple
functions. Then f+ g and fg are also simple functions. Also, for any scalar ¢ € R, the function
cf is also a simple function.

PROOF. It follows from the fact that (f + ¢g)(2) C f(Q) + g(2), (f9)(Q2) C £(2) - g(2), and
(cf)(Q) =c-(f(Q)) are finite. O

Lemma 2.2. Let  be a measurable subset of R?, and let f : Q — R be a simple function. Then
there exists a finite number of real numbers cq,...,cn, and a finite number of disjoint measurable
sets By, Es, ..., Eyx in §Q, such that [ = Zf\il cilg,.

PROOF. Define {c1,...,cn} = f(Q) and E; := f~1({¢;}) to recover the claim. O

Lemma 2.3. Let Q be a measurable subset of RY, and let f : Q — R be a measurable function.
Suppose that [ is always non-negative, i.e., f(x) > 0 for all x € Q. Then there exists a sequence
f1, fa, fz, ... of simple functions, f, :Q — R, such that the f, are non-negative and increasing,

0 < filz) < folx) < f3(x) < ... for every x € Q
and converge pointwise to f :
lim f,(z) = f(x) for every x € Q
n—oo

27
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ProOOF. The functions

ﬂ@%—ﬁm{i if@mﬂﬂwﬂw}—mm(ﬁ%gﬂgﬁ

jez 2n 2n

are non-negative, increasing, and lim,, .. f,(z) = f(z).

First we prove that for all @ € R and all n € N we have sup,, {;—n : % < a} = Lz;,laj. Let
b= sup;ez {2]7 . 2]" < a} then 2"b € Z and 2™b < 2"a, so 2"b < |2"a]. For the converse inequality,
we have that [2"a| < 2"a, so [2"a] < 2"b. This proves the formula.

To prove monotonicity, we prove that for all @ € R and all n € N we have LZ;,L“ l < L2;:1“J To do
this, notice that [2"a| < 2"a and so 2|2"a] < 2""a. Since 2|2"a| € Z, we get 2|2"a| < |2"a]
and dividing by 2"*! gives the claim.

To prove convergence, it suffices to see that for all @ € R and n € N we have 0 < a — LQ “J < 27",
This can be seen through the inequality |2"a] < 2"a < |2"a] + 1. Since 2" — +00 as n — +00,

we get pointwise convergence. 0

Remark 2.1. One can actually approximate a non-negative measurable function via simple
functions having compact support. Indeed, we can consider the sequence

{15, 0}ken st 1, ék T f,

where ¢ are simple functions that approach f given by Lemma 2.3 and B, are closed balls of
radius £ .
We now show how to compute the integral of simple functions.

DEFINITION (Lebesgue integral of simple functions). Let © be a measurable subset of R¢, and
let f:Q — R be a simple function which is non-negative; thus f is measurable and the image f({2)
is finite and contained in [0, 00). We then define the Lebesgue integral [, f of f on Q by

|- wn({ € 2 () = A))
>\€f )iA>

0

We will also sometimes write fQ f as fQ fdm (to emphasize the role of Lebesgue measure m) or
use a dummy variable such as x, e.g., fQ z)d.
Example 2.2. Let f: R — R be the functlon which equals 3 on the interval [1, 2], equals 4 on the
integral (2,4), and is zero everywhere else. Then

/f =3 xm([1,2]) +4xm((2,4) =3 x 1 +4x2=11.
Q
Or if g : R — R is the function which equals 1 on [0, 00) and is zero everywhere else, then
/gzlxm([O,oo)):1X+oo:+oo
Q

Thus the simple integral of a simple function can equal +00. (The reason why we restrict this
integral to non-negative functions is to avoid ever encountering the indefinite form +oo + (—o0)).
Remark 2.2. Note that this definition of integral corresponds to one’s intuitive notion of integration
(at least of non-negative functions) as the area under the graph of the function (or volume, if one is
in higher dimensions).

Another formulation of the integral for non-negative simple functions is as follows.

Lemma 2.4. Let Q be a measurable subset of R, and let By, ..., Eyx are a finite number of disjoint
measurable subsets in Q. Let ¢y, ...,cy be non-negative numbers (not necessarily distinct). Then
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we have
N

/Qicj]l,;j => cm(E;).

Jj=1
PROOF. We can assume that none of the c; are zero, since we can just remove them from

the sum on both sides of the equation. Let f := Zjvzl cjlg;. Then f(z) is either equal to one
of the ¢; (if z € E; ) or equal to 0 (if = ¢ Ujvzl E; ). Thus f is a simple function, and f(Q2) C

{0} U{¢; : 1 < j < N}. Thus, by the definition,

/Qf: S (e f(z) = A}

Ae{c;:1<j<N}

= > | U E

Ae{cj:1<j<N} 1<j<N:cj=A
But by the finite additivity property of Lebesgue measure, this is equal to

Yooox D> m(E)

Ae{c;:1<j<N} 1<j<N:cj=A
> > am(B).
AE{c; 1<j<N} 1<j<N:cj=X
Each j appears exactly once in this sum, since ¢; is only equal to exactly one value of A. So the
above expression is equal to >,y ¢;m (E;) as desired. O

Some basic properties of Lebesgue integration of non-negative simple functions:

Proposition 2.5. Let Q be a measurable set, and let f : 2 — R and g : 0 — R be non-negative
simple functions.

(i) I/I;e) have 0 < [, f < +o00. Furthermore, we have [, f =0 if and only if m({x € Q : f(z) #
0})=0.

(i) We have [o(f+9) = [of + [49-
(ii) For any positive number ¢, we have [, cf =c [, f.

(w) If f(z) < g(x) for almost every x € Q, then we have [, f < [, 9.

We make a very convenient notational convention: if a property P(z) holds for all points in £,
except for a set of measure zero, then we say that P holds for almost every point in 2. Thus (i)
asserts that fQ f =0 if and only if f is zero for almost every point in €2.

PROOF. From Lemma 2.2 or from the formula

= Z AL {2eq:f(x)=2}
Aef()\{0}

we can write f as a combination of characteristic functions, say

N
[= Z ¢ilg,
=1

where E, ..., Ey are disjoint subsets of €2 and the ¢; are positive. Similarly we can write

M
g= Z dilp,
k=1
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where Fi, ..., F); are disjoint subsets of {2 and the d; are positive.

(i) Since [, f = Z;VZI c;m (Ej;) it is clear that the integral is between 0 and infinity. If f
is zero almost everywhere, then all of the £; must have measure zero and so fQ f=0.
Conversely, if [, f =0, then Zjvzl c¢;m (E;) = 0, which can only happen when all of the
m (E;) are zero (since all the ¢; are positive). But then Ujvzl E; has measure zero, and

hence f is zero almost everywhere in €).
(ii) Write Ey := Q\ Ujvzl E; and ¢y := 0, then we have Q2 = EyU E4jU ... U Ey and

N
f = ch]lEj'
7=0

Similarly if we write Fp := Q\ Uﬁil I, and dy := 0 then

M
g = Z dk]le
k=0

Since 2 = FEyU...UFEy = FyU...U Fy, we have

N M
f - Z Cj]lEjﬁFk
=0 k=0
and
M N
9=>_Y dilpp,
k=0 j=0
and hence
f +g9= Z (Cj + dk’) ]lEijk-

=>J=iVH,V e

=J =4V, Vs >

=J =iV, Vv >

and similarly

/Qg— Z dkm(Fk): Z dkm(EjﬂFk)

0<k<M 0<j<N;0<k<M

=J =4V, V S >

and the claim (ii) follows.
(iii) Since ¢f = Zjvzl ccjlp;, we have

N
/ch = ;ccjm(Ej).

Since [, f = Zjvzl c;m (E;), the claim follows.
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(iv) First assume that f(z) < g(x) for every x € Q. Set h = g — f, then h is a non-negative
simple function. By (ii), we thus have [, g = [, [+ [, h. From (i), we know that [, h >0
and so [, [ < [, 9.

To treat the general case, let A = {x € Q: f(z) > g(z)}, then by assumption we have
m(A) = 0 and f(z)Lac(z) < g(x)Lac(x) for every z € €. Since the product of two
non-negative simple functions is a non-negative simple function (Lemma 2.1), by the
preceding discussion, we get fQ flge < fQ gl 4c. To conclude, it suffices to prove that

fQ f= fQ f14c and similarly for g. To see this, note that f1 4 = Zjvzl ¢jlg,nac. Since

Ei, ..., Ey are disjoint, we have that £y N A°, ..., Ey N A° are also disjoint, thus

N N
/Qf:;c]m(E]):;cjm(E]ﬂA):/Qf]lAc

2.2. Integration of non-negative measurable functions

We now pass from the integration of non-negative simple functions to the integration of non-
negative measurable functions. We will allow our measurable functions to take the value of 400
sometimes.

DEFINITION (Majorization). Let f : Q@ — R and ¢g : 2 — R be functions. We say that f
majorizes g, or g minorizes f, iff we have f(z) > g(x) for every = € Q.

We sometimes use the phrase “f dominates ¢" instead of “f majorizes g".

DEFINITION (Lebesgue integral for non-negative functions). Let 2 be a measurable subset of
R?, and let f: Q — [0, 00] be measurable and non-negative. Then we define the Lebesgue integral
Jo f of fon Q to be

/ f :=sup { / s : s is simple and non-negative, and minorizes f} .
Q Q

Remark 2.3. We can compare this notion to that of a lower Riemann integral, but interestingly
we will not need to match this lower integral with an upper integral here.

Remark 2.4. Note that if €2 is any measurable subset of €2, then we can define fQ, f as well by
restricting f to €, thus [o, f:= [, f|q-

We have to check that this definition is consistent with our previous notion of Lebesgue integral
for non-negative simple functions; in other words, if f : {2 — R is a non-negative simple function,
then the value of fQ f given by this definition should be the same as the one given in the previous
definition. But this is clear because f certainly minorizes itself, and any other non-negative simple
function s which minorizes f will have an integral fQ s less than or equal to fQ f, thanks to
Proposition 2.5 (iv).

Remark 2.5. Note that fQ f is always at least 0 , since 0 is simple, non-negative, and minorizes f.
Of course, fQ f could equal +00. Some basic properties of the Lebesgue integral on non-negative
measurable functions (which supersede Proposition 2.5):

Proposition 2.6. Let Q be a measurable set, and let f : Q — [0,400] and g : Q@ — [0, +00] be
non-negative measurable functions.
(i) We have 0 < [, f < 4o00. Furthermore, we have [, f = 0 if and only if f(x) = 0 for
almost every x € 2.
(i) For any positive number ¢, we have [,cf =c [, f.
(i) If f(x) < g(x) for almost every x € Q, then we have [, f < [, g.
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(w) If f(z) = g(x) for almost every x € Q, then [, f = |, 9.
(v) If Q' C Q is measurable, then [, f = [, fla < [, f.

PROOF. (i) Observe that [, f > 0 because s = 0 is a simple function that minorizes f.
Furthermore, if [, f = 0 then f = 0 almost everywhere. Suppose for contradiction this is
not the case. Let say f > 9 > 0 on a subset E C (2 of positive measure. Then h := d1g is
a simple function that minorizes f. Therefore

/sz/9h>o,

which is a contradiction.
(ii) Notice that:

c / f=csup { / s : s is simple and non-negative, and minorizes f }
Q Q

= sup { / cs : s is simple and non-negative, and minorizes f}
Q

= sup { / s : s is simple and non-negative, and minorizes ¢ f} = / cf,
Q Q

where we have used the fact that if s is a simple function that minorizes f, then cs is a
simple function that minorizes cf.

(ili) Let A ={z € Q: f(z) > g(x)} then by assumption we have m(A) = 0. For any s non-
negative simple function minorizing f, we have that sl 4 is a non-negative simple function
minorizing g. From the proof of Proposition 2.5 (iv), we see that [,s = [, slae < [ 9.
Since s was arbitrary we deduce that [, f < [, g.

(iv) Comes by applying (iii) in both directions.

(v) Comes from (iii) applied to fly < flg:

Li=[ 1w [ra= [

Remark 2.6. Proposition 2.6 (iv) is quite interesting; it says that one can modify the values of a
function on any measure zero set (e.g., you can modify a function on every rational number), and
not affect its integral at all. It is as if no individual point, or even a measure zero collection of
points, has any “vote" in what the integral of a function should be; only the collective set of points
has an influence on an integral.
Remark 2.7. Note that we do not yet try to interchange sums and integrals. From the definition
it is fairly easy to prove that fQ( f+g) > fQ f+ fﬂ g, but to prove equality requires more work
and will be done later.

With the Lebesgue integral it is possible to interchange an integral with a limit if the functions
are increasing:

O

THEOREM 2.7 (Monotone convergence theorem). Let Q be a measurable subset of R, and let
(fn)o2, be a sequence of non-negative measurable functions from € to R which are increasing in the
sense that

0 < fi(z) < folx) < f3(x) < ... for almost every x € Q.
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(Note we are assuming that f,(x) is increasing with respect to n; this is a different notion from
fu(z) increasing with respect to x.) Then we have

0§/gf1§/ﬂf2§/ﬂf3§
/ngpfn—sup/fn-

PROOF. Let A = {z € Q: (f.(x))nen is not increasing}, then by assumption m(A) = 0. Using
Proposition 2.6 (iv), we have [, fn = [, fallo\a for every n € N. Since sup,,cy fr = sup,cy folaya
almost everywhere on 2, we have by Proposition 2.6 (iv) that [, sup,ey fo = Jo SUPnpen frlaya. So
we may assume that (f,,(x)),en is increasing for every x € ().

The first conclusion is clear from Proposition 2.6 (iii). Now we prove the second conclusion. From

Proposition 2.6 (iii) again we have
[swinz [ £,

for every n; taking suprema in n we obtain

Asglpfm > sup/fn

which is one half of the desired conclusion. To finish the proof we have to show

/Qslipfm < sup/ fn

From the definition of fQ sup,,, fm, it will suffice to show that

/SSSUP/fn
Q n Q

for all simple non-negative functions which minorize sup,, f,.

Fix s. We will show that
(1—5)/3§8up/fn
Q n Jo

for every 0 < ¢ < 1; the claim then follows by taking limits as ¢ — 0. Fix €. By construction of s,
we have

and

s(x) < sup fo(2)
for every = € Q. Hence, for every = € (2 there exists an N (depending on x ) such that

fn(x) = (1 —¢)s(x)
Since the f,, are increasing, this will imply that f,(z) > (1 —¢)s(z) for all n > N. Thus, if we
define the sets E,, by
E, ={xeQ: folx) > (1—¢)s(z)}
then we have £y C E5 C E3 C...and |~ E, = Q.
From Proposition 2.6 (v) we have

1—5/3—/ 1—55</Efn /fn

so to finish the argument it will suffice to show that

sup/ s:/s
n n Q
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Since s is a simple function, we may write s = ) " ¢;1, for some measurable F}; and positive c;.

j=1
Since
N
/ s = Z c;m (F})
Q o
and

N N
/ SZ/ ch]]'ijEn :ZC]TI’L(FJHER)
it thus suffices to show that
supm (F; N E,) =m (F}).
This follows because F; N E, < F; and F; N E, T F;. O
We can now interchange addition and integration thanks to this theorem:

Lemma 2.8 (Interchange of addition and integration). Let  be a measurable subset of R, and let
f:Q—[0,400] and g : Q@ — [0, +00] be measurable functions. Then [o(f+9) = [, [+ [q9

PROOF. By Lemma 2.3, there exists a sequence 0 < s1 < s5 < ... < f of simple functions
such that sup,, s, = f, and similarly a sequence 0 < t; <ty < ... < g of simple functions such
that sup,, t, = ¢g. Since the s, are increasing and the ¢, are increasing, it is then easy to check
that s, + t, is also increasing and sup,, (s, + t,) = f + g. By the monotone convergence theorem

(Theorem 2.7) we thus have
/ f =sup / Sn
Q n Jo

/ngsgp/ﬂtn
/(f+g)—sup/(8n+t)

But by Proposition 2.5 (ii) we have [, (s, +t,) = [, $n + [ tn- By Proposition 2.5 (iv), [, s, and
fQ t, are both increasing in n, so

([ ) [2): ()

and the claim follows. O

Of course, once one can interchange an integral with a sum of two functions, one can handle an
integral and any finite number of functions by induction. More surprisingly, one can handle infinite
sums as well of non-negative functions:

Corollary 2.9. If Q is a measurable subset of RY, and g1, gs, ... are a sequence of non-negative
measurable functions from Q) to [0, +0oc], then
9n = /gn

PROOF. We have

[e'e) N [e'e)

where the last equality is given by Theorem 2.7 (by non-negativity of g,). 0J
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Remark 2.8. Note that we do not need to assume anything about the convergence of the above
sums; it may well happen that both sides are equal to +0o. However, we do need to assume
non-negativity.

One could similarly ask whether we could interchange limits and integrals; in other words, is it

true that
/ lim f, = lim fn
Q n—oo n—oo

Unfortunately, this is not true, as the following “moving bump" example shows.
Example 2.3. For each n = 1,2,3..., let f, : R — R be the function f, = 1},,4+1). Then
lim,, o0 fn(z) = 0 for every x, but fR fn =1 for every n, and hence lim,, fR fn=1%#0. In other
words, the limiting function lim,, ., f, can end up having significantly smaller integral than any of
the original integrals.

However, the following very useful lemma of Fatou shows that the reverse cannot happen - there
is no way the limiting function has larger integral than the limit of the original integrals:

Lemma 2.10 (Fatou’s lemma). Let Q be a measurable subset of R, and let fi, fa, ... be a sequence
of measurable function from € to R such that f, > 0 almost everywhere on 2 for alln € N. Then

/ liminf f,, < liminf / fn-
Q n—oo n—oo Q

PROOF. For every n € N, let A, = {x € Q: f,(x) < 0}, then by assumption m(A,) = 0 and
by countable subadditivity, we deduce that m(A) = 0 where A = |J,,cy An. By Proposition 2.6 (iv),
we have that [, fn = [, fala\a for every n € N and [, liminf, .o fn = [, liminf, o foloya. So

we may assume that f,(x) > 0 for every x € Q and every n € N.
Recall that

liminf f, = sup (iI;f fm)

n—o0

and hence by the monotone convergence theorem

/hmmf fn = sup/ (inf fm> .
Q N Q m>n

By Proposition 2.6 (iii) we have
/ (lnf fm) S/fj
Q \m2n Q

/ liminf f,, < sup mf fj = lim inf fn
Q

n—00 n Jj=n n—00

as desired. O

Thus

Note that we are allowing our functions to take the value +00 at some points. It is even possible
for a function to take the value 400 but still have a finite integral; for instance, if E is a measure
zero set, and f : 2 — R is equal to 400 on E but equals 0 everywhere else, then fﬂ f =0 by
Proposition 2.6 (i). However, if the integral is finite, the function must be finite almost everywhere:

Lemma 2.11. Let Q be a measurable subset of RY, and let f : Q — [0, +00] be a non-negative
measurable function such that fﬂf is finite. Then f is finite almost everywhere (i.e., the set
{r € Q: f(x) = +oo} has measure zero).
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PROOF. Suppose for contradiction this is not the case. Denote
E:={re: f(zx) =+o0}
and suppose that m(E) = § > 0. Then, the function

(z) +oo0 fzeFR
x =
g 0 otherwise

/sz/ﬂngroo,

which is a contradiction. O

is dominated by f. Therefore

Form Corollary 2.9 and Lemma 2.11 one has a useful lemma.

Lemma 2.12 (Borel-Cantelli lemma). Let Q1,Qy,... be measurable subsets of RY such that
S m(Qy) is finite. Then the set

Q= {3: e R?: xz € Q, for infinitely many n}
1s a set of measure zero. In other words, almost every point belongs to only finitely many €, .

PRrROOF. We observe that
Q=()E. withE,:=|]Q.
n=1 k=n

Let € > 0 be given. We claim that m(€2) < . By the arbitrariness of £ > 0, this will suffice to
conclude the proof.

Since Y -, m () < oo, we can find a sufficiently large n € N such that >~ m () < e.
Therefore, by subadditivity,

m(E,) <) m () <e.
k=n
On the other hand, we have Q2 C E,, for all n € N, so we conclude that m(2) < e. UJ

2.3. Integration of absolutely integrable functions

We have now completed the theory of the Lebesgue integral for nonnegative functions. Now we
consider how to integrate functions which can be both positive and negative. However, we do wish
to avoid the indefinite expression +00 + (—00), so we will restrict our attention to a subclass of
measurable functions - the absolutely integrable functions.

DEFINITION (Absolutely integrable functions). Let Q be a measurable subset of R%. A measur-
able function f : 2 — R* is said to be absolutely integrable if the integral fQ |f| is finite.

Of course, |f| is always non-negative, so this definition makes sense even if f changes sign.
Absolutely integrable functions are also known as L!(Q) functions.

If f:Q — R*is a function, we define the positive part f* : Q — [0, +00] and negative part
[~ :Q — [0, +00] by the formulae

[T =max(f,0); f~ :=—min(f,0).

From Corollary 1.19 we know that f* and f~are measurable. Observe also that fTand f~ are
non-negative, that f = f* — f~ and |f| = fT+ f~.
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DEFINITION (Lebesgue integral). Let f : 2 — R* be an absolutely integrable function. We
define the Lebesgue integral fQ f of f to be the quantity

St =0

Note that since f is absolutely integrable, fQ fTand fﬂ fare less than or equal to fﬂ |f| and
hence are finite. Thus fﬂ f is always finite; we are never encountering the indeterminate form
+00 — (400).

Note that this definition is consistent with our previous definition of the Lebesgue integral for
non-negative functions, since if f is nonnegative then f* = f and f~ = 0. We also have the useful

triangle inequality
/f‘S/f++/f‘=/|f|-
Q Q Q Q

Proposition 2.13. Let ) be a measurable set, and let f : 2 — R and g : Q@ — R be absolutely
integrable functions.

(i) For any real number ¢ (positive, zero, or negative), we have that cf is absolutely integrable
and [yef =cf, f.
(i) The function f + g is absolutely integrable, and [(f +g) = [, [+ [q 9.
(i) If f(x) < g(x) for almost every x € Q, then we have [, f < [, 9-

(w) If f(x) = g(x) for almost every x € Q, then [, f = [,9.

PROOF. (i) First of all, notice that since f is absolutely integrable, cf is also absolutely
integrable. Now, if ¢ = 0, the result is obvious. If ¢ is positive, we have using the linearity
of the integral for nonnegative functions that

/Q(cf)da::/g(cf)*da:—/g(cf)da::/ﬂcf*dx—/gcfda::c/gfdx. (2.1)

If ¢ is negative instead, we have

/Q(cf)dx:/Q(cf)+dx—/9<cf)—dx:/Q|c|f—dx—/ﬂ|c|f+dx:—(/ch|f+dx—/ﬂ|c|f—dm)
:—/Q|c|fdx(2£)—|c\/ﬂfdg;:c/ﬂfda;.

(ii) We begin by showing that f+ ¢ is absolutely integrable. Indeed, by the triangular inequality
and the monotonicity of the integral for nonnegative functions, we have

/|f+9|d$§/|f|dx+/|g|dx<+oo.
0 Q Q

f+9)t =+ =f+9=f"—f"+9"—g,

Note that

and so
(frg) ' +f +g =(+9) +f +g"

Therefore, using linearity of the integral for nonnegative functions,

/Q(f+g)+dm+/ﬂf‘dx+/gg‘dx:/Q(f+g)‘d:c+/ﬂf+da:+/gg+dx. (2.2)
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Thus,

[Graat [rrgra- (149 do

(Qiz)/f+dx—/fdx+/g+da:—/gdx
Q Q Q Q
d:ef/fdx—k/gdx.

Q Q

(iii) The assumption f(z) < g(x) guarantees f*(z) < g*(x) and ¢ (z) < f~(z) for almost
every x € () and therefore, by the monotonicity of the integral for nonnegative functions,

/Qfdx:/QfJ“dw—/Qf_dxg/Qngdx—/Qg_da::/dia:.

(iv) Comes by applying (iii) in both directions.
0

As mentioned in the previous section, one cannot necessarily interchange limits and integrals,
lim [ f, = [lim f,, as the “moving bump example" showed. However, it is possible to exclude
the moving bump example, and successfully interchange limits and integrals, if we know that the
functions f,, are all majorized by a single absolutely integrable function. This important theorem is
known as the Lebesgue dominated convergence theorem, and is extremely useful:

THEOREM 2.14 (Lebesgue dominated convergence thm). Let 0 be a measurable subset of R?,
and let f1, fa,... be a sequence of measurable functions from £ to R* which converge pointwise

almost everywhere. Suppose also that there is an absolutely integrable function F : Q — [0, +0o0]
such that |fn(z)| < F(z) for almost every x € Q and alln =1,2,3,.... Then

/ lim f, = lim fn
QTL‘)OO n—oo

PROOF. Let f : @ — R* be the function f(z) := limsupn_)Oo fn(z). By Lemma 1.22) f is
measurable. Also, since |f,(z)| < F(z) for all n and almost all x € €, we see that each f, is
absolutely integrable, and by taking limits we obtain |f(z)| < F(x) for almost all z € Q, so f is
also absolutely integrable. Let us now define F that dominates f, everywhere: to do so, consider
the set

A= U{x € Qs.t. F(z) < fulz)},

neN

and set F = 400 on A, F = F on \ A. Note that m(A) = 0 because it is a countable union of
sets with zero measure, and therefore F' is still absolutely integrable. .
Our task is now to show that lim,,_, fQ fn= fQ f. Note that the functions F'+ f,, are non-negative

everywhere and converge pointwise almost everywhere to F 4+ f. We can apply Fatou’s lemma
(Lemma 2.10) combined with Proposition 2.6 (iv):

/F—i—fﬁliminf/ﬁ—i—fn
Q Q

n—o0

and thus
f < liminf / fn

n—oo
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But the functions F — f, are also non-negative everywhere and converge pointwise almost everywhere
to F' — f. We can apply Fatou’s lemma combined with Proposition 2.6 (iv) again:

/F—fghMﬁ/F—ﬁ
Q n—0o0 Q

Since the right-hand side is [, F' — limsup,,_,., J, f» (Why did the lim inf become a lim sup?), we

thus have
/f>hmsup/fn
n—o0

Thus the lim inf and limsup of [, f,, are both equal to [, f, as desired. O

Finally, we record a lemma which is not particularly interesting in itself, but will have some
useful consequences later in these notes.

DEFINITION (Upper and lower Lebesgue integral). Let € be a measurable subset of R?, and let

f:Q — R be a function (not necessarily measurable). We define the upper Lebesgue integral f_Q f
to be

/ f:=inf { / g : g is an absolutely integrable function
Q Q

from €2 to R that majorizes f}

and the lower Lebesgue integral fﬂ f to be

/ f:=sup { / g : g is an absolutely integrable function
Ja Q

from ) to R that minorizes f }

Here we adopt the convention inf @ = +o00 and sup & = —oo.
It is easy to see that [,f < [, f (use Proposition 2.13 (iii)). When f is absolutely integrable then
equality occurs. The converse is also true:

Lemma 2.15. Let ) be a measurable subset of ]Rd,ind let f:Q — R be a function (not necessarily
measurable). Let A be a real number, and suppose fo = fﬂf = A. Then f is absolutely integrable,

and -
éfzéfzész

PROOF. By definition of upper Lebesgue integral, for every integer n > 1 we may find an
absolutely integrable function f : 2 — R which majorizes f such that

l/H§A+l
Q n

Similarly we may find an absolutely integrable function f,; : 2 — R which minorizes f such that

l/nZA—l
Q n

Let F* :=inf, ff and F~ :=sup,, f,. Then F'* and F'~ are measurable (by Lemma 1.22) and
absolutely integrable (because they are squeezed between the absolutely integrable functions f;"
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and fi, for instance). Also, F'* majorizes f and F~ minorizes f. Finally, we have

/F+§/f;§A+l
0 Q n
/F+§A

Q
/FzA
Q

but F* majorizes F~, and hence [, F* > [, F'~. Hence we must have

/F*:/F:A

0 0
/F+—F_=0
%

By Proposition 2.6 (i), we thus have F*(z) = F~(z) for almost every z. But since f is squeezed
between F~and F'*, we thus have f(z) = F*(x) = F~(z) for almost every z. In particular, f differs
from the absolutely integrable function F'™ only on a set of measure zero and is thus measurable

as desired. O

for every n, and hence

Similarly we have

In particular

2.4. Consequences of the dominated convergence theorem

In this chapter, we will see how the dominated convergence theorem enables us to extend the
continuity of the integrand function to its Lebesgue integral, and how to interchange derivatives
and integrals. Note that, throughout the section, we will consider continuity or derivatives in a
variable that is not the variable of integration.

THEOREM 2.16. Let Q C RY be a measurable set and X be a metric space. Let xo € X and
f:Qx X =R be a function such that

(1) Yx € X, the function w — f(w,z) is measurable,
(2) for almost all w € ), the function x — f(w,x) is continuous at xo,
(3) there exists g € L'(Q) such that

|[f(w, z)] < g(w)
for almost every w € Q and all x € X.
Then the function F': X — R defined by

F(z) = /Qf(w,x)dw, Ve e X

15 well defined and continous at xg.
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PROOF. From the bound |f(w, )| < g(w) for almost every w € 2 and all z € X, we see that
for all z € X the function w +— f(w, ) is in L'(Q) and so F is well defined.
To prove continuity at xy, consider a sequence (:vn)neN C X such that z,, — z¢ as n — oo.
For all n € N define the function f,, : Q@ — R by f,(w) = f(w,z,). We see that f, € L'(Q) for all
n € N and f,(w) = f(w,zo) for almost every w € €.
Since each f,, satisfies |f,,| < g almost everywhere, we can apply the dominated convergence theorem
to get

lim F(z,) = lim [ f(w,z,)dw = / flw, zo)dw = F(x0).

n—o0 n—oo [¢)
This is true for any sequence (x,),eny C X converging to xy which proves that F' is continous at
Zo- L]
THEOREM 2.17. Let Q C R? be a measurable set and I C R be an open interval. Let ty € I and
f:Qx 1T — R bea function such that
(1) ¥Vt € I, the function w +— f(w,t) is in L'(Q),
(2) for almost all w € Q, the function t — f(w,t) is differentiable at to,
(3) there exists g € L'(Q) such that

|f(w,t) = fw,to)] < g(w)]t —tol
for almost every w € Q and allt € I.
Then the function F': I — R defined by

= / flw, t)dw, Yt €
Q
1s well defined, differentiable at ty and satisfies
F'(to) =

PROOF. The first condition insures that F is well defined.

Set ¢, =ty + n~!. Since the function
of
w i ——(w, o)

ot

is the pointwise almost everywhere limit of the sequence f,, defined on Q2 by

£ ) L) = F 1)

, Yw € (),
tn_tO

then it is measurable.
Now consider an arbitrary sequence (,)neny C I\{to} converging to to: for almost every w € €, we

have ; . 9

lim f(w, TL) — f(wa 0) f( tO)

n—00 t, — 1o Ot
and the convergence is dominated by ¢g by hypothesis. Therefore, we can use the dominated
convergence theorem and we get

F(t,) — F(t tn) to)
fi £ = F ) _ /f‘” flto) / (i o) e
n—00 tn — to n—00 t, — to ot
Notice that as a result of the dominated convergence theorem, we get that the function
of
= —(w,?
W Gpw o)

is in L'(Q).

Since the sequence (t,),en Was arbitrary, we get the result. O
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Corollary 2.18. Let 2 C R be a measurable set and I C R be an open interval. Let f:Qx I — R
be a function such that

(1) ¥Vt € I, the function w — f(w,t) is in L'(Q),

(2) for almost all w € Q, the function t — f(w,t) is C!,

(3) there exists g € L'(Q) such that
0
L] <o)

for almost every w € Q and allt € 1.
Then the function F': I — R defined by

F(t) = /Qf(w,t)dw, Viel

is C' and satisfies
F'(t) = g(w,t)dw, vVt e 1.
q Ot

2.5. Comparison with the Riemann integral

We have spent a lot of effort constructing the Lebesgue integral, but have not yet addressed the
question of how to actually compute any Lebesgue integrals, and whether Lebesgue integration is
any different from the Riemann integral (say for integrals in one dimension). Now we show that the
Lebesgue integral is a generalization of the Riemann integral. To clarify the following discussion,
we shall temporarily distinguish the Riemann integral from the Lebesgue integral by writing the
Riemann integral [, f as R. [, f.

Our objective here is to prove

Proposition 2.19. Let I C R be an interval, and let f : I — R be a Riemann integrable function.
Then f is also absolutely integrable, and fIf = R. flf

PROOF. Write A :=R. [ ; f. Since f is Riemann integrable , we know that the upper and lower
Riemann integrals are equal to A. Thus, for every € > 0, there exists a partition P of I into smaller
intervals J such that

A—e< Y |J]inf fx) A<D |J[sup f(z) < A+e
o zeJ TeP zeJ

where |J| denotes the length of J. Note that |.J| is the same as m(J), since J is a box.
Let f-: 1 — Rand fI : I — R be the functions

o @)= 3 inf () (a)
and

fH@) =Y sup f(2)1,(2);
JeP zeJ
these are simple functions and hence measurable and absolutely integrable. By Lemma 2.4 we have

[ 12 =3 1int s
I Jjep S

and

[ﬁ=2umww

JEP z€J
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and hence
A—eS/fg_SAS/fJSA—ire
I I

Since fIFmajorizes f, and fI minorizes f, we thus have

A—sSAfSZf§A+s

Asz]EA

and hence by Lemma 2.15, f is absolutely integrable with | ;[ = A, as desired. 0

for every e, and thus

Thus every Riemann integrable function is also Lebesgue integrable, at least on bounded
intervals.
Remark 2.9. The converse is not true: take for instance the function f : [0,1] — R defined by
f(z) := 1 when z is rational, and f(z) := 0 when z is irrational. Then we know that f is not
Riemann integrable. On the other hand, f is the characteristic function of the set QN [0, 1], which
is countable and hence measure zero. Thus f is Lebesgue integrable and f[O,l] f=0.

2.6. Fubini’s theorem

In one dimension we have shown that the Lebesgue integral is connected to the Riemann integral.
Now we will try to understand the connection in higher dimensions. To simplify the discussion we
shall just study two-dimensional integrals, although the arguments we present here can easily be
extended to higher dimensions.

We shall study integrals of the form fRQ f. Note that once we know how to integrate on R?, we
can integrate on measurable subsets ) of R?, since fﬂ f can be rewritten as fRQ flg.

Let f(x,y) be a function of two variables. In principle, we have three different ways to integrate
f on R2. First of all, we can use the two-dimensional Lebesgue integral, to obtain fRQ f. Secondly,
we can fix x and compute a one-dimensional integral in y, and then take that quantity and integrate
in z, thus obtaining [, ([; f(z,y)dy) dz. Secondly, we could fix y and integrate in z, and then
integrate in y, thus obtaining [; ([, f(z,y)dz) dy.

Fortunately, if the function f is absolutely integrable on f, then all three integrals are equal:

THEOREM 2.20 (Fubini’s theorem). Let f : R* — R be an absolutely integrable function. Then
there exists absolutely integrable functions F': R — R and G : R — R such that for almost every
x, f(x,y) is absolutely integrable in y with

Fz) = / f(ay) dy

and for almost every vy, f(x,y) is absolutely integrable in x with

Gy) = /Rf(wjy) dz.

4F@M=Aj=éﬂw@

Remark 2.10. Very roughly speaking, Fubini’s theorem says that

/R(/Rf(x,y)dy) dx:@fZA(éf(:t,y)dx) dy.

Finally, we have
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This allows us to compute two-dimensional integrals by splitting them into two one-dimensional
integrals. The reason why we do not write Fubini’s theorem this way, though, is that it is possible
that the integral [, f(z,y)dy does not actually exist for every x, and similarly [, f(z,y)dz does
not exist for every y; Fubini’s theorem only asserts that these integrals only exist for almost every
x and y. For instance, if f(z,y) is the function which equals 1 when y > 0 and = = 0, equals -1
when y < 0 and = = 0, and is zero otherwise, then f is absolutely integrable on R? and fRQ f=0
(since f equals zero almost everywhere in R? ), but [, f(x,y)dy is not absolutely integrable when
x = 0 (though it is absolutely integrable for every other x ).

PROOF. The proof of Fubini’s theorem is quite complicated and we will only give a sketch here.
We begin with a series of reductions.
Roughly speaking (ignoring issues relating to sets of measure zero), we have to show that

/R ( /R f(say)dy) do= [ f

together with a similar equality with x and y reversed. We shall just prove the above equality, as
the other one is very similar. We perform some reductions:

(i) First of all, it suffices to prove the theorem for non-negative functions, since the general
case then follows by writing a general function f as a difference f™ — f~of two non-negative
functions, applying Fubini’s theorem to f*tand f~separately and then using linearity of
the integral (Proposition 2.13 (i) and (ii)). Thus we will henceforth assume that f is
non-negative.

(ii) Next, it suffices to prove the theorem for non-negative functions f supported on a
bounded set such as [N, N| x [N, N] for some positive integer N. Indeed, once one
obtains Fubini’s theorem for such functions, one can then write a general function f as the
supremum of such compactly supported functions as

J =sup fl_nNjx[-NN
N>0

apply Fubini’s theorem to each function f1_y n)x[-~,~] Separately, and then take suprema
using the monotone convergence theorem. Thus we will henceforth assume that f is
supported on [—N, N| x [-N, N].

(iii) By another similar argument, it suffices to prove the theorem for nonnegative simple
functions supported on [—N, N| x [N, N], since one can use Lemma 2.2 to write f as the
supremum of simple functions (which must also be supported on [N, N]), apply Fubini’s
theorem to each simple function, and then take suprema using the monotone convergence
theorem. Thus we may assume that f is a non-negative simple function supported on
[N, N] x [N, NJ.

(iv) Next, we see that it suffices to prove the theorem for characteristic functions supported
in [-N, N] x [N, N]. This is because every simple function is a linear combination
of characteristic functions, and so we can deduce Fubini’s theorem for simple functions
from Fubini’s theorem for characteristic functions. Thus we may take f = 1g for some
measurable £ C [-N, N| x [-N, N|.

Our task is then to show (ignoring sets of measure zero) that

/[_N,N] (/[_N’N} 1E(93,?/)dy) dx = m(E)



2.6. FUBINI’'S THEOREM 45

It will suffice to show the upper Lebesgue integral estimate

/[—N,N] (/[—N,N]]IE(I’y) dy) dv < m(E) (2.3)

We will prove this estimate later. Once we show this for every set E, we may substitute £ with
[N, N] x [=N, N]\E and obtain

/[—N,N} </[—N,N] (1= 1x(zy)) dy) dv < AN? —m(E).

But the left-hand side is equal to

/ (2]\7 —/ ]IE(x,y)dy> dx
[~ N,N] [~ N,N]

4N2—/ / 1g(x,y)dy | dx

[-N,N] \J[-N,N]

/ / Ip(z,y)dy | dz = m(E)
[-N,N] \J[-N,N]

/[_MN] (mh(wx y)dy) dz > m(E)

and hence by Lemma 2.15 we see that f[_ N N]]l e(x,y)dy is absolutely integrable and

/[_MN] (EM(% y)dy> dz = m(E).

A similar argument shows that

/[N,N] ( /[N,N]]lE(x7 y)dy) dx = m(E)

/ (/ Lg(z,y)dy — / ﬂE(x,y)dy) dr = 0.
[=N,N] [-N,N] [-N,N]

Thus by Proposition 2.6 (i) we have

/ Lz, y)dy = / Lp(2, )y
[-N,N] [-N,N]

for almost every « € [N, N|. Thus 1g(x,y) is absolutely integrable in y for almost every z, and
f[_ L g(x,y) is thus equal (almost everywhere) to a function F(z) such that

which is in turn equal to

and thus we have

In particular we have

and hence

/[N y F(x)dx = m(FE)

as desired.
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It remains to prove the bound (2.3). Let € > 0 be arbitrary. Since m(F) is the same as the
outer measure m*(E), we know that there exists an at most countable collection (B;),. ; of boxes

such that £ C | J;.; B; and
> m(B;) <m(E) +e
jeJ
Each box B; can be written as B; = I; X IJ’~ for some intervals I; and Ij‘. Observe that

= |I;| | I}] —/ ‘]'|dx—/ (/ dy) dx
:/ (/ ﬂzjxg(w,y)dﬂf) dy
[—N,N] \J[~N,N]
:/ (/ 1p, (m,y)da:) dy.
=N, \J =N

Adding this over all j € J (using Corollary 2.9) we obtain

}:mk%)ZA?”J(/NMEZLALwdﬁdy

jedJ

In particular we have

/[—NJV] (/[—N,N] Z Ly (. y)dm) dy <m(E) +e.

jeJ

But Z]EJ 15, majorizes 1y and thus

/ (/ ]lE(as,y)d:B> dy <m(F) +e.
[-N,N] \J[=N,N]

But ¢ is arbitrary, and so we have (2.3) as desired. This completes the proof of Fubini’s theorem. [

We have a similar result in the case in which the integrand is non-negative:

THEOREM 2.21 (Tonelli’s theorem). Let f : R? — R such that f > 0. Then, defining F : R — R

and G : R — R as:
:/ﬂ%w@,GMZ/ﬂ%ww
R R

[ F@de= [ 1= [ Gy

Remark 2.11. Note that in this case we do not have neither hypothesis nor conclusions on
absolute integrability: whenever we have a non-negative integrand, it is possible to swap the order
of integration even if the integral is infinite.

we have

2.7. Change of variables

In Chapter 1 we have seen that the Lebsegue measure is translation invariant and homogeneous.
We start this section with a change of variable formula carrying these properties into integration.
The method used in the proof of the following proposition is very important and should be learned.
Before stating the result, we need the following lemma:
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Lemma 2.22. Let f : RY — R be a measurable function, and x € R?, and o € R\{0}, then the
functions g, h : RT — R defined by g(y) = f(z +vy) and h(y) = f(ay) are measurable.

PROOF. For any a € R, we have
1
g Ya,+x) = fYa,+c0) —x and h '(a,+oc) = af’l(a, +00).

From Lemma 1.8 we know these sets are measurable for every a € R so g and h are measurable by
Lemma 1.21. 0

Proposition 2.23 (Translation and Dilation). Let f : R? — [0, +00] be a measurable function, and
z € RY, and o € R\{0}, then

| rwdn= [ sesnay and [ sway=tatt [ e

The result holds also for f € L'(R?).

PRrROOF. It suffices to prove the result for non-negative functions as the general case follows
by writing a general function f as a difference f™ — f~ of two non-negative functions, applying
the change of variable formula to f™ and f~ separately and then concluding using linearity of the
integral. We assume henceforth that f is non-negative.

We claim that it suffices to prove the theorem for non-negative simple functions. Indeed, any
non-negative function f may be written as the increasing limit of a sequence of non-negative simple
functions f = lim,, ,,, T f,. Using the monotonce convergence theorem, we get

[ty =t [ fs= [ s = [ e

n—oo

since a function A is simple if and only if h(x + -) is simple, and lim,, o T fu(z + ) = f(z + ).
The reduction for the dilation formula is proved similarly.

By linearity, it thus suffices to prove the formula for indicator of measurable sets, i.e. f = 1 for
E C R some measurable set. Notice that in this case, the formulas read

m(E) =m(E —z) and m(E) = |a|'m (éE)

which were proven in Lemma 1.8 (ii) and (iii). O

The remainder of this section is not examinable.
Notice that the above two formulas address the following problem:

Given an adequate function g, find an expression for fRd fog of the form fRd fk for some function
k (which depends only on g).

In measure theoretic terms, this problem can be succinctly stated as characterizing the density of
the pushforward measure through (an adequate) g of the Lebesgue measure.

Proposition 2.23 gives a solution to this problem in the cases g;(y) = = + y and ¢»(y) = ay. Our
goal by the end of this section is to prove a similar result for g being a C! diffeomorphism between
two open sets.

An intermediate step in our quest is for linear automorphisms of R?, namely for g(x) = Mx where
M is an invertible d x d matrix with real coefficients.

Lemma 2.24. Let D be a diagonal d x d invertible matriz, then for any f : R — [0, +o00] Borel
function, we have

[ Sy = /R J(Da)| det(D)|da.
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PROOF. Since D is assumed to be invertible, it induces a homeomorphism of R¢. In particular,
D! is a continous linear map and since f is taken to be Borel the composition = — f(Dz) is Borel
measurable.

Using the standard reduction method, we see that it suffices to prove this formula for indicator
functions of Borel sets, namely for f = 14 for some A C R? a Borel set. In this case the formula
reads

M(A)z/Rd 11A(D$)|det(D)|dx:/

[ Apoia(e)|det(D)fds =| det(D)|m(D~A).

By setting £ = D~'A, which is also a Borel set, it suffices to prove that for all Borel sets F, we
have

m(DE) = | det(D)|m(E).

As D is a diagonal matrix, for any box B C R% DB is also a box and vol(DB) = | det(D)|vol(B).
Moreover, a collection of boxes (B;);es covers E if and only if (DB;);c; covers DE. We then
deduce the claim, because:

| det(D)|m(F) = inf {Z vol (B;) : (Bj)),e, covers E}

jed

) 1
= | det(D)| inf {W ZVOI (DBj) : (Bj),e; covers E}
jeJ

= inf {Z vol(B)) : (B]) covers DE}
jeJ
=m(DE).
0J

Lemma 2.25. Let P be an orthogonal d x d matriz, then for any f : RY — [0, +00] Borel function,
we have

» flz)de = | f(Pz)dz.

R4

PROOF. As in Lemma 2.24, we have that  — f(Px) is measurable, and using the standard
reduction method, it suffices to prove the formula for f = 14 for A C R¢ a Borel set, namely

m(A) :/ ]lA(P$)d$ :/ ]lpflA({B)dSE = m(P_lA).
R4 Rd
By setting £ = P~'A, which is also a Borel set, it suffices to that for all Borel sets £, we have
m(FE) =m(PE).

To do this, consider the function u defined on B, the Borel sets of R, by u(E) = m(PE). It is easy
to verify that p is a measure. We claim that p is also translation invariant and finite on compact
sets. To see this, for any z € R? we have

W(E +2) = m(P(E + z)) = m(PE + Pz) = m(PE) = u(E).

Notice that we used the linearity of P and the translation invariance of the Lebesgue measure.
Since P is a continuous function, it maps compact sets to compact sets. Combining this with the
fact that the Lebesgue measure is finite on compact sets, we get that pu is finite on compact sets.
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By Exercise 1 of the appendix, we know that 9\ < +o0o such that u = Am.
Let B denote the unit ball of R?. As P is an orthogonal matrix, we have PB = B and so

Am(B) = j(B) = m(PB) = m(B),
from which we deduce that A =1 (because m(B) > 0 is finite). O

We have proved a formula for particular cases of linear change of variables. We now give a
result from linear algebra which will allow us to treat the general linear case.

Lemma 2.26 (Polar decomposition). Let M be an invertible d x d matriz then there exists P a
d x d orthogonal matriz and S a d x d symmetric positive matriz such that M = PS.

PROOF. M*M is a symmetric positive definite d x d, so by the spectral theorem, we can find
A1, ..., Ag > 0 positive numbers and {u;, ..., us} an orthonormal basis of R? such that

d
k=1

Since (Mu;, Muy) = w!M*Muy = Mufup = Ay, the family {\/%Mul,...,%dMud} is an

orthonormal basis of R?.
Set

d
S = Z \/)\—kukuz
k=1

and define P such that

1
PUk:\/TMUk, Vk/’:l,,d
k

As P maps an orthonormal basis into an orthonormal basis, it is an orthogonal matrix. It remains
to check that M = PS. To do this it suffices to check the equality on some basis. For every
j=1,...,d we have

d d
PSu; = PZ \//\_kuku;;uj = Z \/)\_k5ijUk = Mu;.
k=1 k=1

O

Proposition 2.27. Let f : R — [0, +00] be a Borel function, and M be an invertible d x d matriz,
then

F(a)dz = / F(M)| det(M)|dz.
R4 R4
We have a similar formula if f € L*(R%) is a Borel function.

PROOF. The measurability of z — f(Mz) follows from the fact that M is a homeomorphism
and that f is a Borel function. Using the standard reduction argument, it suffices to prove the
formula for f = 14 for some A C R? a Borel set. In this case the formula reads

m(A) = /R Aa(Ma)|det(M)|dz = /

» Lar-14(x)|det(M)|dx = | det(M)|m(M 1 A).

By setting £ = M~'A, which is a Borel set, it suffices to prove that for all Borel sets E, we have
m(ME) = |det(M)|m(E).
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Using Lemma 2.26, we can write M = PS for some orthogonal matrix P and some symmetric
positive definite matrix S. By the spectral theorem, we can write S = QDQ* for some orthogonal
matrix () and some diagonal matrix D. Using Lemma 2.25 and Lemma 2.24, we get

m(ME) = m(PQDQ"E) = m(QDQ"E) = m(DQ"E) = | det(D)|m(Q"E) = | det(D)|m(E).
Since the determinant is multiplicative, we have det(M) = det(P)det(Q)det(D)det(Q*), in
particular |det(M)| = |det(D)| since P, Q € O(d). O

Having proved the change of variables in the linear case, we can now attack the C'! diffeomorphism
case. The idea is to approximate locally a C! map by an affine map which we know how treat
by the preceding discussion. We still need to make this approximation quantitative which is the
content of Lemma 2.28 and to have a 'localization’ principle which will allow us to 'reassemble’ the
various pieces of our approximation, see Lemma 2.31.

Lemma 2.28. Let Q C R? be an open set and ¢ : Q — R? be a C* map. Suppose that Do (z) is
invertible for some x € §, then Ve € (0,1), 36 > 0 such that ¥n € (0,9), we have

p(z) + Do(x)B (0, (1 —e)n) C ¢ (B(x,1)) C @(x) + Dp(2)B (0, (1 +)n).
PROOF. First assume that Dp(x) = I, the identity matrix. By definition of differentiability,
we can find § > 0 with B(z,0) C Q such that
[p(y) — pl(z) = (y — )| <ely — x|, Vy € B(z,0).

In particular, we get

(L=a)ly —z[ <[oy) —p@)| < (L+e)ly —z[, Vy€ Bx,0).
Fix n € (0,6), then for any y € B(z,n), we have

[o(y) — (@) < (A +e)ly — 2| < (T+e)n
which yields the inclusion
p(B(z,n)) C ¢(x) + B0, (1+¢e)n).
To get the other inclusion, note that by the inverse function theorem, ¢ is an open map on B(z,0).
For any n € (0,6), we have that

¢~ [00(B(x,n))] N B(x,n) C 9B(x,n).
Informally, this relation is saying that the boundary of the image is included only in the image of

the boundary. B B
From this, Vz € dp(B(z,n)), we have z = ¢(y) for some y € 0B(x,n) and so

12— o(@)] = [o(y) — (@) = (1 —e)ly —z| = (1—e)n.
We claim that this implies the desired inclusion, namely

p(x) + B(0, (1 = e)n) C p(B(x,7)).
Suppose this is not the case, then 3w € B(p(z), (1 — €)n) such that w ¢ p(B(x,n)). Take

t:=sup{s € (0,1): (1 —s)p(x)+sw ¢ p(B(x,n))}. Since ¢(B(x,n)) is compact and ¢ is an open

map in B(z,d), we have (1 —t)p(x) + tw € dp(B(x,n)). But it holds that

(1= t)p(x) +tw — p(z)] = tlw —p(x)] < (1 —e)n,
which is a contradiction. To treat the general case, consider the auxiliary map 1 = Dy(z) .

Then 1 is C! and satisfies Dy (z) = I;. By the previous discussion, we can thus find § > 0 such
that for any n € (0,6), we have

Y(@) + B(0, (1 —e)n) C (B(z,n)) C ¥(z) + B0, (1+¢e)n).
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Applying the map Dp(z) to this sequence of inclusions and using the linearity we get
() + Dp(x) B(0, (1 — )n) € ¢(B(x,n)) C p(x) + Dyp(a) Bz, (1 +€)n).

DEFINITION (Dyadic cubes). For every n € N, the dyadic cubes of order n in R? are

d
ki ki+1
Qn:{H |i2—n,2—n> kl,,deZ}

i=1
The dyadic cubes in R? are
neN
Proposition 2.29 (Properties of the dyadic cubes). The following properties hold.
(i) For every n € N, Q,, is a partition of R%,
(ii) The diameters of dyadic cubes of order n goes to 0 as n — oo,

(iii) Forn <m, Q € Q, and Q € Q,,, either Q CQ or QNQ = .

PROOF.

(i) Vz € R and Vn € N, 3k € Z given by k = [2"z] such that z € [27"k,27"(k + 1)). So
Vo e RY, (k... kq) € Z% such that = € []0_, [27"k;, 27" (k; + 1)).

(ii) Vn € N and VQ € Q,, we have diam(Q) = 2~ "\/d which goes to 0 as n — oo.

(iii) For n < m, take Q € Q, and Q € Q,,. Assume Q N Q # @, we will show that Q C Q.
The result follows easily from the case d = 1, so assume that d = 1. Then we have
Q=[2""k,27"(k+1)) and Q = [27™4,27™(j + 1)) for some k,j € Z. Since QN Q # @,
we have 27"k < 27™(j + 1) which implies 2" "k < j 4+ 1. Since 2™ "k € Z, we deduce
2m "k < jand so 27"k < 274, Similarly, 27™j < 27"(k+1) gives 27" (j+1) < 27"(k+1)
and so Q C Q.

O

Lemma 2.30. Let Q C R? be a nonempty open set, then for any N € N, Q0 can be written as the
union of a countable disjoint collection of dyadic cubes of order at least N.

PROOF. Define
In={Q €9y :Q CQ}
and inductively for n > N

n—1

k=N Gel,
The subcollection of dyadic cubes given by I = |J,,- y I is disjoint by Proposition 2.29 (iii) and is
countable since Q is countable. Moreover, by construction, we have that UQe ;@ C €, so0it only
remains to prove the converse inclusion.
Take x € Q, then 3§ > 0 such that B(z,d) C Q. Using Proposition 2.29 (i) and (ii), we know that
there exists n > N sufficiently large such that 3Q € Q,, with z €  C B(x,¢). In the inductive
construction, if

there is nothing to prove. If this is not the case, then @) € I,,. We thus have () = UQE[ Q. OJ
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Lemma 2.31. Let Q C R? be a non empty open set and § > 0 be a positive number, then there
exists (By)nen @ countable collection of disjoint closed balls such that

diam(B,) <0 ¥YneN and m (Q\ U Bn> =0

neN

PROOF. Set
Wd

4d

where wy is the Lebesgue measure of the unit ball in R9.

For a dyadic cube Q = [0, [2 "k, 27" (ki+1)) in RY, let ¢(Q) == (27" (k1 +1/2),...,2 "(ka+1/2))
denote its center and r(Q) := 27" denote its sidelenght. Finally, set B(Q) = B(c(Q),7(Q)/4) be
the closed ball with the same center as @) and radius 1/4 of the side length of Q). Notice that

m(B(Q))
m(Q)
Assume now that € is bounded. Take N € N large enough so that 27"v/d < 6. By Lemma 2.30, we
can find a countable collection of dyadic cubes (Q,(@O))neN of order at least N such that Q =, . QSALO).

By the assumption on the order of the dyadic cubes, we get diam(Q%O)) < ¢ for all n € N.
Let F1 = U, en B(Qn ), then

0 =

O = € (0,1).

= mBEQY) =0 mQY)=em).

neN neN

Since m(Q2) < oo, we can find N; € N such that

m (U B(QS”)) > (@)

Set 2 = Q\ Uf:il B( %0)), which is open and satisfies

() =m (Q\ U B(@;@)) Zm @) = (1-F ) mio) <.

By the same procedure, we can find finitely many disjoint closed balls (B (Q,(ll)))n
less than ¢ included in €2 such that

m (Lj B(QS))> 2 %W(Ql)-

Set Qy = O\ U2, B(QY), which is open and satisfies

() = m <QI\QB<QS>>> <(1-3)men < (1- %)Qmm»

Continue this procedure inductively so that at step k, we have ﬁnitely many disjoint closed balls
(B(fo))n:l 77777 n, of radius at most ¢ included in € = Q1 \ U 70 B(QF!) which satisfy

() = m (ﬂk_l\gmcm) < (1 - %) (1) < (1 - %)kmm).

N, of diameter

1111
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By construction, the family of closed balls {B(Q?) : j € Ng, n=1,..., N;} is disjoint and included
in 2 and satisfies (using the previous bounds)

m Q\GUB(QT@) g(l—%)km(()) VEk e N.

7=0n=1

To treat the general case, i.e. € unbounded, write @ = AU, -, Q, where Q, = QN {z € R*:
n—1 < |z| < n} for every n € N and A is a null set. Each €, is open and bounded and so the
previous result applies, putting together all the closed balls and using countable subadditivity of
the Lebesgue measure gives the result. 0

Lemma 2.32. Let f : RY — R? be a k-Lipschitz function for some k > 0 and A C R? be some set
d
then m*(f(A)) < (%/E) m*(A).

PROOF. In the definition of outer measure, we used cover with boxes. Had we defined the outer
measure using only covers with cubes, we would have gotten the same outer measure, we leave this
as an exercise. 3
Now take a collection of cubes (B,),en that cover A, then for every n, we can find a cube B,, such

that f(B,) C B, and vol(B,) < <2k\/_ ) vol(B,). This implies

A)) <Y vol(B,) < (m@d S vol(B

neN neN

Since the cover of A (B),)neny Was arbitrary, we deduce the result. O
Remark 2.12. In particular if A is a null set, then f(A) is a null set and so measurable.

THEOREM 2.33 (Change of variables formula). Let U, D be two open subsets of R and g : U — D
be a C' diffeomorphism. Let f: D — [0,+0c] be a Borel measurable function, then

/f dx_/f 1)l det Dg(u)|du.

We have a similar formula if f € LY(U) is a Borel function.

PROOF. |det DG| is a polynomial of the partial derivatives of g and so is continuous hence
measurable. Since f is Borel and ¢ is continuous, we have that f o g is Borel measurable. Using
the standard reduction argument, it suffices to prove the result for indicator functions of Borel sets,
namely f =14 for A C D a Borel set. In this case, the formula reads

m(A) = /U 1 4(g(u))| det Dg(u)|du = /U 1,1 ()| det Dg(u)|du = / 186t Dyl

By setting £ = g~'(A) which is a Borel set, it suffices to prove that for all Borel sets, we have

m(g(E)) = [E | det Dg(u)|du.

We will first prove this for £ an open set of U such that £ C U is compact. Take ¢ € (0,1), by
Lemma 2.28 we can find § > 0 such that for any n € (0,0) and any = € E, we have

g(x) + Dg(x)B(0, (1 — €)n) C g(B(w,n)) C g(x) + Dg(x)B(0, (1 + £)n).
The uniformity in x € E comes from the fact that Dg is continuous on E which is assumed to be
compact.

Take n € (0,8) such that (1+¢)™! < |32§gz(z§| <(l+e¢)forall x,y € E with |z —y| <n.
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By Lemma 2.31, we can find countably many disjoint closed balls (By,)en in U of radius less than
n such that m(U\ U,en Br) = 0. In particular, we get m(E\ U, ey Br) = 0 and by Remark 2.12,
m(g(E\ U, en Br)) = 0. Denote x,, the center of the ball B,, and r,, its radius, from Proposition 2.27,

we get
m(g(E)) =m (9 (U Bn)>
neN
= " m(g(By))
neN
<Y m(Dg(x,)B(0, (1+¢)ry))
neN
1+€ Zm LL'n,T’n |deth(xn)|
neN
(1+¢) d+12/ | det Dg(x)|dx
neN
= (1+¢)*! / | det Dg(x)|dx
UnEN B,
=(1+ 5)d+1/ | det Dg(z)|dzx.
E
Similarly

/|deth( |d:v—2/ | det Dg(x)|da
< (1+2)) _ m(B,)|det Dg(z,)|
neN
< (f+ >~ mg() + Dy, BO, (1= 2)r,)
1+¢

1—€d
neN

e ( (M)

1+e¢
=—F—m(g(F)).
Letting € — 0 gives the result in the case where E is open and £ C U is compact. For a general
open set ¥ C U, we can write F/ as an increasing limit of open sets compactly contained in U and

use the monotone convergence theorem to conclude.
To treat a general Borel set E C U, assume first that Dg is bounded on U. Take £ > 0, use the
outer regularity of the Lebesgue measure and Lemma 2.32 to find A C U an open set such that

m(A\E) < e and m(g(A\F)) < e, then we get

m(g(E)) - [E |det Dg(x)|dz

To remove the assumption that Dg is bounded, we can write E as an increasing limit of sets
compactly contained in U and use the monotone convergence theorem. 0

neN

< m(g(A\E)) + m(A\E)||Dglloc < (1 +[|Dgllso)-
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Remark 2.13. We have proved the change of variable formulas for Borel function. The result
remains valid in the case of Lebesgue measurable functions but we first need to prove the mea-
surability of f o g. We do not this here and simply state that this can be done by proving that
C! diffeomorphisms preserve Lebesgue measurability (use Remark 2.12 and the fact that every
Lebesgue measurable set is almost Borel measurable).






CHAPTER 3

L? Spaces

This chapter is inspired by [Dac, Chapter 16] and [Buf22, Chapter 2].

In this chapter, we generalize the notion of absolutely integrable functions, trying to understand
what are the implications of the integrability of a general power p > 1 of the modulus of the
function. We begin with the following defintion:

DEFINITION (LP norm). Let  C R? be a measurable set, let f: Q — R* and p € [1,00). We

define s
Hﬂmmyz(AuVyT (3.1)

From the above, we then naturally define at the first attempt the space of functions with finite L
norm:

LP(Q) = {f : Q — R* measurable, s.t. ||f||rr@) < +oo}. (3.2)

Remark 3.1. In the case p = 1, L'(Q) is the space of absolutely integrable functions on €.
Moreover, it holds that
fel’(Q) < |fIP e L'(Q).

We would like to introduce a normed vector space from the definitions (3.1)-(3.2); in order to do
so, we need to enforce the vanishing property of the norm (that means, || f||r@ =0 < f=0).
In our case, since ||f|r) = 0 = f = 0 a.e., we wish to identify in L functions that coincide
almost everywhere. To do so, we introduce the equivalence relation:

f~g <= f=ga.e.
and define LP spaces as follows:
DEFINITION (LP space).
(LP(Q); [|lr) = ({f : @ — R* measurable s.t. ||f||Lr@) < +o0} / ~ ;||[l1e)-

We now introduce a space that morally contains functions that are bounded (up to a set of
measure 0).

DEFINITION (L* norm). Let us define
Il = esssup |fe)] = inf o > 0: 1] < a e
Remark 3.2. If f is continuous, sup and esssup coincide.
Remark 3.3. Notice that [|-||ze(q) is well defined on an equivalence class, because
f =g ae = esssup|f| =esssup|g|.
Example 3.1. esssup 1g = 0, because 1p = 0 a.e.
DEFINITION (L% space). L>®(Q) := {f : Q — R* measurable, s.t. || f||z~ < +o0}.

We will now introduce the Holder inequality, a fundamental tool to work with LP spaces. To do
so, we need the following definition.

57
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DEFINITION (Conjugate Holder exponents). Let p € [1,+00]. The conjugate Holder exponent
is p’ such that

with the convention 1/ 4 oo = 0.
Example 3.2. 1 is the conjugate of +00, 2 is the conjugate of itself.
THEOREM 3.1 (Hélder inequality). Let Q2 be measurable, p € [1,400], then
19l < I fllr@llgllr ) Vf,g measurable,
where p' is the conjugate Hélder exponent of p.

PROOF. If p =1 (symmetrically, p = +00), we get that p’ = +oo (p’ = 1). Therefore,

ol < [ 1< [ 17lolmor < ([ 161) Nollom = 1l lallmco

If p,p’ # 1,400, we observe that the inequality is invariant under multiplications by constants: the
Holder inequality therefore holds if and only if

[A1fA2gl[ 1) = Mol falli@) < Aillfllze@A2l9l 1o @) < A f o l[A2g]l 1 () for all Ay, A > 0.

Therefore, we may reduce ourselves to the case

[fllze@) = llgll o @) = 1.

Indeed, assume

Ifgllvey <1 Vfg st [ flle@ = 9l @ = 1. (3.3)
By applying the inequality (3.3) to
F G
f=rm— and g=_—Fr,
1| 2o G v (@)

we retrieve that
| FG L0
1N 2o @ Gl o o)

To prove (3.3), we can use the Young’s inequality for real numbers X, Y > 0, p € (1, +o0):

<1 = |FGlu@ < IFlo@lGll o

Xr YP
XYy < —+ —
p
in order to obtain that
p P’ 1 1
/‘f’< el ‘!ﬁ, :Z—jﬂL}?:L
which concludes the proof. 0

Remark 3.4. The Holder inequality with p = p’ = 2 is known as Cauchy-Schwartz inequality:

/Q £9 < 1f L2 ll9ll =,

We can generalize the Cauchy-Schwartz inequality to the case in which f, g are complex-valued:
indeed, we have that

ny\ < / Fllgl < 1 lleliglloe
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Remark 3.5. Via Holder inequality, we can also prove that

1 1
1fg

1
v < | flleellgllze Vrpog st —=—+-.
rp g

Indeed, setting F' = f",G = ¢g" and applying Holder inequality with conjugate exponents p/r and
q/r, we can prove that:

() = () = ()" ()= ()" ()

We now state and prove some useful properties of LP spaces.

Proposition 3.2. Let Q C R? be measurable and 1 < p < g < 400, then

(i) LP(Q)) is a vector space.
(it) If m(Q) < +oo, then || fllrr) < K||fllza) for all f: Q — R* measurable, where K
depends on m(Q2), p and q. In particular,

LU(Q) C LP(Q).

(i) 1 m(®) < +00, then Ty, e {10y = |1 F (0
(iv) The Minkowski inequality holds:

If + gllzr) < I fllze) + lgllzry YV, g € LP(Q)

This property enables us to conclude that ||-||Lr(q) is a norm on LP, because it satisfies the
triangular inequality.

PROOF. [The proof is contained in Series 6, ex. 7|

(i) Let f,g € LP(Q2) and A\, u € R. Notice that Af + ug is measurable, and we need to prove
that \f 4+ ug € LP(Q).
If p = 400, we have that A\f + ug € L>(Q2), because

{z e Q:|f(@)+9@)| > [[flle@ + lglle@} € {z € Qe (@) + |g(@)] > | fllLe@) + [[9lle@)}
C {r € Q: @) > |flm@} Uz € Q:g@)] > lgllomco).
Since
m({z € Q:|f(@)] > [[flre@}) =m{z € Q:|g(@)] > |lgll=@}) =0,
by definition of the essential supremum, we conclude that
m({z € Q: |f(x) + g(@)| > [|flle@) + [l9llz@}) = 0.
Therefore,

1f + gllzee@) < N fllzoe) + gl @)

Assume now 1 < p < +o00. The function  — |z|P is convex for this choice of p, hence
Vo,y €R |z +yP <207 Y|z + |yfP).
Therefore,
[Af+ HgHip(Q) = /Q IMf(2) + pg(a)|Pde < 207 (‘)\lprHiP(Q) + |M’p”9Hip(Q)> < +0o0,

which proves that \f + ug € LP(Q2).
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(ii) Let © be bounded and 1 < p < ¢ < +o0. Let f € L(), and first assume that 1 < ¢ < +o0.
By applying Hélder inequality with exponents ¢/p and ¢/(q—p) (admissible choice provided
that ¢ > p), we get that

p/q 1-p/q
||f||12p(9) = /ﬂ |fIPdz < (/Q(|f|p)q/pdm) (/Q ldx) = (||f||Lq(Q))pm(Q)1_p/q‘

By taking the p—th root, we get:

1 llzr@) < I fllzagym(@)210.
When ¢ = +00, we have that:

e = (] Ifl”d:v) < ([l dx) @ e, (3.4

(iii) Let f € L*(Q2). We can prove using (3.4) that
limsup| f{[ (o) < [1fllz> @),

p——+o00

because m(2)'/? — 1 as p — +oo.
Now, we need to prove that liminf, , | f|lzr) = || fllze@)
To do so, fix 0 < & < || f||z=(0) and consider the set

Ac = Az e Qo [f(@)] = [flle=@ — €}

By definition of the essential supremum, we have that m(A.) > 0. Thus,
[ 1o [ 1fPde = m(A)( o)~ 27 >0,
Q Ae

and therefore, taking the p-th root, we have that

1Fllzrgy = m(A) P (|| fll () — €).
Since m(A.) > 0, we have that m(A.)"/? — 1 as p — 400, and we get that:
lim inf[| fll o) 2 | fllz=@) — .

By arbitrarity of €, we conclude that
lim inf > oo
im inf|[ /o @) 2 [1Fllz@)
Now, we can prove that the limit exists and is equal to the desired quantity, because

[ f 1z () < liminf|[ £l o(e) < limsupl| f{| o) < [|f]lz= )
p—r+00 p——+o0
(iv) Notice that |f + g[P = |f + g|lf + g[P~* < (|f| + lgD|f + g[P~*. Therefore, we have that

1f+ gl = | |f+glPde < [ IfIIf +glPde+ | |gllf + 9P da
( ) Q Q Q

< fllr@lllf + 9P e ) + lgllr@lllf + 9P - (3:5)

The x inequality follows from an application of the Holder inequality with exponents p
and p' = p/(p — 1). Then, we have that

pe1 p 1 Ll p 1)/
17+ 9P Ny = ([ 1£ + = If + gl

Dividing both members in (3.5) by \f+ gl LP(Q)7 we get the desired inequality.
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3.1. Completeness of L
We can prove that LP spaces are complete with the following theorem.

THEOREM 3.3. Let 0 C R? be measurable, p € [1,+00]. Then, LP(Q) is complete. Namely, if
{fn}nen is a Cauchy sequence, then 3f € LP(QQ) such that

Jm ([ fa = fllze@ = 0.

Moreover, there exists a subsequence { fm, }ren ST
fmp () = f(x) a.e. in Q,
| fmi (2)] < g(x) for some g € LP(Q).

PROOF. [The case p = +0o0 is contained in ex. 3 of Series 7.]
First of all, recall that {f,}nen is Cauchy means that

lim ”fn - meLP(Q) = 07
m,n—00

ie.
Ve >0 dng(e) large enough s.t. ||fr, — finllzr) <€ Vn,m > ng(e).
We begin the proof from the easier case p = +o0o: for m,n € N with n # m, define
Apn = {2 € Q| fu(x) — fin(2)| > || fn — meLOo(Q)}v

By ={x € Q:[fu(z)] = [[fallL~@}-
By definition of L>° norm, these sets have measure 0. Therefore, their countable union

( 7 ) ( — n)

We claim that, for z € EY, {f,,(z)}nen is a Cauchy sequence. Indeed, z € E¢ means that
T E ﬂ Agm,
m#n

and therefore | f,,(z) — fm(2)| < || fa — fullee@)  Vn,m € N, hence it is a Cauchy sequence. We
can then define, for x € EY, f(x) as the limit of the Cauchy sequence {f,(z)}nen, and for x € E
we set f(z) to an arbitrary value.

We now prove that f € L>*(2) and f, — f in L>(Q); since f, is a Cauchy sequence in L>(£2), for
any ¢ >0 dN € N such that

1o = fmlle@ <€ Vn,m > N.
Thus, Vo € EY and if n,m > N, |f(2) — fu(2)] < ||fn — fnlle@) < e. Letting n — +oo,
£() ~ fule)| = m_[fula) ~ fule)| << V> .
Thus, |f — fm| < € a.e., which implies
fI < VF = fonl 4 [fm] < [fm| + € ace.

As a consequence, we get f € L>*(2). Moreover, since |f — f,,| < € a.e. Ym > N, we conclude that
\f = fmllee@) <€ Vm > N,

which finishes the proof for this case.
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We now prove the result for p < +o0o0: we want to prove that {f,}, .y is Cauchy in L? implies
that, up to a subsequence, {f},,cy converges to a certain f both in LP and almost everywhere.
Indeed, since {f, }nen is Cauchy

i e = Flliey =0 <= lim [l fu = fllire) = 0.

To find the candidate limit f, we look for a speedy converging subsequence.
We know from the hypothesis that there exists a subsequence {n;},.y such that

| for = frn oy <27% VEk €N

The existence of this sequence {n},  is guaranteed: for example, take ¢ = 27% and n; =
max(ng(27%), np_1 + 1) (with ng = 0). Now, define

f(@) = fo (2 +ank+1 — fui (). (3.6)

This series is absolutely convergent for almost every x: consider the partial sum of the absolute
values up to h € N:

(@) = |fo, (2 |+Z|fnk+l — far(@)]:

Thanks to Minkowski’s inequality, we have that

gnllzr@) < [[foillzee +Z S = Fuillerio) < [ fosllzoo) + 1.

<2’C

Let g(x) = limp o gn(x); this limit exists, because the sequence of {gj}ren is increasing. By
monotone convergence theorem, we have that

0< / ¢ = lim / G < ([ fulliniey + 1) < +o00.

Then, g is finite a.e., hence also f in (3.6) is well defined for a.e. x. For a.e. z,

f(.%') = hh—{g; fm + ank+1 fnk( ) hh—{{.lo fnh+1<x>7

because of the telescopic sum. This means that the speedy subsequence converges pointwise and it
is dominated by g € L?(2).

To prove LP convergence, we can use the dominated convergence theorem, because f, — f — 0
a.e. and |f, — fIP < [|ful + |f]]P < 2PgP € L'(©2). Hence, we obtain

|‘fn_inp(Q):/§;’fn_f‘p—>O asn — +o0o
O

Remark 3.6. Let h € LP N LP*, with py < p;. Prove that, if m(Q) < +oo, we have that
he L Yp € [po,p1]. Indeed, if p; = oo, then [, [P < [, |h|p°||h||’£oo‘T’(OQ

In general, Vp € [po, p1], we can write p = 0py + (1 — 0)p;  for 6 € [0, 1]. Therefore,

. 0 (1-6)
/|h|p :/ |h|9p0|h|(1—9)p1 < (/ ’h|9po%> (/ |h|(1—c9)p1ﬁ>
Q Q Q Q
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where % follows from Hoélder inequality with p = 1/6, p’ = 1/(1 — 6). Hence,

0 1-0
||h||1£?(ﬂ) < ||h||L€’%(Q)||h||(LP1(g))p)1 < +o00.

Remark 3.7. f, — f in L'(Q), m(Q) < +oo. Then, /1+ f2 = /1+ f2 in L'(Q). Indeed,

suppose by contradiction that
|1+ - VP

for some € > 0 and a subsequence {ny }xen. Since f,, — f in L*(Q), we can take another subsequence
ng, such that fnkh — f a.e. and the convergence is dominated by g € L'(Q). Then,

> 3.7
by © (3.7)

L+ f2, — VIt P> 0ae

and the convergence is dominated, because

U VI P < [l VT P <2/TH @ <21+ g) € LN(Q).
L+ fa, —VI+ /S

Hence, by the dominated convergence theorem, fﬂ — 0 as h — oo, but this

contradicts (3.7).

3.2. Approximation of L” functions with C2°({2) functions

Let us now consider the problem of approximating functions in LP spaces with C'*° functions.
We will consider this task for the case p < +00, because we can see with a trivial counterexample
that problems arise in L*°. Indeed, let us consider the function f(z) = 1;9(x) € L*([0,2]):
since the uniform limit of continuous functions is continuous, there is no chance to approximate
uniformly (even up to throwing away a set of measure 0) this discontinuous function with functions

in C°([0, 2]).

FIGURE 1. f(z) = 1p(z).

For the case p < +00, instead, we have the possibility to look for approximations in the space
of C'*° functions with compact support, which are defined in the following way:

DEFINITION (Compactly supported functions). If f: Q — R*, then:

(i) supp(f) = {z: f(z) # 0};
(i) CY(Q) == {f € C%Q) : supp(f) € N}, where € stands for “compactly contained"'};
(iii) C*(Q) == C%(Q) N C*(Q).

4 € B, Bopen = A C B and 4 is compact.
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THEOREM 3.4. Let Q C R? be an open set, 1 < p < oo, f € LP(2). Then, 3{gr}ren C C=(0)
such that

Jm [lgr — fllze@ = 0.

The proof of this result is articulated in 3 parts:

(I) we prove the statement for Q = R? and approximating functions in C?(R%);
(IT) we prove the statement for 2 C R? and approximating functions in C?(Q);
(III) we prove the statement of Theorem 3.4.

PROOF - PART 1. We prove the result for 2 = R and we first work with g, € C(R?).
We will prove the statement in 5 steps:
(i) We prove the statement for f(z) = Ip(z), being B a box.
For the case n = 1, we have that B = [a, b]. Define

1 z€lab)
I+1-92 zcfa—e¢a)

—Z4+14+% zehb+e)
0 else

ga(l‘) = (38)

m{®

1
1
1
1
a
~~
€

FIGURE 2. g.(x).

We have that g. — f a.e., and, by the dominated convergence theorem, ||g- — f|| zr) —
0.

For n > 1, define . (z1, ..., z4) = [[°_, g-(2;), where g. are defined like (3.8). Again, §. — f
a.e., and, by the dominated convergence theorem, [|g. — f/||zr() — 0.
(ii) We prove the statement for f(z) = 1z(z), being E measurable and E compact?.

Let € > 0 and let {B;};en be a cover made by boxes of E, such that:

m(FE) < im(Bi) <m(E)+e, (3.9)

2Note that, since we are set in R%, this hypothesis could be replaced by m(E) < +oo.



3.2. APPROXIMATION OF L? FUNCTIONS WITH C°(2) FUNCTIONS 65

which means that

]lE—Zl]lBi :/Q;]IBZ-_]lE:;/Q]lBi—]lE:;m(Bi)—m(E)Se, (3.10)

where integral and series have been swapped with the monotone convergence theorem (see
Corollary 2.9). Let N € N be such that

J

> m(B) <e. (3.11)
i=N+1
By (i), we have that 3h' € C?(R?) such that:

3

Ih" = 1g, || Lo ray < ¥ (3.12)

Now take h = S h* € CO(R%). For p = 1, we have
N N N
Mg —hllpes =11 =Y 1p+Y 1s = > hlpes
=1 =1 =1
N N
<|1e =Y sl + > _I1s — bl
=1 =1

(3.12) e s
< e =Y s lloe+1 Y 1s
=1 i=N+1

<
N

Ll(Rd) + N

(3.10),(3.11)
< 2e + ¢ = 3e.

with an application of Minkowski’s inequality in the first inequality.

If p > 1, define b = (hA1) V0 (where A denotes the minimum and V denotes the maximum
between the two quantities):

e —hlbye < [ Be—hP < [ e A< [ [1s—hl <3,
()
QW_/ [} (e}

€l0,1]

using the result for p = 1 in the last inequality.
(iii) We prove the statement for f simple function.

If f is a simple function, then f(z) = Zf\il a;1g,(z), where E; are disjoint measurable
sets and E; is compact. By (ii), we know that
Vi 3gi € CO(RY) s.t. gi — 1p, in LP.

Define
N

gk =Y _ aigy, € CORY);
i=1

we have that g — f in L” because

N N
lgx — fllzo@ay = ||Z a;(1g, = gi)llo(ey < Z lai [ 1g, — gl ey = 0 as k — oo.
i=1 =1
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(iv) We prove the statement for f € LP(R?) non-negative. Let {¢y}ren be the sequence of

simple functions approximating f given by Lemma 2.3. As mentioned in Remark 2.1, we
can choose compactly supported simple functions:

{1B, 0k} ken s.t. 1p,0n T f
By step (iii),

1
VkeN g, € CQRY) st |gn — L, 0kl oa) < -
Now we claim that g, — f in LP:

lgx — fllerey < gk — 1B, @kl Loy + 18,0k — fllLr(ra)

1 1/1’
< E—i— (/|1Bk¢k—ﬂp>

and the last term in the RHS converges to 0 thanks to the dominated convergence theorem.
(v) We prove the statement for a general f € LP(R?).

If f=f"—f, by (iv) g/, 9, € C°(R?) such that
lgi = f ey = 0, gy — f~ llzo@ay = 0.
We claim that g — g, — f in L? (notice that g — g, € CO(R?):
gt — g5 = "+ ey < llgd — F ey + 95 — f 7 lLeray = 0 as k — oo,
thanks to Minkowski’s inequality.
[

PROOF - PART II. We now need to consider a general open domain 0 C R? and we prove that
CY(Q) is dense in LP(Q).
To do so, consider f € LP(f2), and extend it to f € LP(R?) by setting f = f1q. By the previous
part of the proof, we can find
{fn}neN - Cg<Rd) s.t. fn — f
Set g, () = ¢(nd(z,Q)), where

L oy=1
¢(y) =40, y=<1/2
20 —1, ye(1/2,1).
We have that {f,gn ey C C2(Q2) and

1fngn = Fllzri@) < 11F(9n = Do) + (o = f)gnll o)
< 1f(gn = Dllzr@) + [1fn = fllze@e) gnll oo ey,
——

<1

where both terms in the RHS go to 0 (the first by dominated convergence theorem with dominant
2f € L'(Q), the second by the first part of the proof). O
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3.2.1. Approximation in L? of C? functions with C° functions. To approximate func-
tions in C?(R?) with functions in C2°(R?), we use convolutions.

Let us introduce ¢ € C°(R?) such that ¢ > 0,¢ = 0 outside By, [, ¢ = 1; for instance, we
1
could take ¢(z) = cel=*-1 for |x| < 1 and 0 elsewhere (Figure 3).

Y

1
FIGURE 3. ¢(z) = cel=P-1 for |z| < 1 and 0 elsewhere.

DEFINITION (Standard convolution kernel). The standard mollifier is
pe(x) = 74 <§> Ve > 0.
Remark 3.8. Note that by Proposition 2.23
/ G (z)dr = / e (e ay, .. e wg)de = o(y)dy =1
Rd R4 yizeflwi Rd
and that ¢. is supported in B..

DEFINITION (Convolution). Now, let f € CO(R?), g € C°(R?) and define the convolution of f
and g as

(f*9)(x) = » flx—y)g(y)dy.

We will call f. = f * ¢..
Lemma 3.5. Let f € CO(R%); then, Ve < 1 we have that
(1) supp(f:) C supp(f) + B:(0);
(ii) f- € CZ(RY);
(iii) || fellprray < || fl o2 ey s
(v) fo — f uniformly.

PROOF. (i) fe(@) = fou  flz—y) o.(y) dy=0
N—— N~~~
=0 VyeB, =0 V|y|>e
if d(z,supp(f))>e

(ii) We can conclude that

ypUa ) = @) = [ f:)00a )iz

by applying Theorem 2.17 on each partial derivative.

li
h—

As an alternative that does not rely on that statement, observe that, with a change of
variables and an application of Fubini-Tonelli, we have

folw) T | F@)0xla = 2)dy
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Now, we can compute:

1 B e(x + hv — 2) — ¢ (x — 2)
E(fa(x + hv) - fa($)) = e f(z) A dz.

With the dominated convergence theorem, we can swap the limit for o — 0 with the
integral, and recalling that

ez + hv — 2) — ¢ (x — 2)
h

— Vo¢.(z — z) - v pointwise,

we obtain

hm (fs(x—l—hv /f )09 (x — 2)dz

h—
Since we can compute each partial derivative in this way, we get:

(iii) By definition, we have that:

il = [ Ve@lde < [ [ 1710 = pdyda

:/ |f(y)\/ ¢e(v — y)dwv dy = || fl| 11 may
R JRe _

-~

=1

using Tonelli’s theorem.
(iv) Note that f is uniformly continuous, therefore

Ve' >0 30 > 0such that |z —y| <6 = |f(z) — f(y)] <€
Hence, Ve’ > 0,

)~ 1@ = |t = [ 7ta = nyo.tnay

*

[ @) = 1t = oy

&
<[ 15w fla - iy £ / 0. (y)dy =
B:(0) d
where ¢ follows from the fact that f]Rd ¢:(y)dy = 1, and & holds if £ <.

We now have all the tools to complete the proof of Theorem 3.4.
PROOF - PART III. By part II of the proof, we have that 3{g; }ren € C°(€2) such that
Jim flge = fllze@) = 0.
In particular, 3K € N such that
loe — fllzvey < /2 k> K.
Now, for any g, by (iv) of Lemma 3.5, we have that 3h, € C2°(Q2) such that
Tim g, — hgllo (@) < &/2.
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Given the compact support, It is then possible to conclude that 3K € N such that
If = baller@) < I = grlle@) + gk = hallr) <& VE> K.

Remark 3.9. Note that (iv) implies that || f. — f|zrre) — 0 as € — 0 for every p, because

1fe = Fllzogay < m(supp(f) + Bi) Il fo = fllpoo gay.

Remark 3.10. The space L? has a special Hilbert structure.
Define for f,g € L*(Q;R) or L?*(Q; C) the scalar product

(f,9) /f g(z)dr € C (3.14)

This quantity is well defined, because by Hélder’s inequality we have that:

Liga< ([ 102) " (f |g|2)1/2.

The scalar product with the definition in (3.14) has the following properties:

= Jo 11 = 11220

° Hermltlan property : (f,g) = (g, f)
e [t is linear in its first component and anti-linear in the second one: given ¢ € C, we have:

(f+g.h)=(fh)+(g.h)
(frg+h) =(f.9)+(f.h)
(cf, h) = c(f, )
(f,ch) =¢(f, h)
e Pythagoras theorem: if (f, g) = 0, then
| f +9||%2(Q) = ||f||%2(9) + ||9||2L2(Q)
in analogy with vectors in R2. Indeed,

If +9l2@) = f+9)+ (g, f+9) = (. )+ {99+ {f,9) + (9. ])-

3.3. Complementary results in measure theory
Littlewood principles. Speaking of the theory of functions of a real variable, J. E. Littlewood
stated in 1944 three principles on the Lebesgue measure, roughly expressible as:

e Every measurable set with finite measure is nearly a finite union of boxes.
e Every pointwise converging sequence of functions is nearly uniformly convergent.
e Every measurable function is nearly continuous.
The adverb nearly should be intended in the sense of measure theory, and therefore stands for
up to a set of small measure.

THEOREM 3.6 (Egorov theorem). Let Q C RY measurable, m(§)) < +oo, {fi}ren measurable,
fe, f: Q= R, such that fr, — f a.e. Then we have that, given ¢ > 0,3C. C Q closed such that

m(Q\ C:) <e and fr. = f uniformly in C..
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PROOF. Without loss of generality, we can consider that fi(x) — f(z) Vz € Q (at least, up
to discarding a set of measure 0). Vn, k € N define

QZ:{xEQ:\fj(x)—f(x)IS% Vj>k}.

For fixed n, we have that
QCcQpand QT Qas k — oo.

Then,
Q
thanks to the dominated convergence theorem using as dominant 1q. This means that Vn we can

fix k, such that m(Q\ Qp ) <27
Fix € > 0 as in the statement, then there exists N € N such that

Define .
C.= ().
n=N

We have that

m(Q\C’sz(G Q\an> < im(Q\QZn)S i2_"<£.

Moreover, in Cg, f; — f uniformly; indeed, ¥ > 0 choose n to be such that % < 0.
Therefore,

1
fi(@) = f(@)| <= <& Vj>kyxelC. CQ,
n
which concludes the proof provided that the set C. is closed. Even if this is not the case, we can

find a closed subset of C. up to losing an ¢ of measure via Proposition 3.7. U

Proposition 3.7. Let £ C R? be a measurable set. For any € > 0, there exists an open set U and
a closed set C' such that C C E C U, m(U\E) < ¢ and m(E\C) <.

PROOF. We start by proving outer regularity, i.e. 3U open such that E C U and m(U\FE) < e.
First, suppose m(FE) < 4+o00. By definition of Lebesgue measure, we can find countably many open
boxes (B, )nen such that

Ec|JB,and > m(B,) <m(E)+e.
neN neN
Using subadditivity we deduce

m <U Bn> <m(E)+e.

neN
Since E is measurable and of finite measure we get

m (U Bn\E> <e.

neN

Notice that we used the inclusion E C |J,,cy Bn to get this last inequality.
To treat the general case with m(F) = +oo, write F as a countable union (E,),cn of measurable
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sets of finite measure (for example F,, is the intersection of E with the ball centered at 0 of radius
n) and consider for every n € N and open set U,, such that

E, C U, and m(U,\E,) < 27 ".
Write U = (J, ey Un- Using the inclusion U\E C {J, oy(Un\E,) and subadditivity, we get
m(U\E) <Y m(U,\E,) <.
neN

Applying this result to £, we can find an open set U containing E¢ such that m(U\E®) < & and
setting C' = U which is closed, we get

m(E\C) = m(U\E®) < ¢.
O

Remark 3.11. In general, we cannot approximate measurable set from the inside by open sets.
For example, take F =R\ Q. Then, int(E) = & but m(E) = +o0.

Corollary 3.8. Lebesgue measurable sets are Borel sets up to a set of measure zero. Indeed, let
E C R? be a measurable set then there exists A, B two Borel sets such that A C E C B and
m(B\A) = 0.

PROOF. Using the previous proposition, for every n € N we can find an open set U, and a
closed set C,, such that C,, ¢ £ C U,, and

m(U,\F) < 27" and m(FE\C,) <27".
Set A = J,,eny Cn and B =), oy
AC E C Band m(B\A) <m(U,\C,) <27 ¥neN.

U,. These two sets are Borel sets satisfying

Letting n — oo, we get the desired result. 0

Remark 3.12. Even if f, — f in L'((0,1)), not necessarily we have that f,, — f uniformly.
Indeed, we can consider f,,(x) = 1j1/y(z) and f(z) = 0; they are such that f, — f in L', because

fol |fn| = 1/n, but the convergence is not uniform, because

|fu(z) = f(z)] =1 on [0,1/n].
Hence, we can conclude that the L! convergence is weaker than the L> convergence.

THEOREM 3.9 (Lusin’s theorem). Let Q be a measurable set with m(2) < +oo and f: Q2 — R
measurable.
Then Ye > 0 3F. C Q closed s.t. m(Q\ F.) < e and the restriction of f to F., denoted as f|r., is
continuous.

Remark 3.13. Note that the thesis of the theorem is that f is continuous when viewed as function
defined on the set F., not that f is continuous at the points of F..
Example 3.3. Consider the following examples:

(i) Ljo,4o0) is continuous when restricted to [0, 4+00), but # = 0 is not a point where Lo ;) is
continuous.

(ii) Lgnpo,y is continuous when restricted to QN [0, 1] (because it is identically equal to 1), but
seen as a function in R it is discontinuous everywhere.

Remark 3.14. F, cannot be chosen to be open: take as example the function Tgnqp,1).
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PROOF OF LUSIN’S THEOREM. We choose M s.t. m({|f| > M}) < /2. Using the approxima-
tion of L' functions with smooth functions of Theorem 3.4,

E|fn — f]l{lf\SM} € LOO(Q) C Ll(Q).

Up to a subsequence, by Theorem 3.3 this convergence holds also almost everywhere.

Now we can apply Egorov’s Theorem to make the convergence uniform: let C. C §2 from Egorov’s
Theorem, with m(C.) > m(Q2) — /2.

Consider C. == C. \ {|f| > M}: we have that

m(C.) > m(C.) —e/2 > m(Q) —e.

We have that f,|s is continuous and f, — f uniformly in C.. Therefore, f is continuous on C..

To make the set closed, take C. C C. closed, with m(C. \ C.) < «. O

Remark 3.15. The uniform limit of continuous functions is continuous, but the L' limit of
continuous functions is not necessarily continuous.

3.4. Comparison between notions of convergence

In Table 1 we summarize the implications among the various types of convergences in a domain
with finite measure. Let us consider  C R? measurable with m(2) = 1 (to discard constants in
the inequalities, but the results hold in general for the case of € with finite measure). Note that we
can reduce ourselves to study the convergence to 0, by setting g, = f, — f and considering

fn—=>f <= ¢g.—0 asn— +oo.

A L convergence | L? convergence | L' convergence a.e. convergence
YES YES YES
L> convergence Ve >0 3ng : Vn > nolgn| < e
loalles < lgnllie | Ngnler < lgnllus | 7,2 03005 70 Holdn] o
L? convergence NO* YES NO, in general
take 1,1 /n] lgnller < llgnllzz | YES, up to a subsequence
L' convergence NO* NO NO, in general
take 1o/ take \/nl 0,1/n] YES, up to a subsequence
NO NO
a.e. convergence NO take nlo.1/m take nlo.1/m

TABLE 1. Convergence implications for the case m(€2) < +oc.

* : recall that Egorov’s theorem states that L' and L? convergence imply L convergence up
to a set of small measure and up to a subsequence.

In Table 2, we summarize the results for the case m(Q) = +oc.
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A L convergence | L? convergence | L' convergence a.e. convergence
YES
L™ convergence . ]lNol K 1]?0 1 Ve >0 dng : Vn > nglga| < e
take oo 1/v/n | take Lol /n up to a set of measure 0

% comversen NO NO NO, in general

convergence take 10,1/ take 1jg,,j1/n | YES, up to a subsequence
1 comversen NO NO NO, in general

convergence take 1.1 /n) take /nly 1/ YES, up to a subsequence
a.e. convergence NO NO NO

take nlg 1/ take nlo 1/

TABLE 2. Convergence implications for the case m(Q2) = +oc.

Note that in this case Egorov’s Theorem does not hold, because it requires m(£2) < +oo, nor
can we apply Holder’s inequality to conclude bounds for norms, because each time we integrate
Jo, 1 we have +oo0.

Remark 3.16. Uniform convergence implies L* convergence, because

ess sup |g,| < sup |gy|-

However, the converse is not true, take for example g,(z) = (=1)"1{z—0} ().
implication is false only for a set of measure 0.

Remark 3.17. Pointwise convergence implies convergence almost everywhere, while the converse
is not true in general.

Note that this

3.5. Application: [P spaces

In this section, we introduce the [P spaces of sequence and show how we can use the theory
developed so far to study some of their properties.

DEFINITION (I? norm). Let (&,).en be a real sequence and p € [1,00). We define

Il = (Z |£n!p> -
n=1

DEFINITION (I” space). Let (&,)nen be a real sequence and p € [1,00). We define

(0 lliw) = ({(€)nen € RY - [Ig ]l < +00}, [I-[l) -
DEFINITION (I* norm). Let (&,)nen be a real sequence. We define

[€]lie = sup |&,l-
neN

DEFINITION (I* space). Let (&,)nen be a real sequence. We define
(12,1111 = ({(€a)nen € R« [I€]li < +o0}, [|-[li=) -

It is a simple matter to show that [? spaces are vector spaces for all p € [1,4+00]. We treat the
case p € [1,400), take &, n € [P, then

> e+ P <2 (z Gre Y |nn|p> < oo
n=1 n=1 n=1

We will show that [P are actually complete normed vector spaces (Banach spaces). One can do this
directly, but we will embed these spaces into L?(1,00) and study this embedding to deduce some
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properties.
To do this, for every sequence (&, ),en, consider the function fe : (1,4+00) — R defined by fe(x) =&,
ifn<x<n-+1for every n € N.

Proposition 3.10. The application £ — fe is linear and for every p € [1,+00], and we have the
following properties

(i) & € I if and only if fe € LP(1,+00), in which case ||E]|w = || fell£r(1,400)5
(1t) The space {fe : £ € I’} is a closed subspace of LP(1,400), hence I is a Banach space,
(i4i) (Holder) if € € [P and n € I’ then

D 1wl < NIEllllnll
n=1

(i) (Minkowski) if £,m € [P then

1€+ 0l < NIl + [l

PROOF. We first prove that £ — f¢ is a linear map.
Take &, n two real sequences and o € R then for every n € N and n < x < n + 1, we have

fa£+77(x) = (Ozf + 77)n =y + M = O‘fé(x) + fn(x)

(i) For p € [1,400) and ¢ a real sequence, we have

[e'e) oo n+1 [e'e]
/ fe()Pdr = / fe(@)Pde =3 6l
1 n=1Y" n=1

from which we deduce ||| = || f||r(1,400) and & € I if and only if f € LP(1, +00).

For p = 400, for every € > 0 and n € N, we have m({x € R : |fe(z)| > [{,] —€}) > 1 >0
from which we get || fe|loo(1,4+00) = [|€]|1eo. Conversely, for every € > 0 and every « € R we
have | fe(2)] < €]l + = from which we get |Lfell (1 so0) < €l

This proves that the map £ — f¢ is a linear isometry from ? to LP(1, +00).

(ii) Take (fe,)nen @ sequence in LP(1,4+00) converging in LP(1,4o00) to f. We need to prove
that there exists £ € [P such that f = fe. Since lim,_, fe, = f in LP(1,+00), we can
find a subsequence that converges pointwise almost everywhere to f. For every k € N
and every n € N, f¢ is constant on (k,k + 1]. This implies that for every £ € N, we
can find a constant & € R such that f(x) = &, for almost every = € (k,k + 1]. Indeed,
if this were not the case, we could find ¥ € N and o, € R such that a« < § and
m({zx € (k,k+1): f(z) < a}), m({zx € (k,k+1): f(z) > 8}) > 0 which would contradict
the convergence pointwise almost everywhere. So we have that f = f; almost everywhere
on (1,4+00), in particular f = fe in LP(1,4+00) and {fe : £ € [P} is a closed subspace of
LP(1,400). From (i), we deduce that & € [P and that [” is a Banach space.

(iii) (Holder)

> L&uml 2/1 | fef I < I fell o)1 all o (1,400) = NElliw ]Il
n=1

(iv) (Minkowski)

1€+l = Ife + faller@,a00) < M fellor00) + [ fnll e o0y = 1€l + |7l
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We conclude this section by saying that while this identification of [P as a subspace of LP(1, +00)
is useful, it does not allow us to deduce all properties of [P spaces. To state an example, we know
that when Q C R? is of infinite measure, we do not have inclusions LP(Q2) C 4(Q) for p,q € [1, +oq]
in general. However the following holds

Proposition 3.11. For 1 <p < g < 400 and £ a real sequence, we have

[1€]]ia < [I€]]er,

and so we have the inclusions P C 9.
PROOF. The case ¢ = oo is easy and we do not prove it, so assume g < oo.
We may assume & € [P and £ # 0. Notice that the inequality is homogeneous and we may suppose

without loss of generality that ||€||;» = 1. In particular, for every n € N, we have |¢,| < 1. Since
p < q, we have [£,]7 < |€,|P for every n € N, which gives

Mol <Y el =1.
n=1 n=1






CHAPTER 4

Fourier Analysis

This chapter is inspired by [Dac, Chapter 17], [SS03, Chapter 1, 2, 3|, [Taol6, Chapter 5|.
The development of Fourier Analysis dates back to the XVIII century, and it was encouraged
by the investigation on physical phenomena regulated by partial differential equations, such as
vibrating strings and heat flows.

The laws describing the above experimental settings are, respectively, the wave and the heat
equation; their solutions were sought using linear combinations of sinusoidal terms - that is, the
underlying concept of Fourier series.

In 1807, J.Fourier was the first to study systematically the properties of infinite sums of
harmonics, but preliminary investigations were carried out for example even by D.Bernoulli, who in
1753 wrote to Euler to propose the solution to certain partial differential equations given by the
Fourier series. However, Euler was not entirely convinced of its full generality, because the result
could hold only if the function could be expanded in Fourier series. Such doubts, shared also with
other mathematicians, were then solved by Fourier in 1807 in his study of the heat equation, which
eventually led others to a complete proof that a general function could be represented as a Fourier
series.

4.1. Derivation of the heat equation and solution of the Laplace problem in a disk

To see the emergence of Fourier series from physical problems, we will now derive the heat
equation, a partial differential equation that formalizes Newton’s law of cooling, according to which
the heat flows from higher to lower temperatures, at a rate proportional to the difference of the
temperatures in the regions.

Let us consider a metal plate 2 C R?, characterized by a certain specific heat o > 0, quantity
describing the heat capacity of the material, and conductivity x > 0; our aim is to study the
evolution of the temperature u(z,y,t), starting from a given initial distribution at time ¢ = 0.

y n
h L LN
(0, o) (o + %,yo)

Q

FIGURE 1. Sketch of the square S.

Consider a small square centered in (g, yo) inside the plate S C €, with edges of length h < 1
parallel to the axes (see Figure 1), and define the following quantities:

7
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e the amount of heat in S at time t: H(t) =0 [ [u(z,y,t);

e the heat flow into S: %—Ij(t) = %affs u(z,y,t) = o [ [ O0u(z,y,t) ~ ch*du(zo, yo,t);
this approximation can be made because we can assume the integrand function to be
constant on the small square S, and the area of the square is h?.

e the incoming heat flow through the boundary 05, considered to be positive in the direction
given by the vector n:

I{[haccu('ro + %a Yo, t) - ha:cu('ro - %7 Yo, t) + hayu(x()a Yo + %a t) - hayu<x0a Yo — %7 t)}
~ K[h*0ppu(T0, Yo, t) + ROy u(xo, Yo, t)].

Newton’s law of cooling relates the rate of the heat flow to the difference of the temperatures,
to be interpreted as a gradient:

oh*0pu(xg, Yo, t) = kh*(Oezti(z0, Yo, t) + Oyyu(o, Yo, t))- (4.1)
From Equation 4.1, by simplifying k2, we finally obtain the heat equation:
K
owu(z,y,t) = ;(&mu(x, y,t) + Oyu(z,y,t)). (4.2)

After sufficiently long time, the heat exchange will be over and thermal equilibrium will be
reached. Therefore, 0;u ~ 0, and the phenomenon will be described by the steady state version of
Equation 4.2, known as Laplace equation:

Au(z,y) = Opu(x,y) + Oyyu(x,y) = 0. (4.3)
Functions satisfying Equation 4.3, and therefore having null Laplacian A, are called harmonic
functions.
Let us now consider the Dirichlet problem for the Laplace equation in the unit disk

D={(z,y) eR*:2” +y* < 1}.

Au=20

FIGURE 2. Laplace problem in the unit disk in R2.

Passing to polar coordinates with the usual change of variables = = r cos(#),y = rsin(f), we
can reformulate the domain expression as

D={(r)eR*:0<r<1,60€0,2m)}.
We then fix Dirichlet boundary conditions in polar coordinates:

u(r = 1,0) = f(0),
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being f a given function that imposes the value of u on the disk boundary, that, in the physical
setting described before, corresponds to the temperature distribution at the edge.

We will now rewrite Equation 4.3 in polar coordinates, recalling that the expression of the
Laplacian for a function in polar coordinates reads as:

Au(z,y) = Au(rcos(d), rsin(f)) = dyw(r, 0) + %&w(r, 6) + r—zaggw(r, 0). (4.4)
where w(r, §) = u(r cos(f), rsin(8)).

PROOF OF (4.4). Let us define w(r,8) = u(rcos(f),rsin(f)), and let us relate its partial
derivatives with the ones of u, by using the chain rule:

Orw(r,0) = Oyu(r cos(f), rsin()) cos(#) + dyu(r cos(d), rsin(f)) sin(6)
Ogw(r, 0) = —0,u(r cos(f), rsin(f))rsin(f) + dyu(r cos(f), rsin(f))r cos(f)

Orpw (1, 8) = [Oppu(r cos(0), rsin(f)) cos(0) + Opyu(r cos(d), rsin(f)) sin(0)] cos(0)+
+ [Opyu(r cos(8), rsin(f)) cos(€) + Oy u(r cos(f), rsin(f)) sin(f)] sin(6)

Opow (1, 0) = [Ogzu(r cos(B), rsin(f))rsin(0) — Oyyu(r cos(8), rsin(f))r cos(8)]r sin(8)+
— Ou(r cos(), rsin(0))r cos(0)+
+ [—Ogyu(rcos(8), rsin(f))r sin(@) + Oy, u(r cos(d), rsin(0))r cos(0)]r cos(8)+
— Oyu(rcos(f), rsin(f))rsin(6)
After these computations, one can verify that

= (120w (r, 0) + 10,w(r, 0)+0gew(r, 0)]

= [Opeu(r cos(6), rsin(0)) + dyyu(r cos(d), rsin(9))](cos?(0) + sin?(9))
= Oygu(r cos(0), rsin(f)) + Oy, u(r cos(), rsin(f))
0

By inserting Equation 4.4 into Equation 4.3, we finally obtain the Laplace problem with Dirichlet
boundary conditions in polar coordinates:

120,,w(r,0) + rdyw(r, 0) = —gew(r, 0)
w(1,0) = f(0).

We will look for solutions using the method of separation of variables; namely, we ask for
solutions of the form:

(4.5)

w(r,0) = F(r)G(0),

where G must be periodic with period 27, as its variable # represents the angle on the circle.
Plugging such solutions inside the first equation of the system in (4.5), we get

r?F"(r)G(0) + rF'(r)G(0) = F(r)G"(9),
then, by dividing both members for F(r)G(6), we obtain

r2F"(r) +rF'(r) _ _G”(Q)
F(r) G(0)’
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where the LHS depends only on 7 and the RHS only on #. Since the two sides depend on independent
variables, both the terms have to be equal to some constant A € R, and we get the system

G(0) + AG(0) = 0
{7“2F”(7“) +7rF'(r) — AF(r) = 0. (4.6)

Remark 4.1. For an equation of the form
u’(t) +au'(t) + bu(t) =0, telCR, (4.7)
where a,b € R are constant coefficients (do not depend on ), the solutions can be found as follows:
we look for exponential solutions z(t) = e*. Substituting into the equation gives
MM ade™ + beM = 0,
which leads to solving the characteristic equation:
M +al+b=0.

We distinguish three cases based on the sign of the discriminant A := a? — 4b.
e Case A > 0: two distinct real roots:

a a? —4b a a? —4b
PO At VO A

Tyt T e 2
Then 2 (t) = eM! and 2,(t) = ! are linearly independent solutions. The general

solution of the homogeneous equation is:

U(t) = CleAlt + 026A2t, (48)
with arbitrary constants C,Cy € R.
e Case A < 0: two complex conjugate roots:

V4b — a?

2

This leads to complex-valued functions e*'?, e*?!. Define real-valued solutions:
At Aot
et t+e a
2 (t) = — = e~ 2" cos(put),
A1t Aot
e e p
2o(t) = 5 = e 2" sin(ut).
7

These are linearly independent. Therefore, the general solution is:

u(t) = e 2*(C} cos(ut) + Cysin(ut)). (4.9)

e Case A = 0: a single real root A = —2.
Then 2 (t) = e~ 2! is a solution. We seek a second linearly independent solution of the

form z(t) = C(t)z1(t), and we find 2,(t) = te~2!. Therefore, the general solution is:

u(t) = (C1 + Cat)e™ 2", (4.10)

Note that if (4.7) is set in I = (0,L) and it comes with a boundary condition such as

u(0) = u(L) = 0, we can find solutions only in the case A < 0. Indeed, with solutions from the

family (4.8), we would need to impose u(0) = C; + Cy = 0 and u(L) = CieMl + Chet?l = 0,

which cannot be satisfied, and with the family (4.10) we would need to impose u(0) = C; = 0,
u(L) = (Cy + CyL)e~*/2 = ( which again does not lead to any non-zero solution.
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By Remark 4.1, the solutions to the ODE in 6 are:
o =V (that is, cos(VAG), sin(v/A0)) if X > 0;
o VA Hf )\ < 0.

However, the second category of solutions is not periodic, so we want to discard them. Therefore,
the periodicity constraint implies that A\ = m?2, for some m € N, and

G(0) = Acos(mb) + Bsin(mb) = Ae™’ + Be=™
for some constants A, B € R.
On the other hand, the solutions to F(r) are of the form

{rm ) { 1 )
F(r) = ifm>0, F(r)= if m = 0.

log r
But we can reject ¥~ and log(r) as they are unbounded and they blow up in the origin. Hence,
the solutions obtained via separation of variables are w,, = r™e™? with m € Z.
Note that w,, can assume complex values due to the presence of ¢’ and the fact that it is a
solution implies that its real and imaginary part Re(w,,) = 7™l cos(m#) and Im(w,,) = 7™l sin(m0)
are solutions as well.
Remark 4.2. Since Equation 4.3 is a linear partial differential equation, the superposition principle
holds: if uy, us are solutions to the equation, then a linear combination aju; + asus is solution, too,
Yaq,as € C.

PROOF.
&m(&lul + CLQUQ) + (9yy(a1u1 + CZQ’LLQ) = alamul + ag(‘)mw + alé?yyul + CbgayyUQ =
= a1 (&mul + 3yyu1) + CLQ(aMUQ + 8yyU2) =
=0
O
Thanks to the remark, we can conclude that a finite sum w(r, 8) = SN a,,rlmleim? (
N € N) is a solution.

Let us now consider the Dirichlet boundary condition: on the disk edge, corresponding to r = 1,
we have that the boundary value of the solution must match with the boundary datum f:

where

N

w(L,0) = Y ane™ = f(0).
m=—N
The previous discussion proves the following theorem:

THEOREM 4.1. If f(0) can be written as

f(o) = Z ame™? = Z am(cos(ml) + isin(md))

m=—N

for some coefficients {am }men C C, then the solution of the Laplace equation in the unit disk D is

given by
N

w(r,0) = Z ™™ (4.11)

m=—N

'Recall Euler’s identity e = cos(z) + isin(z).
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Remark 4.3. The solution of Equation 4.5 in the disk with boundary condition

N

(o) = Z A, cos(ml) + b, sin(mh)

m=—N

is a polynomial in (z,y). This can be proved by expanding cos(m#) and sin(mf) into combinations
of sin(#) and cos(f), and switching back to cartesian coordinates (recall that e = cos(6) + i sin(f)).
Taking N =0 in (4.11), we get

w(r,0) = ayg.

For N =1, we get:

w(r,0) = ag + arre® +a_yre™ = ag + a1 (r cos(d) + irsin(f)) + a_; (r cos(d) — isin(0))
=ao+ (a1 +a_1)x +i(a; —a_q)y

For N = 2, we get:

w(r,0) =ag + arre’® +a_1re™ + aore®® + a_ore 0
= ag + a1(r cos(#) + irsin(f)) + a_y(r cos(h) — isin(6))
+ ag(r? cos(20) + ir? sin(20)) + a_o(r? cos(20) — ir®sin(20))
=ap+ (a1 +a_1)r+i(a; —a_)y
+ ag(r(cos(f) + sin(6))r(cos(8) — sin(8)) + 2ir? sin(#) cos(d))
+ a_o(r(cos(0) + sin(8))r(cos() — sin()) — 2ir? sin() cos(6))
=ap+ (a1 +a_1)r+i(a; —a_1)y+ax((z + y)(x — y) + 2izy) + a_o((x + y)(x — y) — 2izxy).
We can give evidence for the statement with the following example.

Example 4.1. Consider f(#) =1+ sin(20) =1 + 5 — Le™2*; we know that its solution is

w(r,0) = 1r%"% + ZrQem - Zﬁe’m =1+ r*sin(26).

Expressing 1 + 72 sin(26) in cartesian coordinates, we get that
1 +7%sin(20) = 1 + 2r?sin(6) cos() = 1 + 2(rsin(6))(r cos(d)) = 1 + 2zy,

which solves the Laplace equation in cartesian coordinates: A(14-2xy) = Opp(14-22y)+0,, (14+22y) =
0.

The superposition principle can be then extended to the case of an infinite sum: therefore, if
f(0) =3",,cz ame™? for some complex coefficients {a,, },» C C, then a solution of the heat equation
is

w(r, ) = Z g™ et (4.12)

meZ
This heuristic motivates the leading question of Fourier analysis, that is:

Given f:[0,27] — R such that f(0) = f(2m), when can we find coefficients a,, to write it as
F(0) =3 ez ame™?

The path to answer this question starts from the investigation of periodic functions.
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4.2. Periodic Functions
DEFINITION (Periodic function). Let L > 0, f : R — Cis L-periodic if f(z+L) = f(z) Vz eR.
Example 4.2. f(x) = sin(x) is 2r—periodic, g(z) = sin(2rx) and the square wave (see Figure 3)

are 1—periodic (also called Z—periodic). The constant function h(z) =1 is L—periodic VL > 0.

Y

neN

)1, zen,n+1/2)
f(x)_{o, r€n+1/2,;n+1)

FIGURE 3. A 1—periodic function: the square wave.

Remark 4.4. For f, g 1-periodic, we have that || f — g||z» = <f01 If — g|P); . For p = 2, we can
define the scalar product to be the quantity (f,g) = fol fgdzx.

DEFINITION. The space of continuous 1-periodic functions is denoted by C°(R/Z; C).
Lemma 4.2. The following basic properties for periodic functions hold:

(i) If f € C°(R/Z;C), then f is bounded:
aM >0 s.t. |f(z)|] <M VzeR.
(ii) C°(R/Z; C) is a vector space and an algebra:
f,9 € C*(R/Z;C),c € C= f +g,cf, fg € C°(R/Z;C).
(1ii) The space is is closed under uniform limits:
{fu}nen C CUR/Z; C), f, — f uniformly = f € C°(R/Z;C).

(iv) The space C*(R/Z;C) is dense in L*((0,1);C).

Remark 4.5. C°(R/Z;C) is a complete normed vector space (Banach space) with the norm

[fllzee = sup |f(z)].
z€[0,1]

4.3. Trigonometric polynomials

Polynomials are combinations of monomials x"; analogously, we can define trigonometric
polynomials as combinations of the functions €*™®_ called characters.

DEFINITION (Character). Vn € Z, the character with frequency n is defined as

2minx

en(x) =€ = cos(2mnx) + isin(2mnx).

Remark 4.6. Vn € Z, e, € C°(R/Z; C).
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DEFINITION (Trigonometric polynomial). A function f € C°(R/Z,C) is a trigonometric poly-
nomial if we can write

N
f(ill')z Z Cn€27r'mm
n=—N

for some N > 0.

Example 4.3. Vn € N, the function f(z) = cos(2mnx) and g(z) = sin(2wnz) are trigonometric
polynomials, because:

(2 ) 627rina: + e—27rinz 1 N 1

™n = = 7€-n atns

COS X 5 28 26
2mine e—27rinx 1 1

in(27mnz) = = ——c_,+ —ep.

sin(27nx) 5 5;¢ + 5;¢

Remark 4.7. f is a trigonometric polynomial <= f is a finite linear combination of terms
cos(2mnz), sin(2mnx), for some n € N.

Lemma 4.3. The family of {e,},; is an orthonormal system, i.e.

2
(€nsem) = Onm and |ley]] =1 Vn,m € Z.

—2mimx

PROOF. This proof is proposed in Exercise 1 of Series 8. Using that e?™m= = ¢ , we have

1 1 L, L
(en, €m) = / E2TINT 2mima oy — / 2mi(n—m)e g, _ {fo dr =1 if n=m,
0 0

1 omi(n—m)z :
062( dr =0 if n # m.

O
Corollary 4.4. Let f = Zf:[:_N cnen be a trigonometric polynomial. Then,
¢, V—-N<n<N
(fren) =
0 Yn<—N orn>N.
Moreover, a version of Pythagoras Theorem holds:
N
11172 = > leal
n=—N
PROOF.
N N N
<f7 em> - < Z Cn€n7€m> - Z Cn<€n7€m> - Z Cn(snm =Cm
n=—N n=—N n=—N
Proceeding in the same way, we can also prove that
N N N N N N
1FI72 = (£ ) = (D cnens D cies) = D D> eatilenes) = D caba= D leal®
n=—N j=—N n=—N j=—N n=—N n=—N
O
2We recall the definition of the Dirac Delta: dij = {1 Z - ‘7
0 i#j
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DEFINITION (Fourier Coefficients). Let f € L*(R/Z;C), n € N. The n-th Fourier coefficient is
1
f(n) = {(f,e,) = / f(z)e ™ dy,
0

The function f : Z — C is called Fourier transform of f.
Thanks to Corollary 4.4, we can state the following properties for trigonometric polynomials:

Corollary 4.5. Let f be a trigonometric polynomial, then we have the Fourier inversion formula:
N

f(ﬂ?): Z <f,€n>€n: Z faen en Z f Z f' 27rm;t

n=—N n=-—o0o n=—00 n=-—o00

and the Plancherel formula (also known as Parseval formula):

IFIZ:= D KfedP= D KfeadP= D 1f()f

n=—o0o n=-—00

For the moment, the result holds only for trigonometric polynomials; we will then extend
this result to an arbitrary function f € C°(R/Z;C) and even to the class of 1-periodic, L*((0,1))
functions.

4.4. T-periodic functions and their (complex and real) Fourier coefficients

Let f € L*(0,T) be a T-periodic function. The complex Fourier coefficients of f are given by

L s
—T ; x)e xr

The trigonometric Fourier coefficients of f are given by

2 (T 2mnx 2 [T . [ 2mnx
an, ::T/O f(x)cos( T ) dz, by, ::T/O f(x)sm( T ) dz.

We remark that

7.27rnz —127rn:c

T )f(a:)da::anrc_n

0

21
That is, ¢g = ag/2 and for n > 1

_ap tib
Cop 5
_a, — by,
Cn 5

The partial Fourier sums of f are

N

2tz Qa 271'71

Fnf(x E Cpe T Eo—i-g ancos< -
n=1

Indeed, we note that

€T bk 2mnx
,, Sin .
T
N

N N
i2mnz __ %0 QAp — Zb i2Tne ap, + Zb —z27m:r
I M Lt M C o Fa

n=—N n=1



86 4. FOURIER ANALYSIS

Remark 4.8. For ' =1, ¢, = f (n). For a general period T, ¢, is the Fourier coefficient of
f(Tz) = g(x):

1 . 1 T 227rny
/ f(Tz)e™™™ de = = / fly)e™ 7 dy.
0 0

We also note that
Fyf(x) = Fyg(T"2). (4.13)

In the next sections, we will prove that Fyg — ¢ in various senses (with g being 1-periodic).
Owing to (4.13), these results imply the same type of convergence Fy f(x) — f(x) for a T-periodic
function f.

4.5. Uniform approximation of continuous, periodic functions with trigonometric
polynomials

We will now present the following result for the approximation of arbitrary functions in
CY'(R/Z;C).

THEOREM 4.6 (Weierstrass approximation theorem). Let f € C°(R/Z;C), and let ¢ > 0. Then
there exists a trigonometric polynomial P such that || f — Pl < €.

To prove it, we first need to introduce several tools:

DEFINITION. Let f,g € C°(R/Z,C). The periodic convolution of f and g is the function
f*g: R — C defined by
1
= / fgle -
0

Remark 4.9. This notion of convolution is different from the one introduced in L' because we
integrate on [0, 1]; it is in fact the same notion adapted to periodic functions. There is a conflict of
notation but in fact it is applied to a completely different class of objects, because remember that

LYR)NCR/Z,C) = {0}.
Lemma 4.7 (Basic properties of periodic convolution.). Let f,g,h € C°(R/Z,C) and c € C, then
(i) (closure) f * g € C°(R/Z,C),
(i) (commutativity) fxg = g* f,
(111) (bilinearity) (f+g)xh = fxh+gxh, fx(g+h) = fxg+ [*h, (cf)xg=c(f*g) = f*(cg).

PROOF. (i) For every = € R, we have

frg@t1)= /f x+1—ydy—/f Yy = f* g (),

we used the fact that g is 1-periodic.

To prove continuity, notice that [0, 1] is of finite measure and | f(y)g(z —y)| < || fllocl|9]lc0 <
+o00 for every y € [0,1] and every € R. Now, using the continuity of g and the dominated
convergence, we get

i f g (=) = tim | F()g(=—y dy—/f Yy = [ * g (2).

zZ—T Z—T 0

(ii) To prove commutativity, remark that y — f(y)g(z — y) is 1-periodic for every = € R, so

reow= [ fwate-viv= [ s 2ge= [ o= iv=g 5 @)
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The second equality is justified by the change of variable z = x — y. For the third equality,
we used the fact that the integral of a 1-periodic function over any interval of length 1 is
equal to its integral over [0, 1].

(iii) Note that

@f+m*h@%=/<d@%+ﬁwmw—ywy

1
—c/ fy dy+/ 9(W)h(z —y)dy
(f *h)(x) +g=h (x).
Thus we have (cf+g)*h:c(f*h)+g*h.
Setting ¢ = 1, we get (f +g)xh = f*h+ gxh.
Setting g = 0, we get (¢f) xh =c(f = h).
Using commutativity, we get f*(g+h)=(g+h)«f=gxf+hxf=fxg+ f*xh.
Similarly, we et / * (cg) = (cg) * f = c{g * ) = c(f * g) = (cf) * .
0

Moreover, we will need the following result on the approximation of the identity via trigonometric
polynomials:

DEFINITION (Periodic approximation to the identity). Let € > 0 and 0 < 6 < 1/2. A function
f € C°%(R/Z;C) is said to be a periodic (g,d) approximation to the identity if the following
properties are true:

(1) f(z) >0 for all z € R, and f[o,l] f=1
(2) We have f(z) <eforall § < |z| <1-—0.

Lemma 4.8. For every e > 0 and 0 < § < 1/2, there exists a trigonometric polynomial P which is
an (,8) approzimation to the identity.

PROOF. Let N > 1 be an integer. We define the Fejér kernel Fy to be the function

(A

n=—N

Clearly Fy is a trigonometric polynomial. We observe the identity

But from the geometric series formula, we have

= ey—ey eV UTsin(7Nz)
E en(z) = = _

e — € sin(mx)
n=0

when x is not an integer, and hence we have the formula

sin(rNx)?
F = —.
w(@) N sin(mz)?
When z is an integer, the geometric series formula does not apply, but one has Fy(z) = N in

that case, as one can see by direct computation. In either case we see that Fy(x) > 0 for any x.
Also, we have
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/[0’1] Fy(z)dx = Z]i:N (1— mj\f') /[071]671 = (1_ |£N|> 1—

n=

Finally, since |sin(rNx)| < 1, we have
F(x) < < 1
T
VY= Nsin(rz)? = Nsin(76)?

whenever 0 < |z| < 1—J (this is because sin is increasing on [0, /2] and decreasing on [7/2, 7]).
Thus by choosing N large enough, we can make Fy(x) < e for all 6 < |z| < 1 — 4. O

PROOF OF WEIERSTRASS THEOREM. Let f be any element of C°(R/Z;C); we know that f
is bounded, so that we have some M > 0 such that |f(z)] < M for all z € R.

Let € > 0 be arbitrary. Since f is uniformly continuous, there exists a § > 0 such that
|f(x) — f(y)| < e whenever |z —y| <. Now use Lemma 4.8 to find a trigonometric polynomial
P which is a (g,0) approximation to the identity. Then f P is also a trigonometric polynomial,
because P is a trigonometric polynomial, so we can write

N
P= E A,
n=—N

for some a_y,...,ay € C and some N € N.
Using the linearity property of periodic convolution, we have

N

f*xP= Z an(f *ep).

n=—N

But for every n € Z, we have

1 1 R
fen(z) = /0 Fly)e?m v dy = /0 Fly)e ™™ dye’™ ™ = f(n)e, ().

Combining this with our previous observation we get

N

f*P= Z anf(n)en.

n=—N

We now estimate || f — f * P||w. Let 2 be any real number. We have
[f(x) = [+ P(z)] = [f(z) = P f(2)]
~|r@= [ st nrw)

0,1]

_ /[ NELUTEY WS y)P(y)dy\

[071

_ 471](f(x) — flx - y))P(y)dy'

< /[ @) = 1 = pIPwy

The right-hand side can be split as
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/[O @) = e =) Py + / (@) — f(z — 9| P(y)dy

(6,1—4]
s [~ S - )Py
[1-6,1]

which we can bound from above by

S/ 5P(y)dy+/ 2Medy
[0,0] [6,1—6]

LR IO

g/ 5P(y)dy+/ 2M€dy+/ eP(y)dy
[0,5] [6,1—6] [1-6,1]

<e+2Me +¢
=(2M + 2)e.

Thus we have || f — f % P|lc < (2M +2)e. Since M is fixed and ¢ is arbitrary, we can thus make

f * P arbitrarily close to f in sup norm, which proves the Weierstrass approximation theorem.
O

4.6. L*—convergence of Fourier Series

THEOREM 4.9 (Fourier Theorem). For any f € L*(R/Z;C), the series > -
in L? to f. In other words, we have

f(n)e, converges

TL*OO

lim
N—o0

f=Y fne

PROOF. Step 1: proof for f € C°(R/Z;C).

L2

Let £ > 0. We have to show that there exists an Ny such that Hf N f(n)e, , Sefor
L

all N > Np.
By the Weierstrass approximation theorem (Theorem 4.6), we can find a trigonometric poly-
nomial P = Z No Cn€n such that [[f — Pll < ¢, for some Ny > 0. In particular we have
If = Pl2<e.
Now let N > Ny, and let Fy := ZnNz_N f(n)e,. We claim that || f — Fyl|;2 < €. First observe
that for any |m| < N, we have

(f = Fx,em) = (f,em) Z (en, em) = f(m) = f(m) =0.
In particular we have

(f—Fn,FN—P)=0
since we can write Fiy — P as a linear combination of the e, for which |m| < N. By Pythagoras’
theorem we therefore have

If = Pl3 = IIf = Fwllze + |1 Fy = Pl
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and in particular

If = Enllz < |If = Plla<e (4.14)

as desired.
Step 2: proof for f € L*(R/Z;C).

Let f € L*(R/Z;C), set € > 0. By density, 3g € C°(R/Z;C) such that

If = gllz <e.

For N large, ||g — Fngllz2 < € by the previous step. Finally, by the best approximation of f with
Fn f (as observed for (4.14)), we have

If = Fnfllze < f = Fngllee < |\|f —gllz2 + lg — Fngllze < 2e. (4.15)
]

As a corollary of the Fourier theorem, we obtain

THEOREM 4.10 (Plancherel (Parseval’s identity)). For any f € L*(R/Z; C), the series 300 ___ | f(n)|?
15 absolutely convergent, and

Iflz= > If()l?

n=—oo

PROOF. Let € > 0. By the Fourier theorem we know that
N A
-3 s
n=—N L2
if N is large enough (depending on ¢). In particular, by the triangle inequality this implies that
N A

> fme
n=—N

On the other hand, by Corollary 4.5 we have

N 1/2
= (Z If(n)|2>

<e

< I fll2 +e.
L2

[flla —e <

> fn)e

L2
and hence

N

(1 £1l> = &)* Z < (I£ll2+2)*.

Taking lim sup, we obtain

N
(1flls = e)* < lim sup o @< (Ifll +e)
—oo, TN

Since ¢ is arbitrary, we thus obtain by the squeeze test that
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lim sup Z IF)[* = I£13

N¥+a> _

and the claim follows. O

Remark 4.10. If f is, instead, T-periodic and f € L?(0,T), then

N
2 2
FNf:%—i-;ancos( 7;”) +bnsin( Zim) — fin L?

and
92 T ) aQ +o00
— dr = -0 E 2 b2.

Indeed, we can apply Plancherel’s theorem to the 1-periodic function f(7Tx) =: g(x), recalling
Remark 4.8 and compute

19101 = /|f|2dx—2|g 2oy

neL nez

_ <%>2+Z Gy + by,

2
ne

ag 1 2 2
:Z+§Z|an| + |bal*.

neN

02
a, — b,

2

Remark 4.11. Non rigorously, we can compute the derivative of f(z) = S22 f(n)e™ as

n=-—00
oo
= Z f(n)i2rne™me.
n=—o00

In fact, it is true that f (n) =12mn f (n), because rigourously we can prove it with an integration
by parts:

/f Ve T g = \mmxf o — /f —i2mn)e ™4y = i27nf(n) (4.16)

where the term evaluated at the extrema of the integral vanishes due to the fact that f(0) = f(1)

by periodicity. Moreover, from (4.16), it is clear that if we have a function f € C* (for which f/(n)
are finite), then its Fourier coefficients decay like n~*

Iterating the procedure, we can apply the same result and consideration on the decay of the
coefficients to functions in C*, k > 1.

4.7. Pointwise convergence of Fourier Series

We now prove a result on pointwise convergence of Fourier Series. To give pointwise meaning,
we need functions that are more regular than L2, and at least continuous. Therefore, let us define
the following space:
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DEFINITION. Let © C R be a bounded set and « € (0, 1]). We define:
CO,a — {fECo(Q) |f( ) ( )| <—|—OO}
T yGQ |I - y|a
The norm that we define on this space is:

| fllcoe = 81615|f(93)| 4 sup 1f(z) = Fy)l

(4.17)
z,y€) ’1‘ - y’a

Remark 4.12. Note that C%*(Q2) D> C*(Q2) = Lip(Q2). However also non-Lipschitz functions can
be C°, for instance |z|'/2 € C'/2(]0, 1]).

THEOREM 4.11 (Dirichlet). (i) If f is 1—periodic, piecewise C', then Vx we have that
Fyf(z) = (f(z7) + f(z7))/2
(ii) Let o € (0,1]. If f € C%([0,1]), 1—periodic (then, f € C**(R) as well), then Vx we have
that Fx f(z) — f(x).
(1ii) If f € LY(R/Z) and for a € R we have that 3o € (0,1], M == M(a) > 0 and ¢ = §(a) > 0
such that
[fla+t) = fla®)[+[fla=1t) = fla™)] < Mt*, VO<t <0
then )
A Fy f(a) = 5[f(a®) + fa7)],
where f(a™) = lim;_, .+ f( ) and f(a™) = lim;_,,— f().

Remark 4.13. Note that the hypothesis in (4ii) corresponds to the fact that f behaves like a C%*
function at one single point. It is therefore more general than being piecewise C%¢.
Remark 4.14. (7i7) is more technical, but we can easily see that (iii) = (i7). Indeed, in this case

fla) = f(a™) = f(a™) and
‘f(a+t)_f<a)’<||f” o = M
e = Wlewe =

We can also prove that (iii) = (7). If f is (left and right) differentiable (even if it may have a jump
discontinuity in a),

fla+t)= f(a®)+ f'(a™)t+o(t) VE>0
fla+t)=fla™)+ fl(a”)t+o(t) VE<O
= fla+1t)— fla®) < (|f(a")|+1)|t| V|t| sufficiently small,
—_———
M(a),a=1
fla=1t)— f(a) < (|f'(a™)|+1)|t| V|t sufficiently small.
—_———
M(a),a=1
Remark 4.15. (i) The theorem is false if f is only continuous.

(ii) One can weaken the continuity assumption in the sense of Holder and replace it with Dini’s
criterion, namely: if there exists § €]0, 7], a € R such that

— -2
/\fa ESEHETI
Y
then limy o Fyf(a (a). A Holder continuous function obviously satisfies this.

Indeed

|fla—y) = fla)|+[fla+y)— fla)] < M|y



4.7. POINTWISE CONVERGENCE OF FOURIER SERIES 93

and thus

7|

dySM/ |y|°‘_1dy:M7T—<oo.
0 a

/” |fla—y)+ fla+y) —2f(a)l
0 ’Z/‘

Remark 4.16. If f € L'(—7, ) is 2r-periodic, then it’s possible for the Fourier series to diverge
everywhere (cf. an example due to Kolmogorov). However, if f € LP(—m, ), with p > 1, the
Fourier series will converge to the function almost everywhere (if p = 2 it’s the famous result of
Carleson, which has been generalized to the case p > 1 by Hunt).

To prove Theorem 4.11, we first need an auxiliary lemma:

Lemma 4.12 (Riemann-Lebesgue). Let f € L*(R) (the same can be repeated in general dimension
R?). Define

£ — fi27r§~xd )
fle) = [ faje s
Then, lim¢|— 0 f(e)=o.

PROOF. This exercise is proposed in Exercise 2 of Series 8. We prove it in dimension d = 1.

f(f) = /Rf(a: —1/(26)) @12 gy = — /]R flx —1/26)e 2™ dx

1/& periodic

=5 [1@) = =1/,
Now, R
SO <) = FC =1/ @) =0 as [€] = oo, (4.18)
by continuity of translations in the L'-norm (Exercise 3 of Series 6). U

PROOF OF DIRICHLET’'S THEOREM. By Remark 4.14, we will just prove (iii) because (i) and
(i) follow automatically. We are going to express Fiy f as a suitable sort of convolution and then
do typical estimates for convolutions.

Step 1: we define the Dirichlet kernel Dy:

N . ‘ N 1 . 1 N '
FNf(x) _ Z f(n)ez27mx _ Z / f(y)ez%rn(z—y)dy _ / f(y) Z ez27rn(x—y) dy _ f * DN7
n=—N n=—N 0 0 n

=—N

=Dn(z—y)
(4.19)
where
N 2N
Da(y)= 3 @y = Sy
n=—N n/=n+N n'=0

2ny(2N+1) __
—i2r Ny ¢ 1

=¢ €i27ry -1

ei27ry(N+1/2) _ e—i27ry(N+1/2)

- ci2my _ | €

e2'271-y(N+1/2) _ e—i27ry(N+1/2)
= - - - (&
ezfry(emry _ e—zwy)

_ sin(2ry(N +1/2))
sin(7y) '

1Y

Ty
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1 N I 1
/ Dy (z)dz = Z / e dy = / ldz = 1.
0 N 0 0

The Dirichlet kernel has similar properties to the Fejer kernel, but it is not positive.
For the sake of simplicity, let us suppose that f(a®) = f(a™) = f(a). Now, consider

1/2 sin(27
Fuf(o) - J(o) = [ @ry(N + 1/2))

1/2 sin(my)

Note that

(fla+y) — f(a))dy. (4.20)

Now, define:
fla+ty) - fla)
sin(ry)
The assumptions in (i77) enable us to show that o, € L*(—=1/2,1/2). Indeed,

Yaly) =

Mly| B
WAN_EJETyE(&ﬁ

and the right-hand side is integrable. Indeed (we see below the importance of the fact that

a>0):
1/2 12 Aflyle 12 3
) a—
/\%@WS/ fLLWS/ -y dy < 400,
~1/2 —~1/2 [sin(7y)| _1j2 2

because sin(my) > 2y on [0, 1/2].
By Lemma 4.12 applied to ¢,|[—1/2,1/2) extended to 0 outside [—1/2,1/2] and with £ = N +1/2,
we have that

/01 sin(2ry(N +1/2))¢.(y)dy -0 as N — oo. (4.21)

Step 2: without the simplifying assumption, the proof works similarily:

2 sin(2n
Pflo) = 500+ ) = [ SEES I (ot - 5000 + 100 )y

Since for g even:

1/2 1/2 1/2 1/2
/_ 9(y)F(—+y)dy = / 9(y)F(+y)dy+ / o) F(-—y)dy = / 9 () (F(-+1)+ F(—y))dy.

1/2

Now,
1/2 _ _ - _ +
0 sin(7y)
—pu(v)
By Lemma 4. 12 (again with £ = 27(N + 1/2) and with ¢, extended to 0 outside [—1/2,1/2]), we
have that fo (y)sin(2w(N + 1/2)y)dy — 0 as N — oo if ¢, € L'(0,1/2). This holds, because:
fla - fla+y)— fla*t
/m |dy</| fla)l , Wfa+y) — fa),
MI 2ly]
P Myl Mlyl

+

< dy < +o0,
o 2yl 2y|
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because sin(7y) > 2|y| for y € (0,1/2), and

12 V2| f(a+y) +Ifa—w)] o [F@)] + 1 f(a)
/6 |Q0a(y)|dy§/5 Sin(ﬂ'(;) dy+ SiIl(?T(S)

< 400,

because f € L'(R/Z).

4.8. Uniform convergence of Fourier Series

Note that with Fourier’s Theorem we have only obtained convergence of the Fourier series
> f(n)e, to f in the L? metric. One may ask whether one has convergence in the uniform or
pointwise sense as well, but it turns out (perhaps somewhat surprisingly) that the answer is no
to both of those questions. However, if one assumes that the function f is not only continuous,
but is also continuously differentiable, then one can recover pointwise convergence; if one assumes
continuously twice differentiable, then one gets uniform convergence as well. These results are
beyond the scope of this text and will not be proven here. However, we will prove one theorem

about when one can improve the L? convergence to uniform convergence:

THEOREM 4.13 (Uniform convergence of Fourier Series). Let f € C1(R) and 1-periodic, then

> )] < +o0 (4.22)
and
Fxf — [ uniformly on [0, 1]. (4.23)

PROOF. We prove the two statements of the theorem:
() feC =32 _|f(n)] < +oo.
Thanks to Remark 4.11, we have that
f(n) = i2enf(n).
Applying Plancherel’s formula, we then have that

o0

00 > || f 7200 = Y )P =Y @)’ f(n)P

n=—oo n=—oo

Hence,

(S 1d0) = (32 [Bnson]) = 3 & 35 i < oo

n=—oo n=—oo

<400

(ii) °°°___|f(n)] < +0o = F,f — f uniformly on [0, 1].
By the assumption, we have that Fiy f is a Cauchy sequence in L:

M
1Exf = Farflloo = sup D [f()e®™ < 3 [f(n)l.

z€[0,1] n=N+1 |n|>N+1

Hence, the sequence has a limit point: Fyf — F in C°, and therefore also in L?. Since
Fxf — fin L?, we have that F' = f.

O
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Remark 4.17. If the function is regular enough, the Fourier coefficients decay in n. Indeed,
feC?= frin) = (i2en) f'(n) = —(2mn)?f ().
Since | f"(n)| = ’fol f”(a:)e_i%mdx’ < [} |f"(x)|dzx = C, we have that
A C
[f(n)| < @mn)
THEOREM 4.14 (Bernstein’s Theorem). Let f € C%®, with o > 1/2. Then,

S [f(n)] < 40

n=—oo

and
F.f = [ uniformly on [0, 1].

Remark 4.18. We cannot conclude the same for a = 1/2. Indeed, there exists an example (due
to Hardy-Littlehood) of a function f € C%/2 such that >°°° _ |f(n)| = 400, that is

o s
ein logn

flx) = Z e

n

n=1

4.9. Fourier Series only in sines or cosines

We now observe that some special properties of functions (real-values, symmetries...) reflect on
properties of the Fourier coefficients.

Remark 4.19. f:R/Z — R = a,,b, € R. What about f(n) and f(—n) = f(n)?

Remark 4.20. Given f € L*(R), 2r—periodic and odd (that means, f(—z) = — f(x)), writing the

Fourier series of f as
[e.e]

= % + Z a, cos(nx) + Z b, sin(nx),
n=1 n=1

we have that a, =0 Vn € N.
If instead f € L*(R), 2r—periodic is even (that means, f(—z) = f(z)), we have b, =0 Vn € N.

PROOF OF REMARK 4.20. We consider in the proof only the case f odd; the case with f even

can be proved analogously.
{/ f(z) cos(nx)dx +/ f(x) cos nx)dx}

Y E—
:%[ [ st costunan + [ st costunyis]

:(:)7

where « follows from the change of variables y = —x and from the fact that f(y) = —f(x) being f
odd. OJ

We now prove that we can write the Fourier series of a general function only with sines.

Given [ > 0 and f : [0,]] — R, we perform the following steps:
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(i) we extend f oddly on [—,1], by defining

Fo) = f(x) in [0,]
/() {—f(—x) in [—1,0]

(ii) we extend f to a 2l—periodic function;
(iii) we write the Fourier series of f:

Foflz) = —I—Zancos (an> Zb sin <7rn:v>

-~

=0, being f odd

The Fourier coefficients b,, can be expressed only in terms of f:

—l/l f(y)sin @>dy
/f sm )d +}/Olf(y)sin<¥>dy
—7/0 f(y)sin @) dy.

DEFINITION. The Fourier series in sines of f is defined as
o T
Y N : -

EF: f = nE_l by, sin ( l nx) .

Corollary 4.15. Let f € L*(0,1); then,

(i) FXf — f in L*(0,1),
(ii) if f € C%([0,1]) for some a > 0, then

FX f — f pointwise in (0,1).
PROOF. (i) We can apply Fourier Theorem (Theorem 4.9) to f, retriving that
Fxf— f in L*=l1),
which leads to the thesis because in (0,[) we have that Fyf = Fy f and f=F

(ii) The pointwise convergence follows by applying Dirichlet’s theorem to f.
O

Remark 4.21. Note that I f(0) — 0, therefore the second thesis of Corollary 4.15 does not hold
at x = 0.
Proceeding analogously, we can write the Fourier series of a function only with cosines.

DEFINITION. The Fourier series in cosines of f is defined as

Fcf——+2ancos< ),
= %/Olf(y) cos (?ny> dy.

Remark 4.22. As in the case of sines, the Fourier series in cosines corresponds to the Fourier
series F'f, where f is the even extension of f.

where
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Corollary 4.16. Let f € L*(0,1), then
(i) Ff — fin L*(0,1);
(ii) if f € C%([0,1]) for some a > 0, then FGf — f pointwise in [0,1];
(iii) if f € C' or f € C%([0,1]) with a > 1/2, then F§f — f uniformly.

Remark 4.23. Point (iii) of Corollary 4.16 follows from Bernstein’s Theorem, and it cannot be
true for the expansion in sines.

For the sines, you can recover the same result in (iii) only if you assume f(0) = f(I) = 0. This is
due to the fact that the even extension of a C'! function is not necessarily C'!, because we can create
angles: take for example f(z) =z € C'(0,1), whose even expansion is f(z) = |z| ¢ C'(—1,1).
However, we have that the even extension of f is C* if f/(0) = f/(I) = 0.

PROOF OF COROLLARY 4.16. For (i) and (ii), we proceed as for Corollary 4.15. For (ii),
observe that the even extension of a C%® function is C%?, O

Remark 4.24 (Parseval’s Identity for f expressed as a Fourier serie only of sines or cosines). Let
f € L? be a 2l—periodic function. By expanding it in Fourier series, we get

f= % + ian cos <nl—7rx> + b,, sin (nTﬂx> .
Then,

1 21
7/’( )2dz = 20 +Za + b2,
0

Indeed, f(2lz) is 1—periodic, and
f(2lz) = % + Z_: an cos(2mnx) + by, sin(2mnx)

00
* 0 z7r0_,_§ an_ n 227rn;1:_|_ an+2bn —227rnx

2 )
where * follows from the fact that
€i27rna: + e—i?ﬂ'n;t ei27rna: _ e—i27rnz
cos(2mnz) = and sin(2mnz) = _
2 2
By Parseval’s identity, we have that
a? > |a, —ib, |* an +ib, > a2 XRa2 B2
2|3 =2 n__ n Tl 20 9n | On
1 @0 = 5 + ; 5 5 ROV

and since

1 / /
|21 ey = [ Setoae = [ ryar

0
we retrieve

1 [ a2 +0o
7/ f(x’)de’:?o—i-Zai#—bi.
0 n=1

We will now analyze how the decay of the coefficients of the Fourier Series only in sines b, is
affected by the regularity of f. For simplicity, let us suppose | = 7.
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Proposition 4.17. Let f € C?*([0,7]) with f@)(0) = f@) (1) =0 for all j =0,...,k — 1. Then,
b, = o(n™2*) as n — oo.
Let g € C**=Y([0, 71]) with ¢*)(0) = g®*)(7) =0 for all j =0,...,k — 1. Then,

by = o(n %t as n — oo.

/ 1/ (x) cos(nz)dx
——/ 1" (z) sin(nz)dx

cos(k
= — / [ (x)sin(nz)dz.
n

The Riemann-Lebesgue lemma tells us that

PROOF. Using integration by parts we have

m 1
§bn = _ﬁf( x) cos(nz)

1
= Ef (x) sin(nx)

lim 2 (x)sin(nz)dr = 0

n—oo 0
which gives the first result.
The second result is proved in the same way. 0J

The proposition could be stated more concisely as f € C*([0, 71]) then b, = o(n™%) as n — cc.
Notice that the result is no longer true without the assumptions f)(0) = f%)(x) = 0 for

j=0,...,k—1 as can be seen by considering the constant function 1 for which the coefficients are
given by
2 [T 2 1—(=1)"
b, = —/ sin(nx)dx = —(1 — cos(nm)) = 1= (="
T Jo nm nm

which is not o(n™1).

Also, it is important to talk about the regularity of f and not of f as the odd extension of a
function does not inherit a priori its regularity property. More precisely, it is possible to find a C*
function on [0, 7] whose odd extension is not even continuous: consider for example a constant non
zero function. Even if the odd extension turns out to be differentiable, it need not be C’f as can be
seen by considering f(x) = x? which odd extension is f(x) = z|z| which derivative is f'(x) = 2|x|
(not C1).

Similar results can be stated for the case of even extensions but one would need conditions on the
derivatives of odd orders to get the decay result.






CHAPTER 5

Fourier Transform

This chapter is inspired by [SS03, Chapter 5] and [Dac, Chapter 18].

The theory of Fourier series applies to periodic functions on R. In this chapter, we develop an
analogous theory for functions on the entire real line which are non-periodic. The functions we
consider will be suitably “small” at infinity. There are several ways of defining an appropriate notion
of “smallness”, but it will nevertheless be vital to assume some sort of vanishing at infinity. On the
one hand, recall that the Fourier series of a periodic function associates a sequence of numbers,
namely the Fourier coefficients, to that function; on the other hand, given a suitable function f on
R, the analogous object associated to f will in fact be another function f on R which is called the
Fourier transform of f. Since the Fourier transform of a function on R is again a function on R,
one can observe a symmetry between a function and its Fourier transform, whose analogue is not
as apparent in the setting of Fourier series.

This tool will also enable us to transform problems involving PDEs, such as the Heat Equation,
into ODEs, that are easier to deal with. The workflow is the following: once the explicit solution of
the ODE is found in the space of Fourier Transforms, with the Inverse Transform we will be able
to recover the solution of the original hard problem.

DEFINITION. |Fourier Transform| Let f € L'(R). The Fourier Transform of f is defined as

FIG / Fly)e>m Sy

Remark 5.1. Sometimes, the Fourier transform is defined without a 27 in the exponential and
with a multiplicative factor 1/4/27 in front.

Example 5.1. Consider f(z) = Ij_1 (). We can compute
. 1 ‘ —2migy ! 1 e2mié _ p—2mit in(2me
Comi e e e sin(2m
om [ ooy [E] 1y
1 —2mi§| , w€ 24 &
Remark 5.2. |f ]—|fR da:‘ngHﬂ(R)

Lemma 5.1 (Basic properties of the Fourier Transform). Let f,g € L*(R), a,b € R. Then
(i) f is a continuous function, lima_,s | ()] = 0 and || fl|ze < || |12
(i) F(af +bg) = aFf+bFg
(ii3) If f is k times differentiable and f© is in L'(R) for alll = 1,... k, then
F®() = (2mie) f(&);
(iv) If If hy(z) = 2' f(z) € LY(R) for some | € N then, f is I-times differentiable and
dk
(d€)*
() I z) = fla+ a). then h(e) = > )
(vi) If h(z) = f(azx), then h(¢) = Lf(£)

——f(&) = (=2mi)hi(§) Vhk=1,...,1

101
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(vii) The multiplication formula holds:

| feges = [~ st

PROOF. Let us now prove all the properties:
(i) continuity follows from the fact that

FEe+h) - f©) < / Fly)le e — 1je2miEugy,

—2mikh

and since |e — 1| — 0 as h — 0, we can apply the dominated convergence theorem.

Then, notice that lim_ |f(@)] = 0 is granted again by dominated convergence and
[ fllzee =l fllco < [[fll: because |e~™4¥] < 1.
(ii) Linearity follows from the linearity of the integral. Indeed,

]:((lf + bg)(&) = /R(af(x) + bg(m))e—%ri&c dr = a/Rf(x)e—%ri&r dx + b/Rg(x)e_mem dr
= aF(f)(&) +bF(g)(&) .

(iii) Since f is absolutely integrable, liminf, ,1. |[f(z)| = 0. In particular, consider two
subsequences {zp }nen, {Un tnen, Tn — +00,y, — —oo such that f(z,) — 0, f(y,) — 0.
Integrating by parts, we obtain:

/ fl(z)e 2™ dy = (f(x)e’%iéx)\g; + / 2mié f(x)e ™" da .
Yn Yn

By the choice of {x,, }nen, {Un }nen we can make the first term of the right-hand-side vanish,
and we can pass to the limit for n — 400 in the second one and in the left-hand-side
thanks to the dominated convergence theorem, because f, f' € L*(R). Therefore, we obtain

—27rz§m dr — 27T’L§/f 27rz§x dx

and we conclude F(f")(§) = 2mi&F(f)(&

Now, we prove the general result by mductlon. Assume it holds for some n and prove it
for n +1. Let f € C"*Y(R) and f® ¢ L'(R) for all k = 1,...,n + 1. Then, since the
result holds for n,

F(Fr0)(€) = @mig)" F(£)(€) = (2mig)" ' F(f)(€),

where the last equality follows from the case n = 1 which we already proved.
(iv) We will prove that for every £ € R we have

i JE+) = F©)

e—0 £

=0, (5.1)

+ 2mih(€) = 0.

This proves both the differentiability of f and the claimed formula for its derivative. Let
e > 0 be arbitrary. We have

flE+e) - F(6)

£

- ) —2miex
+ 2mih(§) = / f(z)e 2miee {ef + 2miz | dx.
R

Notice that

e—2mea: -1 ‘

< 27|z|
5
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and

lim
e—0

e—27ri5x -1 .
— 2mx| =0
€
pointwise. In order to be able to apply the dominated convergence theorem, notice that
by assumption

—2miex

f(x)e—%ri{:c |:€ 1

3

< An|xf(z)| = 4r|h(z)] € L*(R).

+ 27rz'1}

By the dominated convergence theorem, we get,

e—27rz€:c -1

lim/ f(z)e 2miee {— + 27?2'33] dx =0,
e—0 R g

which proves the result.

Now, in order to prove the formula for higher order derivatives, we use an induction
argument. Assume by induction that the formula holds for some [ and prove it for [ + 1.
We assume that hy,; € L*(R). In order to apply the formula for I, we need to make sure
that iy € L'(R). Indeed,

[ _ l [
/R 2 f(2)| i = /| @+ / i@l ds
sﬁmmmm+/ 2 f(2)] dar < 0o

|z|>1

Thus, using the induction hypothesis and the case [ = 1 that we already proved, we have

F0U(E) = L OO = l-2m) Fh(©)] = (~2mi)! [ F(h)(E)

d¢ ¢
= (=2mi) "V F (hyga) (€)-

(v) Using Proposition 2.23, we obtain
FE) = [ flatae s [ fa)e e do = EmeF(7)(6),
R R
(vi) Using Proposition 2.23, we obtain
. 22 1 . 1
F©) = [ e ae T [ pa)e el de = L7 (1) (Efa).

(vii) First of all, notice that both integrals are finite and well-defined because f,g € L' and
f,g € L. More precisely, we have

[ Fagterao = [ ( [ re dy) 9(x) do
[rwawas= [ 1w ( [ stz dx) dy.

In order to prove the result we will use Fubini’s theorem. However, we first need to show
that the function

and

(z,y) = fy)g(x)e ™
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is integrable on R?. Indeed, by Tonelli’s theorem

/RQ|f(y)g( Je M d(z,y) = /If Ng(@)|d(z,y) = (/If Idy)(/lf )lg(a Idx)

HfHLl(R HQHLI < 00.

Thus, using Fubini’s theorem, we obtain

[ (o)

f y)e Mg () d(w, y)

= /R fw) ( /R g(x)e ™ dl") dy
_ / F(w)ily) dy

Proposition 5.2 (Gaussians are good kernels). Let f(z) = e~ Then, we have f = f.
PROOF. Note that f'(z) = =27z f(x), thus

F()E) = =2nF (xf(2))()

Now, we can apply (iii) of Theorem 5.1, and obtain

2miEF(F)(E) = i FE)
Therefore f = F(f) satisfies the same ODE as f, that is f’ = —27& f and since
— [ 1wy =
R

we can conclude that f = f.
The step in « is due to the fact that

( / e dx) / / e @) dpdy = / / % drdf

27r)/0 e rdr = (2m)[e )P = 1.

Corollary 5.3. If § > 0, let Ks(z) = 5 1/2p—m2?/d
Then

~

K5(&) = ™€,
and Ks enjoys the following properties:
(Z) K5 Z 0,‘
(ir) |7 Ks(z)de = [7 Ky(z)dx =1;
(111) ¥n > 0, flx|>n Ks(z)dr — 0 as 6 — 0.



5.1. FOURIER INVERSION FORMULA 105

PROOF. Note that Ks(z) = 62K, (2/v/d); we can apply (vi) of Theorem 5.1 to conclude that
Ky(¢) = ™.

Let us now prove the three properties:

(i) K5 > 0 follows immediately from the definition of Ks and the non-negativity of the
exponential function;
(ii) with the change of variables y = x/+/3, we have

/ Ks(x)dr = 5_1/2/ ey :/ e_”dey = 1;

(i) Jipop Ks(2) = [y 120/vs e ™ dy — 0 as & — 0 because 1/ — oc.
0J

Remark 5.3. The statement (iii) of Theorem 5.3 implies that, as 6 — 0, Ks concentrates at 0 and
K5 gets flatter. This is an example of Heisenberg’s uncertainty principle: f and f cannot be both
essentially localized.

5.1. Fourier Inversion Formula

THEOREM 5.4 (Fourier Inversion Formula). Let f € L*(R) s.t. |f| € L'(R), then for a.e. z € R
/ f&)e*mvag (5.2)

Remark 5.4. Note that it is natural to suppose | f| € L to define the right-hand-side of (5.2); under
this assumption, the right-hand-side is continuous , therefore f coincides a.e. with a continuous

function.
If f € CR), the inversion formula holds Vz € R.

Now, it is natural to ask when the condition |f| € L' is satisfied.

We define the Schwartz space S(R) C C*°(R) as the set of all functions f € C*°(R) such that
their derivatives are rapidly decreasing, namely

sup |z|*|fP(z)] < 0o VE,l€N.

The Schwartz space S(R) contains all smooth compactly supported functions, and Gaussians (whose
derivatives are of the form P(z)e " with P polynomial).
Moreover, if f € S(R), then f € S(R). We can now prove the following corollary:

Corollary 5.5. The Fourier Transform in the Schwartz space F : S(R) — S(R) is bijective.
PROOF. Let F*f = [T f(y)e*™®¥dy. Then,
F*oF =1d on S(R)
Furthermore, since F*f = F(f(—x)), therefore we also have that
FoF =1Id.

Let us now prove the Fourier Inversion Formula.
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PROOF OF THEOREM 5.4. We will first prove the result in a simpler case, for f € C° N L>:
here, we will prove the Fourier Inversion Formula for all x.
For x = 0, we want to show that

fw%:[ffﬁmg

We apply (vii) of Theorem 5.1 to f and G5 = e~™0: note that G5 = K3, that is a good kernel.
Hence, we have that:

| s@ri@de= [ focs
We first want to show that

/ )G (€)ds — / " f(©)de as 5 0:

note that f € L', G5 — 1 pointwise, and Gs < 1, therefore the claim follows by applying dominated
convergence on | f|.

Let us now focus on the other side of the equality to prove; take ¢ > 0 and consider

'f(O) - [ romi@an < [T 170 - s

[e.9]

< /| O) ~ @K+ < / 1£(0) — f(2)|Ka(z)

|z|>n
< /| _110) = F@I () + 2 Lm0l

If we fix 1 such that |f(0) — f(z)| <& V|z| <, we can conclude that

'f(O) - [ s s

< [ Kafa)do 2] o),
=1
and the proof is concluded, because o(1) goes to 0 in ¢ at any fixed 7.
For general z, instead, recall that for F(y) = f(x + y), then
fla)=F0) = [ Flopde= [ floemed,

by (v) of Theorem 5.1. We can now deal with the general case.

Now, we consider f, f € L'Y(R): for any x, we write the multiplication formula applied to
F(y) = f(x +y) and Ks; we get

/ " P Ks(y)dy / " PG (e)de = / " H©)emE Gi()de.

[e.9] —00

Now we let 6 — 0; then the right-hand-side converges pointwise in x:
| foerasois» [ feemas
Furthermore, we claim that the left-hand-side converges to f(z) for almost every = € R:

filz) = / " fat ) Ks(y)dy — (o).
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The claim can be proved by noting that

f5(@) — f(2)] < \ [0 - 50| av

/_ f5(e) — Fl)ldz < / / F(o+ 1) — F(2) | Ks(y)dyda

= U+ )~ Sl Kst)dy
& [T+ VB = e

where * follows from the Fubini-Tonelli theorem and < from the change of variables y = v/9z.
Now, recall that Vf € LP(R), the translations are continuous in the L” norm:

1f(-+y) = fllzr = 0asy — 0.
Thus, the quantity above is dominated and the integral goes to 0.

Thus,

Proposition 5.6. If f,g € S(R) then fxg € S(R).

PROOF. To prove that f * ¢ is rapidly decreasing, observe first that for any ¢ > 0 we have
sup,eg |2 lg(x —y)| < Ao(1+ |y|)*, because g is rapidly decreasing (to check this assertion, consider
separately the two cases |z| < 2|y| and |z| > 2|y|). From this, we see that

o0

sup (7 + 9)w)| < A0 [ IFI(L+ i)y

so that z(f * g)(z) is a bounded function for every £ > 0. These estimates carry over to the
derivatives of f x g, thereby proving that f x g € S(R) because, as observed for (3.13),

<$) (f xg)(x) = (f*Q%)ZOQ@ for k=1,2,. ..

This identity is proved first for £ = 1 by differentiating under the integral defining f * g. The
interchange of differentiation and integration is justified in this case by the rapid decrease of dg/dz,
that enables to apply Theorem 2.17. The identity then follows for every k by iteration. 0

5.2. Plancherel Identity
THEOREM 5.7 (Plancherel). Let f € L' N L2(R), then f € L2(R) and
112 = 11F1]2- (5.3)

Before proving the theorem, let us first prove a preliminary result

Proposition 5.8. Let f,g € L'(R) and consider their convolution

frg= /_ flz —y)g(y)dy
Then

(i) [ *g is well defined for a.e. and || f * g|lzr < || fllz:llgllz:
(ii) frg=gxf
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P - A/\
(iii) f*g=[g

PROOF. For (i), we just prove the inequality, without showing measurability:

/Z‘/Zf(x— y)dy dx</ / ()| dydz

- / 1Lt l9(w)ldy

< 1Azl e

For (ii), observe that

/_Oo fle=y)g(y)dy = /Oo g(x — 2) f(2)dz

[e.e] —0o0

with the change of variables z = x — y. For (iii), with the change of variables z = x — y, we have:

F(f #g)(€) = / N / " @ — y)gly)dye T dn

- / ) / T FE)gly)e e Ty
— [ peemas / " gly)e ey
= f(©)3(©)

Remark 5.5. For f,g € S(R), we can prove that E = fxg.
PROOF OF THEOREM 5.7. we divide the proof in two steps.

Step 1: we prove that f € LI(R) N L2(R) and f € L*(R) imply (5.3).

Let g(z) = f(—=), so that g(x f Fl=y)e 2mvdy = F(€) (note indeed that the sign does not
change, because we have one negatlve sign from the differential and one negative sign from the
inversion of extrema of the interval).

Let h = f g, then h = f§ = f? = | |2, exploiting Theorem 5.8 and the above observation.

Note that we have
— [ 1w - vy

— [ 1wy

Now, we want to compute h(0) via the Fourier Inverse Formula:

h(0) = / " h©)de = 712

—0o0
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However, note that in principle the Fourier Inverse Formula cannot be applied at x = 0, as we only
have equality almost everywhere. But actually h is continuous, because

h(z + &) — h(z)| = / T FW)gle e~ y) — gle — y))dy

< /_OO F@)llge + < — ) — gz — y)ldy

< fllz2llg(z +e =) = gla =)z
< [Iflle2llgle =) = g(:)llz2 = 0

as € — 0, thanks to the continuity of translations in L?.
Step 2: we prove that f € L'NL?= f e L2 and | f||z2 < ||fl.2-

We define fs5 :== f * Ks and we want to apply the result in Step 1 to fs and then let o — 0.
We know that f5 f Ks: now, we need to verify that fs satisfies the right assumptions. We know
that f5 € L' from Theorem 5.8. Furthermore, f5 = fKj, and since f € L>*(R) and e —m* ¢ [2(R)
(because Gaussians belong to L? for all p > 0), by the Hoélder inequality fs is in L*(R).

Now, we first bound f5 pointwise: we fix x € R, and study

o[ somtva]
/f2 VKs(z —y dy/ Ks(z —y

_ / P ) Kz — y)dy

by Holder inequality with factors f(y)/Ks(x — y) and \/ Ks(x — y) and exponents p = ¢ = 2). We

now integrate with respect to x, thus, applying Fublnl S Theorem

/ Z o< | Z / Z F (@) Kl — y)dyda
-/ Zﬂy)? / ZK5<x—y>dxdy

— [ swray
Now, we have that

~ Ao 2
1Fllze = 1 fsllze = 1fsllze = Il fe™™ |2 = (/

oo

R , 1/2
() peme ds)

Notice that e~2m¢ — 1 pointwise as 0 — 0, and that we can apply monotone convergence to

conclude that
oo D\ 172 X
([ 1ipee) ™ S 1

Therefore, || f]|z2 > || f]|z2, and this concludes the proof.

—00






CHAPTER 6

Fourier Transforms and PDEs

This chapter is inspired by [Dac, Chapter 19], [SS03, Chapter 5].

DEFINITION (Partial Differential Equation). A Partial Differential Equation (PDE) is an
equation whose solution w is such that
F(x,u(z), Vu(z),..., Viu(z)) =0
where 1 € QC R uw:Q = RY, F:QxRY x RN x ... x RIXxdxN _y Rm.

Example 6.1. Examples of well-known PDEs are:
(i) Given u : R — R, d,,u = 0, whose solutions are u = az?> a € R;
(i) The Laplace Equation in R? for u : R? — R:
Opatt + Oyyu = 0
(iii) The Laplace Equation in R? for u : RY — R:

d
Ay = Za“u =0
i=1
(iv) The Poisson Equation, non-homogeneous version of the Laplace Equation with a given
datum f:
Au=f
(v) The Heat Equation
Ou—Au=20
for which the function u has a d + 1-dimensional domain, as z € R? and ¢t € R;
(vi) The Wave Equation
Opt — Au =10
(vii) The PDE
Vu=f
(viii) The Burgers Equation
O — 0, (u?) =0
Remark 6.1. The Laplace, Heat and Wave Equations are linear PDEs, namely, F(z,-,-,...,") is
a linear function. In the equations, when there is no given right-hand side, if u, v are solutions,
then au + fv is a solution Vo, 8 € R. On the other hand, the Burgers Equation is nonlinear.
Typically, PDEs are associated to given conditions describing the behavior at the boundary of
the domain or the initial condition. For example, for the Heat and Wave Equations that describe
an evolution in time, we prescribe the starting condition by setting

u(x,0) = ¢(x) for some given function ¢

On the other hand, for the Laplace Equation we prescribe conditions on the function or its
derivatives at the domain’s edge: we can set Dirichlet boundary conditions

u(x) = up(z) on 0N
111
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or Neumann boundary conditions
dyu(x) = vo(z) on 0N

We will now focus instead on few of the main PDEs recurrent in the applications and on particular
methods to solve them, that are:

e Separation of Variables
e Fourier Transform the equation and solve the ODEs that appear there
e Solution via Fourier Series.
6.1. The heat equation on R
The heat equation has the general form
Ot — Oyt = 0
U(ZL‘,O) = f(:L‘),

where f(x) : R — R is given, while u : [0,00) x R — R is to be found.

(6.1)

We formally derive a solution using the following strategy: first of all, we compute the Fourier
Transform in z

a(€,0) = f(8).
Now notice that, for a fixed &, this is an ODE in time for the function 4.
Therefore, we can compute its solution:

{@mao+4ﬂﬁmaw=o

Oi[lnd) = —4n¢?
Ina(é,t) — Ina(€,0) = —4n?e?t
Taking the exponential, we find
a(E, 1) = a(g, 0)e T (e,

and finally, by inverting the Fourier Transform and applying Corollary 5.3 on the Fourier Transform
of the exponential, we retrieve

21¢2 1 2
_ —1/ —4m=té o —x4 /4t
u(z,t) = fxF (e )_f*(47rt)1/26 /4t

THEOREM 6.1 (Solution to heat equation). Let f € S(R), and define the Heat Kernel as

1 2
— —x? /4t
Ht(:l?) = (47Tt)1/26
Let uw= f* H; fort > 0; then, u satisfies the following:
(i) u € C*(R) for x € R,t > 0 and solves the heat equation Oy — Oppu = 0
(i1) u(x,t) — f(x) uniformly in z ast — 0
(i) u(-,t) = f in the L* norm ast — 0, namely [, |u(x,t) — f(z)|?dz — 0 as t — 0.

Remark 6.2. Observe that H, is a Gaussian for every t fixed and [; Hy(x)dz = 1 Vt > 0.
Moreover, as t — 0, H; — 0 a.e.; in particular, H;dx converges to the Dirac Delta centered at the
origin dg, which is rigorously expressed as

Ve >0 Hy—1last—0. (6.2)

[7575]

Remark 6.3. If f € C? is non zero and f > 0, then supp(u(-,t)) = R and [, f(z)dx = [, u(z,t)dz.
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PROOF OF THEOREM 6.1. Let us prove the points of the theorem:

(i) Take the Fourier transform of u. Notice that this can be done, since f € S(R) C L'(R)
and H; € L'(R), so f* H; € L*(R) (see Proposition 5.8 (i)). Then, by Proposition 5.8
(iii), we have:

= fH = f(&e
Then, the Fourier Inversion Formula, whose application is justified by u,4 € L'(R)
(Theorem 5.4), gives

u(x, t) _ /OO f(5)6747r2§2t+27ri§zd£.

If w is differentiable in x, then differentiating under the integral (see Theorem 2.17) gives
the meaningful formula

Opu(z,t) = / @) (onig) de.

Another way to differentiate under the integral in a rigorous way consists in computing

h,t) — u(z,t > 262 i amich — 1
U(l’—l— ) }1 U(I’, ) — /_OO f<§>6—47r 13 t€2m§x (6 - > d§

Letting h — 0, we have that

627ri§h -1
h
and we can retrieve the same formula by dominated convergence (Theorem 2.14). Indeed,
we can take as dominant || f]| e (27€)e~4m€t € L'(R) V¢t > 0, because f(€) is bounded
in £ and [27mi€| < 27[¢].
The same justification holds for d,,u and J;u:

awxu<x’ t) _ /OO f(§>6_47r2£2t62m$€(27Ti£>2d§,

— 2mi€

dru(z,t) = / (@) _4r2e)de.

Therefore, Oyu = 0,,u  Vt >0,z € R.
(ii) Then, we want to prove that u(t,z) — f(z) — 0 as t — 0.
Let € > 0. We have that

a(e,t) — f(z) = / T W) (F@—y) — f@)dy.

We claim that for ¢ sufficiently small, the modulus of the integrand is smaller than e: to
do so, fix R > 0 such that |f| < e/4 outside [-R, R].

Since f is uniformly continuous in [-R — 1, R + 1], there exists ¢ such that
£
[f(2) = flz =yl <5 Yyl <o
Then,

‘/_OO Ht(y)(f(x—y)—f(fc))dy‘ < Hy(y)|f(x —y) — f(z)|dy + Hy(y)|f(x —y) — f(z)|dy

ly|<d ly|>d

< sup |[f(z) = flz —y) Hy(y)dy + 2sup | f ()| Hy(y)dy.

z€R,|y|<é lyl<é z€R ly|>6



114 6. FOURIER TRANSFORMS AND PDES

Now, we make the following observations:
® SUD,cp |y<s | f(2) — f(z —y)| < /2 because on [-R — 1, R + 1] we have uniform
continuity, while on [-R — 1, R + 1]¢ we have | f| < /4 by the choice of R;
* Jiyi<s Hy(y)dy < 1 because [, Hy(z)dx =1 Vit > 0;
® Jiyss Hi(y)dy — 0 as t — 0 by the properties of good kernels (Corollary 5.3 (iii)).
Therefore, we can conclude that, for ¢ small enough,

[ - - s <5+ s l)] [ < e

z€R ly|>o

(iii) To prove the third point, use Plancherel (Theorem 5.7) to conclude that

/ " Jule,t) — fla)Pda = / T ae.t) — fo)de

o0 —00

B / F©lle™" —1]dé — 0

o0

as t — 0 by dominated convergence with dominant 2| f|2.
0

Remark 6.4. If we try to solve Equation 6.1 backwards (with ¢t < 0), the formal computations are
the same, but the formula we get for u has problems and there is no analogue for Theorem 6.1.
Remark 6.5. u(-,t) € S(R) uniformly in ¢, namely:

l

iu(x,t)

-~ <400 Vk120

sup |al*
zeR,0<t<T

We can prove it for k =1 = 0:

u(t, z)] < /| Gl /| (@ — )| Hu(w)ldy.

yl=lz|/2

For the first term in the integrand, note that f € S(R) implies that VN € N we have

fle—y)l <5 ;;N for some Cy > 0 and V|y| < |z|/2.

On the other hand, for the second term in the integrand, we have that f is bounded on R and
Hy(y) < (4mt)=1/2e~1#°/16t |y | > |z|/2. Therefore,

Cy C 2
w(z,t)| < ———— 4 —e/t,
Ju( )|_1+|$|N 7

Remark 6.6 (What about uniqueness?). Notice that it is sufficient to prove that for f = 0,
the solution is uniquely equal to 0. Indeed, if f were an initial datum associated to two distinct
solutions u and v, then u — v would be a non null solution with null initial datum.

We will only sketch the proof of the following theorem:

THEOREM 6.2. If u: R x [0,00) = R is

(i) a solution of the heat equation and u(zx,0) = 0;
(ii) u € CO(R x [0,00)) N C%*(R x (0,00));
(117) u(-,t) € S(R) uniformly in t;
then, u = 0.
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SKETCH OF THE PROOF. Introduce the energy

E(t) = /00 |ul?(z, t)dz > 0

—00
Note that this quantity is decreasing, because

o0

%(t} = / 200u(z, t)u(z, t)dr = 2/ Opzut(z, t)u(x, t)de = —2/ 10,u(x, t)*dz < 0

o0 o0

where the integration by parts can be justified by considering intervals of the form [-N, N] and
then let N — oo.

Since u(-,0) = 0, E(0) = 0. Therefore, E(t) =0 ¥t >0 and u = 0. O
Remark 6.7. u(x,t) = x/tH;(x) solves Equation 6.1 for ¢ > 0 and
limu(x,t) =0 VreR
t—0

but « is not continuous at 0.

6.2. The heat equation on an interval
Let L,c > 0, f € C%([0, L]) such that f(0) = f(L) = 0. Consider the solution u to the PDE
Ou = 20ppu x € (0,L),t>0

u(x,0) = f(x) (6.3)
u(0,t) =u(L,t) =0

First, notice that we may reduce to the case ¢ = L = 1; indeed, if u solves the heat equation in
this special case, then, v(x,t) = u(Lx, L*t/c?) solves the problem

0w =0v € (0,1),t>0

v(x,0) = f(Lx)
v(0,t) =v(1,t) =0,

because Oyv = L?/c?0yu = L*0ppu = Oppv. Once we found v, u can be retrieved as

(2.1) = x CQt
u(z,t) = v {775t )

Let us start constructing the solution via separation of variables: we can look for solutions of
the form v(z,t) = Z(x)W(t), for which the heat equation rewrites as

{Z(g;)w'(t) = Z"(x)W(t)
Z(OW (t) = Z()W(t) = 0.

Dividing both sides by V()W (t) gives
{W/(t) _ 2 _

W(t) Z(2)
ZOYW(t) = Z()W(t) = 0.

This can be separated in two ODEs which we can easily solve:
W'(t) = AW (t)
Z"(x) = \Z(x)
Z(0)=2(1)=0.
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By Remark 4.1, for A = —(nm)?, the solutions to
Z"(x) = \Z(x)
Z0)=2(1)=0

are given by z,(z) = sin(nmx). Notice that from the theory of ODEs we are restricting to the case
A < 0, because the solutions for A > 0 are exponential and for A = 0 are lines. On the other hand,
the ODE
W'(t) = AW (1)
has solutions W, (t) = e~ Overall, ¥n € N, we have that
Un(,t) = A, sin(na)e= "

is a solution, for a given constant A, € R.

Now, recall that the heat equation is linear: therefore, if u,v are solutions, Vo, 8 € R also
au + P is a solution. Therefore, if we take

t) = Z ay, sin(mna)e” " (6.4)

this is formally a solution to Equation 6.3. Notice also that u(0,t) = u(1,t) = 0; we want to
prescribe that

- Z a, sin(mnz) = f(z).

Let a,, be the coefficients of the Fourier series in sines only of f, namely

1
a, = 2/ f(x)sin(nrz)dz
0
We now state the theorem which validates the construction of solutions:

THEOREM 6.3. Let f € C?, and let v be the one defined in (6.4). Then,
(i) v e C*((0,1) x (0,00)) and v = Oppv;

(i) lim, o v(z,t) = lim,,y v(z,t) = 0;

(iii) f(z) = limy_ov(z,t) (pointwise or uniformly).

PROOF. Under our hypothesis, f € L'. Therefore, sup,,cy |a,| < +00.
(i) Let

a, sin(mnz)e” ™ e C%((0,1) x (0, 00))

NE

uy(z,t) =
n=1

Then, by linearity

an[—(mn)? sin(nrz)e” ™ € ¢((0,1) x (0, 00))

Mz

tvat

n=1

As N — 400, the series converges locally uniformly to 0;v, becuase it is Cauchy:

N
> an[—(7n)’] sin(nmz)e Zan )] sin(nma)e” Z Cn2e (Tt
n=1 n=M+1

and n2e~ (™" < n=2 for n large enough.
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Similarily, we can prove that d,uy € C*((0,1) x (0,00)) and it converges locally

uniformly to

Z an () cos(nmz)e ™t

n=1
We can use the following Proposition 6.4 below, so we get that v € C'. We can now go on
with higher order derivatives, obtaining v € C*°((0,1) x (0,400)) and for m even

oo™ u(t, x) = + Z an(nm)™ sin(nrz)e” " —ng?)!
n=1

and for m odd

o
oo™ u(t, x) = + Z an (nm)™ cos(nrz)e” "t —n?m?).
n=1
Finally, note that v solves 0,v = 0,,v, because we compute both sides and use the fact
that each piece solves the heat equation.

(i) Note that v(-,t) € C*((0,1)) with bounded derivative (possibly depending on t), therefore
v(+,t) is continuous and v(0,t) = 0 = v(1, ).

(iii) Since f € C*([0,1]), we know that >~ |a,| < co and f(z) = >_>7, a, sin(nwz) for every
x € [0,1]. Let ¢ > 0 and take N € N so large that ) _ |a,| < . Using the bound
|1 —e *| < s for s >0, we get

N
|f(z) —v(z,t)] < Z la, sin(nmz)| + Z |a, sin(nrz)(1 — e~ 7| + Z |a, sin(nrz)e” "
n>N n=1 n>N

N
< 2+ tZ(mT)Qlan].
n=1

From this we get lim SUPL0 SUPae(o,1] |f(z) — v(z,t)] < 2¢ for every € > 0 which gives
t> ’

uniform convergence.

O
Proposition 6.4. Let Q C R? open, {u,} C CY(Q;R) such that, locally uniformly,

Uy — U

Vu, — v
Then, u € CY (2, R) and Vu = v.

PROOF.

1
Un(x + he;) — uy(z) = h/ Oe;un (2 + she;)ds
0

1
h/ Vu,(x + she;) - e;ds
0

1
h/ v(z + she;) - e;ds
0

Dividing by h and passing to the limit h — 0,
O, u(z) = v(x) - €
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6.3. The Laplace equation in a box

Given L, M > 0, we can consider the Laplace equation in the box (0, L) x (0, M):

Au=01n (0,L) x (0, M)
u(z,0) = a(z) and u(x, M) = p(x) (6.5)
u(0,y) = (y) and u(L,y) = 0(y).

Ignoring temporarily the boundary conditions and focussing on the equation, we can look for a
solution with the method of separation of variables:

u(r,y) = ¢(x)(y)

which gives

¢" (@)Y (y) = —d(z)¥"(y)
¢"(z) _ _w//(y)
¢(z) U(y)

Following Remark 4.1 and proceeding as in section 4.1, we have that the only possibility is that the
above functions of different variables as equal to a real constant A € R. We then get the two ODEs

¢"(x) = Ap(x) and " (y) = —AY(y).
Now, if A < 0 we get

o(z) = asin(v —Az) + B cos(vV —Az);
if A =0, ¢ is an affine function; if A\ > 0 we get
o(x) = vV + gem VA,
that we can write ¢ as
d(z) = (v + 6) cosh(VAz) + (7 — &) sinh(VAz).
Overall, solutions will be of the form
(a sin(v —Ax) + [ cos(V —Am)) (7 cosh(v —Ay) + 0 sinh(v/ —)\y)) , for A <0,
and
<a sinh(VA\z) + Bcosh(ﬁm)) (7 sin(vV/\y) + 5005(\/Xy)> ,  for A>0.
We can now split this into two simpler problem, suppose we can solve
Av =0
v(x,0) = a(z) and v(z, M) = p(x)
v(0,y) =0 and v(L,y) =0
as well as
Aw =0
w(z,0) =0 and w(z, M) =0
v(0,y) =(y) and v(L,y) = A(y)

Then wu, the solution of the original problem is u = v + w.
Let’s solve the first problem by separation of variables, writing u = ¢(z)1(y), we get

(b//({E) _ _¢//(y) .
o(x) b(y)
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and the initial condition implies ¢(0) = ¢(L) = 0, thus A = —(2%)?, thus ¢ = o, sin(%F

L
Un(x) = & cosh(*Fy) + nn sinh(FFy).
Thus, the general solution is

Z [{n cosh (%y) + 1, sinh (%y)} sin <n%x>

n

x) and

Now we impose our boundary solutions a(z) = v(z,0) = >_ &, sin (“*z) and so we compute the
fourier coefficients of « (in sines), which are given by

&n = %/L a(x)sin <%x> dx
0

=y [ s (F)ae o (Far)]

Proposition 6.5. Let o, 8 € L'(0, L) and (an)nen, (bn)nen be their respective Fourier coefficients
m sine, namely

2 [t nr 2t nr
ay = Z/o sin (Ty) a(y)dy, b, = Z/o sin (Ty) By)dy.
Let w: (0,L) x (0, M) — R be defined by

+00 : '
B sinh(%F (M —y)) sinh("Fy) . (nm
wiz,y) =) (‘% snh(=00) P Sin(eagy ) (733)

Similarly, we find

n=1

then w € C*((0, L) x (0, M)) and satisfies the Laplace equation, i.e. Aw =0 in (0,L) x (0, M).
Also if a,8 € C3*(|0,L]) then lim,sow(z,y) = a(z) and lim, .,y w(z,y) = B(x) uniformly in
z € [0,L].

PROOF. Without loss of generality (up to a rescaling), we consider L = 1. We start with the
following observation for y € (0, M) and n € N
Sinh(nﬂ-(M - y)) enﬂ-(Miy) - einﬂ(Miy) —nmy 1-— 672nﬂ(M7y)
= =e
sinh(nwM) enmM _ g—nmM 1 _ g—2nnM

) < Cvefnwy7

where C = 1_@,%.

Similarly, for y € (0, M) and n € N we have
sinh(nmy)
sinh(nm M)
cosh(nm(M — y)) < Ce—mm
sinh(nw M) - ’
cosh(nmy)
sinh(nwM)

< Ce—nﬁ(M—y)7

< Qe mr(M=y)

Since o, 8 € L'(0, 1), we have the following trivial bound for their Fourier coefficients

sup [ay, |, sup [b,| < 2([[el|zr0,1) + [[Bllr0,1)) =2 D-
neN neN

Using these estimates, we are able to prove that w € C°°((0,1) x (0, M)). We prove that w is C"!
and the higher regularity is proved similarly.
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To this end, let (S,)nen be the partial sums of the series defining w, i.e.

N sinh(k7(M — y)) sinh (kmy) ' .
Sl y) = ; (a’“ b (k) M bksinh(kwM)) sin (krz)

Notice that S, is C! for every n with partial derivatives given by

sinh(km(M —y)) sinh(k7y)
Z hm ( soh(kr M Ok sinh(lmrM)) cos (k)

B cosh(km(M —y)) cosh(kmy)
- Z hm (_ sinh (kM) b sinh(lmM)) sin (kmz)

For any compact K C (0,L) x (0, M) we have

- sinh(km(M — y)) sinh(k7y)
g (k 2Dk
2 erc | ( smh(hm 3l simh(kmary ) €T Z mhe” %0,
where d = inf(, ,yex max{y, M — y}.

We get a similar inequality for 85" and for the sequence S,, as well. We can thus use the Weierstrass
M-test to conclude that S, Converges locally uniformly to w (which is in particular well defined)
and the partial derivatives also converge locally uniformly to their respective series (see the partial
sums above) and so w € C'((0,1) x (0, M)), with partial derivatives given by

sinh(nm(M —y)) sinh(nmy)
Z " ( sinh(nm M) + bn sinh(mrM)) cos (nme),

B cosh(nm(M — y)) cosh(nmy) \ .
v) = ; " <—an sinh(nw M) T bnsinh(mrM)) sin (n)

Formulas for higher derivatives can be derived without much difficulty, in particular, we have the
following

0w > 5 5 sinh(nm(M — y)) sinh(nmy) \ .
@(“’) B Z o <an sinh(nwM) * bnsinh(mrM)) sin (nrz)

n=1
o0 2 9 sinh(nm(M —y)) sinh(nmy) '
=2 n p, SminTY) |
Y) n:1n m <a sinh(nwM) + Sinh(n M) sin (nmx)

From this we are able to see that w is harmonic in (0, L) x (0, M).

Now assume further that «, 8 € C3([0, L]) with «(0) = «(L) = B(0) = B(L) = 0, we first prove

that limy—o w(z,y) = a(r) uniformly in z € [0, L]. Since o € C3([0, L]) with a(0) = a(L) = 0, the
y>0

Fourier series in sine of a converges uniformly to a and its Fourier coefficients satisfy |a,| < 2 for
some A > 0.
Let € > 0 and take N € N so large that > _  |an| < €, then for (z,y) € (0,L) x (0, M), we have

This bound implies that

sin (nwz) = o)

. ~=  sinh(nm(M —y))
1
y0 z; i sinh(nm M)
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uniformly in z € [0, 1].
To conclude it suffices to prove that

, sinh(nmy) . B
Z1/1_1;[(1) bnm sin (mmc) =0
y>0 n=1

uniformly in = € [0, L].
To see this, let ¢ > 0 and take N € N so large that > _,|b,| < € (this is possible since
B € C3([0, L])), then we have

b

n=1

sinh(nmy)

n m S11 TLTUE

sinh(nmy)
smh nwM )

The other condition, namely limy—, w(z,y) = f(x) uniformly in = € [0, 1] is proved in the same
y<M
way. 0

6.4. The Laplace equation in a disc

We complete in this section, with Fourier analysis at hand, the analysis of the Laplace equation
in a disc (4.5), whose formal solution was found in Section 4.1 and more precisely in (4.12)

Proposition 6.6. Let f € L'(0,27) and consider the Laplace equation on the unit disc (written in
polar coordinates) with Dirichlet boundary conditions, i.e.

20,0 + 100 + Oggv = 0, (r,0) € (0,1) x (0,27)
v(1,0) = f(0), 0 € 10,2m]

Let (an)nen, (bn)nen be the real Fourier coefficients of f, namely

= %/0% f(z)cos(nz)dz, b, = %/0% f(z) sin(nz)dz

Recall the formal solution in polar coordinates given by

v(r,0) = % + nZ:; r"(ay, cos(nf) + by, sin(nf))
then v € C*((0,1) x (0,27)).
Also if f € C*([0,2n]) (with f(0) = f(27)) then limrﬁll v(r,0) = f(0) uniformly in 0 € [0, 27].
r<

PROOF. Since (a,)neny and (b, )nen are bounded sequences, the Weierstrass M-test gives local
uniform convergence in (0, 1) x (0,27) and so v is well defined and continuous on (0,1) x (0, 27).
For any k € N, the series > .°7 n*r" converges locally uniformly for r € (0,1). Since for any
k,j7 € N we have

o)

>

n=

ak-i—j
orkoei 803

" (an cos(nb) + by, sin(nh)) ‘ Ch.; Z nktipn

for some constant Cj ; depending only in k and j. From this we deduce that the series of the
derivatives converge locally uniformly on (0, 1) x (0,27) and by Proposition 6.4 we prove inductively
that v € C*°((0,1) x (0,27)) and the derivatives of v are computed by differentiating every term in
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the sum.
In particular, we get the following

o

r0r0(r,0) = > nln — 1)r" (a, cos(nf) + by sin(n)),

n=1
)

rov(r, 0) Z (a,, cos(nf) + b, sin(nf)),

n=1

Ogov(r, 6) Z —n*r"(a,, cos(nf) + b, sin(nd)),

n=1

which proves that v satisfies the Laplace equation on the unit disc.

Now assume that f € C?([0,2n]) with f(0) = f(2n), then f is equal to its real Fourier series by
Dirichlet’s theorem and its Fourier coefficients satisfy |a,|, |b,] < % for some A > 0 thanks to
Remark 4.17.

Let £ > 0 and take N € N so large that Y _\ |an| + |b,| < €. Then for r € (0,1) and 0 € [0, 27],

n>N
we have
N
lv(r,0) <> (1= 1")|ay cos(nf) + by sin(nd)| + 2¢
n=1
N
<2+ > (1= r")(Jan] + [ba])
n=1
which concludes the proof. O

6.5. The wave equation

We will now derive the wave equation, that can describe for example the behavior of a vibrating
rope, whose position in the vertical direction is denoted by y = u(z,t).

The rope can be modelled as N masses with z—coordinate x,, = nL /N and y-coordinate y,
to be determined. Denote by h := L/N the distance between consecutive particles, and the mass
above z,, as m,, := phL/N, where p is the density of the rope.

Now, make the following assumptions:

e the mass above x,, moves only vertically;

e the mass moves according to Newton’s law and the forces that act on it are generated by
the neighbors and proportional to (y, — yn—1)/h;

e cach mass moves by Newton’s law;

e forces are generated by neighbors ~ (y, — y,_1)/h.

We now will write the equation solved by v, and by letting N — 400 (or equivalently h — 0), find
a PDE solved by wu.

By applying Newton’s law, we get that:

" 1
Phyn = 3L gnss — U, = (n — 9o )]

>0 if yn41>yn >0 if yn >yn_1

Dividing by h, we get:

1" 1
P = 5 [0(ns1, t) = 2w, ) + u(wna, 1)
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or, recalling that x,+; =z, £ h,

POuu(Ty,, t) = %[u(xn + h,t) — 2u(x,, t) + u(z, — h,t)]

Now, fix x and let n — +o0:
POru(Tn, t) — pOyu(w,t)
and
%[u(mn ) = 2u(am, t) + ulen — hyt)] = Oati(e, 1)

We then retrieve the wave equation
1
Opu(x,t) = —0ppu(z,t)
p
Why is this called wave equation?
Let f € C2(R). Then, f(x =+ ct) solves
Ot = 0
Indeed, applying the chain rule for derivatives,
Opu = f"(x — ct)(—c?)
Opzu = f"(x — ct).

Remark 6.8. One can easily prove that this holds in R? as well, for ¢ € R?.
Remark 6.9. Let us consider the following rescaling: let a,b > 0, and let U be such that

Ulazx,bxr) = u(x,t)
Then, U solves
2
ca
8ttU = ﬁ@sz
In particular, choosing a = 7/L and b = /e /L, we can reduce to ¢ = 1 and L = 7, because
U(x,t) =u(z/a,t/b) = 0mlU = Opeu(z/a,t/b)a2, 0uU = Oyu(x/a,t/b)b~>
Hence, b20,U = Oyu = cOppu = ca’0,,U.
6.5.1. The wave equation in a bounded interval. Let L,c > 0, f,g: [0, L] — R such that

f(0) = f(L) =0, g(0) = g(L) = 0. Consider:

Owu = 20ppu x € (0,L),t € (0,+00)
uw(0,t) =u(L,t) =0 Vt € (0,+00)
u(z,0) = f(z) Vre(0,L)

Owu(z,0) =g(x) Vre (0,L)

(6.6)

Now, we find all u : [0, L] x [0, +00) — R such that u(x,t) = v(z)w(t) by separation of variables,
ignoring temporarily the initial condition, and we will write the formal solution to Equation 6.6.
By separation of variables,
v (x)w” (t) = 0" (x)w(t)

therefore
,U//(l,) B w//(t)

o(z)  w(t) = A




124 6. FOURIER TRANSFORMS AND PDES

The wave equation is then equivalent to the ODEs

= w't)
v(0) =v(L) =0, Aw(t)

By Remark 4.1, the general solution to the ODE for v(x) is
v(z) = asin(VAz) + B cos(V\z)

from the boundary condition, to respect the periodicity, we retrieve
nm 2
= (T)
L
. /nm
Up(x) =sin | —ux
(#) = sin (a)
Since w solves the same equation (but with —Ac?), we can define
nwe nmwc
wy,(t) = o, cos (—t) + (3, sin (—t) .

A formal solution is given by the (infinite) linear combination of the solutions:

u(z,t) = i [an cos <%t> + B, sin <?t>} sin <%x)

hence

Note that there is no guarantee that all solutions are of this form, but we can try to impose the
boundary condition and see if we are able to find one:

f(z) = u(z,0) = i Q, Sin (%x)

This is the Fourier expansion only in sines obtained by reflecting f(x) oddly. The unique choice for

«,, 1s therefore:
2 L
o, = Z/o f(z)sin (%w) dr =: a,

Similarily, by differentiating term by term, we obtain

+oo
nwe . (N’

g(x) = Owu(z,0) = ; Tﬁn sin <TI>

hence .

2

Bn = el i g(x)sin (%x)
Proposition 6.7. Assume that f € C*([0, L]) and g € C3([0, L]) are L—periodic (note that for g
we need one derivative less, because it represents the time deriwative of u), and such that f(0) =
f7(0) = f(L) = f"(L) = 0 and g(0) = g"(0) = g(L) = ¢"(L) = 0. Then, u € C*((0, L) x [0, +00))

and

L
dr = —b,,.

nmc

f(z) = %1_{% u(z,t), g(z) = %g% Owu(z,t)  uniformly in

PROOF. By Proposition 4.17 the regularity of f and g implies that

C C
la,| < i and  |b,| < 3
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Formally, we would have that

Oyu(z,t) = i (%)2 [an cos (%t) + %bn sin (?tﬂ cos <%x> (6.7)
n=1

Note that the series converges absolutely:
= /nm\2 [ C L C
ol <37 (") (S4 L O <
Ol < ; L (n4 i n7rcn3> oo

To proceed rigorously, we can define
N

un(z,t) = Z [an cos (nTmt> + b, sin (%t)] sin (%x) ;

n=1

Opun(z,t) = i (%)2 [an coS <%t> + %bn sin <%t>} coS (%m) )

n=

so that

Then, we show that both sequences are Cauchy in C%; let M < N, and consider

ZN: (%)2 {an coS (nTmt> + niwcb" sin (nTmtﬂ cos (%x)

n=M+1

< > (D) (Gt )

n=M+1

10pun (2, 1) — Opups(z,t)| <

which goes to 0 as M — oo, because the series converges. Hence 0,uy — v and similarily uy — u
uniformly. We apply Proposition 6.4 to claim that v = d,u and justify (6.7). Now, observe that
the formal partial derivative in ¢ of u is given by

Ouu(z,t) = i": [bn coS <?t> — %an sin (nTmt>] sin (%x) )

This series converges uniformly, hence |Ou(-,t)| < C for all z € (0, L). Therefore, u(-,t) is Lipschitz
and we get u(0,t) = lim, o u(z,t) =0, u(L,t) = lim,,, u(z,t) = 0.
Now, we want to prove that f(z) = lim;_,o u(x,t) uniformly. Recall that by Proposition 4.17,

f(z) = gan sin (%x) ,  with |a,| < %.
Then
lu(z,t) — f(x)] < g an, (COS (%t) — 1) + %bn sin (%t) sin <%x>‘ (6.8)
<1
< g {% cos (%t) — 1) + nl‘lfc sin <%t>} (6.9)

. Cn?t? CLnt
cyce ot 60

= /Ct CL
< tz <ﬁ + %> ; (6.11)
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which goes to 0 as ¢ — 0 because the series in (6.11) converges.
To prove g(x) = limy_,odyu(x,t), we apply again Proposition 4.17 to g; its Fourier Series
converges uniformly to g on [0, L]. Then, we take ¢ > 0 and N € N so large that

Z|b|+ \an\<5

n>N

which is possible since na,, b, = O(n=3) as n — oo.
From this, for any (z,t) € [0, L] x (0, 00)

3 (bon (1) (7)) - ot =[S (con (7) - 1) (')

We also have

> nme . (mrct> ( >
T —a,, Sin 7 sin

e nmc
ensin () [+ 2 Tl

n>N

N
<>
n=1

From these two inequalities, we deduce that for (z,t) € [0, L] x (0,00), we have

b (cos (770) 1) +ZT

n=

n=

|Oyu(x, t)

. (mrct)’ 43
ansin | —
7 €

which in turn implies

limsup sup |Qyu(x,t) — g(z)| < 3e.
t—0t z€[0,L]

Since € > 0 was arbitrary, we get the result.
OJ

Remark 6.10. A similar result to the one on d,u could be obtained even for the second derivative
with this method, but not for the third derivative. Another question that we can investigate is
whether u € C*°((0,1) x (0, L)). To fix ideas, take L = 5. In general, this is not true: for example,
take f € C*\ C®, g = Oy|i=of(x — ct) = —cf’(z), c =1, and L =5. Then, we choose f such that
supp(f) C (2,3), because, as we will argue in Section 6.6, we want to avoid issues at the boundaries
of the domain. Note that u(z,t) = f(x —t) is a solution to (6.6) for t < 2 and it has the same
regularity of f, hence it is not C*°.

6.6. D’Alembert’s approach to the wave equation
Lemma 6.8. Let F,G : R — R be two C? functions then u : R? — R defined by

u(z,t) =Fz+1t)+ Gz —1)
s a solution to the wave equation, i.e. Oyt = Opul.
PROOF. Oyu(x,t) = F"(x +t) + G"(x — t) and Oppu(z,t) = F'(x +t) + G"(x — t). O

We are now interested in finding F' and G compatible with some boundary conditions, more
precisely we have the following proposition.
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Proposition 6.9 (D’Alembert’s formula). Let f € C?*([0,7]) and g € CY([0,7]) satisfying
f(0) = f(m) =0, f"(0) = f"(7r) = 0 and g(0) = g(m) = 0, then the solution to following

boundary value problem

Oyu(x,t) = Opeu(x,t), (z,t) € (0,m) x (0,00)
u(z,0) = f(z), x €|

uw(0,t) =u(m,t) =0, =0

Owu(z,0) = g(z), x €

s given by

mezéwm+w—fw—w»+/xg@Ms

PROOF. By extending f and g oddly on [—7, 7| and then 27-periodically on R we may assume
that f € C*(R) and g € C'(R) are odd 2w-periodic functions.
In view of the Lemma 6.8, we are looking for the solution of the form wu(t,z) = F(zx +t) + G(x — t)
where F' and G are C? functions. Our goal is thus to find F and G in terms of the boundary
conditions.
F and G need to satisfy the following system

F(z)+ G(z) = f(z), z€]0,7]
F'(z) —G'(z) = g(x), z€l0,n]

From this we deduce F'(z) + G'(z) = f’(x) which gives
2F'(x) = f'(z) + g(x),
from which we get
1 x
F(x) = 3 (f(x) +/0 g(s)ds) +c.
Since G(x) = f(z) — F(x), we get

Notice that these formulae give F'(z) — G'(z) = g(z).
So the solution to the PDE is

me=§U@+w+f@—w»+§/zg@m&

From this formula, we see that u € C?*((0,7) x (0,00))
equation on the interval [0, 7], u(x,0) = f(z) and dyu(z,0
We also have

([0, 7] x [0,00)) satisfies the wave
= g(z) for all x € [0, 7].

t

u(0,8) = 35O + -1+ 5 [ gls)ds =0

—t
since f, g are odd.
To prove that u(t,m) = 0, notice that f(r +1¢)+ f(mr —t) = f(r +t) + f(—7 —t) = 0 since f is
2m-periodic and odd. Similarly g(m —t) = g(—7 —t) = —g(m + t), which gives

[ atsis= [ ata+syas =0

—t —t
where the last equality follows from the fact that s — g(m + s) is an odd function. O






APPENDIX A

Complements on measure theory

We follow the presentation of [Fol99; Sch15|. For a more in-depth introduction to the topic, we refer
to [Fol99, Chapter 1].

A.1l. Introduction

The construction of the Lebesgue measure m on R% can be seen as a particular instance of
Carathéodory’s construction of measures which in fact applies to a much more general setting of a
measurable space (€2,.4). It allows to characterise measures p on (£2,.4) uniquely in terms of their
values on a suitable family of sets G generating the o-algebra (meaning that (G) = A) and, on the
other hand, to construct measures only from their values on the particular family G (such a map
will be called a pre-measure). As G is potentially much smaller than the full o-algebra A, this is a
useful tool to construct non-trivial measures, which, in general, is a quite difficult task.

In Appendix A.2 we present the constructive part (usually referred to as “Carathéodory’s
construction”), that is we show under which conditions on the pre-measure and the family G there
exists an extension to a full measure p on (§2,.A). In the subsequent Appendix A.3, we discuss the
uniqueness of such extension on the basis of Dynkin’s theorem. As an application of this technique,
we show in Appendix A.4 how Carathéodory’s construction can be used to build, from a given
cumulative distribution function F : R? — [0, 1] (see Definition A.4 below), a unique probability
measure on (R, B(R?)) which obeys

=1

d
P (H(—oo,x,]) = F(x1,...,2q) for all z = (z4,...,2q4) € RY.

Notation. In these notes, we use the following notational conventions. We will denote

e (0, A) a measurable space, meaning that ) is any set and A is a o-algebra on 2.

e the Lebesgue measure on RY by m,

e the Borel-o-algebra on R? by B(R?),

e the o-algebra of all Lebesgue measurable sets by M(R?)

o for a collection of sets G C P(2), we denote by ¢(G) the smallest o-algebra containing G,

that is
o(G) = N A
A oc-algebra:GC A
Since any intersection of o-algebras is a o-algebra and since for any G, P({2) is a o-algebra
containing G, it is straightforward to show that o(G) is well-defined (we also refer to
[Aru21|). We also say that G generates o(G) .

A.2. Existence

DEFINITION (algebra). Let €2 a set. We call a collection of sets G C P(£2) an algebra on € if
the following conditions hold:

i) Qeg.
(i) Ae G = A°€g.

129
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(ili) A, Beg = AUB€g.

Remark A.1 (Properties of an algebra). It follows that from the definition that an algebra is
stable under finite unions and also under finite intersections as AN B = (A°U B¢)°. Hence the only
difference between an algebra and a o-algebra is that a o-algebra is also stable under countable
unions.

DEFINITION (measure). Let (€2,.4) be a measurable space. A map u: A — [0, +00] is a measure
on (2, A), if it satisfies the following conditions:
(i) p(@) =0.
(i) w(Upew An) = 225 1(A,) for all countable families of pairwise disjoint sets {A, },en in
A.

The following theorem shows how to construct a full measure x4 on a measurable space (€2,.4)
starting only from a pre-measure py defined on an algebra G which generates A. We will see that
such pre-measures are easier to construct as an algebra G which generates a o-algebra A can be
much smaller than A itself and hence, when compared to a measure, the axioms of a pre-measure
have to verified only on a smaller family of sets.

THEOREM A.1 (Carathéodory’s extension Theorem). Let (2,.A) a measurable space, let G an
algebra on Q0 generating A (i.e. 0(G) =A) and let po : G — [0, 00| be a map satisfying
(i) po(@) =0,
(i) o (Upen An) = >oney io(An) for all countable families of pairwise disjoint sets { Ay }nen
in G such that also |, cy An € A.
Such a map is called a pre-measure. Then g extends to a measure on (S2,.A) in the sense that
there exists a measure p on (2, A) with u(G) = uo(G) for all G € G.

Remark A.2 (Properties of a pre-measure). Any pre-measure jip on an algebra G is monotone and
subadditive on G. These properties are deduced as in the case of a full measure from the axioms
(i) (ii). Indeed,
o If A/B € G with AC B, then B= AU (BN A and from (ii) (applied to the family
(A, (BNA%,@,0,...)) and (i), we deduce that uo(B) = po(A) + po(B N A°) > pp(A).
o If {A,},en is a countable family of not necessarily pairwise disjoint sets in G such that
Unen An € G (which might not be the case for an algebra, see Remark A.1), then
to (Unen An) < 30021 10(Aj). Indeed, U, oy An = Upen B with B, == 4, \ UrZt A =
A, N ﬂz;ll A§ and B,, € G are pairwise disjoint. It follows from (ii) that

Ho (U An) = Zuo(Bn) < ZNO(An)a

neN
where the last inequality is due to the subadditivity shown in the first bullet point.
Remark A.3 (Analogy with Lebesgue’s construction). In the context of the construction of the
Lebesgue measure we encountered similar objects:
e G is the algebra generated by all the (open) boxes B = H?Zl(ai, b;) .
e 1 is defined on the open boxes by pio(B) = vol(B) = [[_,(b; —a;) and then on an arbitrary
set of G by noticing that any such set can be written as a finite combination of unions

and intersections of open boxes and that you can therefore apply the inclusion-exclusion
principle (which comes from disjoint additiviy).

PROOF OF THEOREM A.1. We proceed in three steps.
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Step 1: We use g to construct an outer measure p*, that is a map p* : P(Q) — [0,00] sat-
1sfying the following conditions:
(i) p(2) =0.
(i1) monotonicity: A C B = p*(A) < u*(B), for all A,B € P(Q).
(iii) countable subadditivity: j*(U,cn An) < D nen 15 (An) , for all countable families { Ay} pen
in P(Q).
We recall that the Lebesgue outer measure on P(R?) was defined by

m*(A) = inf {ZVOI(Bn) : { By }nen countable covering of A with open boxes} .
n=1
In our more general setting, we similarly set for A € P ()

(*(A) = inf {Zuo(An) : A, €Gforalln e Nand A C [ An} .
n=1 neN
Observe that p* is well-defined as 2 € G and that p* is non-negative. The properties (i) — (iii) are
verified exactly as in the Lebesgue case using the monotonicity and subadditivity properties of g
of Remark A.2 (cf. the results on outer measure and [Taol6, Lemma 7.2.5|).

Step 2: We show that p* is an extension of ug in the sense that p*(A) = po(A) for every A € G.
Let A € G. The inequality p*(A) < uo(A) is a consequence of the countable subadditivity (iii) of p*,
established in Step 1, applied to the family {A, @, @, ...} . We now show the reverse inequality. Let
{A; }nen be a countable covering of A made of sets A, € G. It then holds that A = |J,y(An N A).
Since A, N A € G by Remark A.1, we deduce by monotonicity and subadditivity of uy on G (see
Remark A.2) that

po(A) <Y po(An NA) < po(A) -

n=1

Since {A,,} was an arbitrary covering of A by sets contained in G, we deduce that po(A) < pu*(A).

Step 3: We show that p* is o-additive when restricted to the o-algebra of all measurable sets
M+ (as defined below) and also that A C M,-. It thus follows from Step 1 that jn = p*|4 is a
measure on A which is an extension of ug thanks to Step 2.

We call a set A € P(2) p*-measurable if

W (B)=pu (BNA)+u(BNAY)  VBeP(), (A1)
and we define M« .= {4 € P(Q) : Ais p*-measurable} . We now show that
(a) M, is a o-algebra on 2,
(b) G € M,~ and hence it follows also that A = o(G) C M-,
(c) p* is o-additive on M, that is for every countable family of pairwise disjoint sets
A, € M it holds p* (U,ey An) = Doy 15 (Ay) -

We observe that in the construction of the Lebesgue measure, the same condition (A.1) led to
the notion of Lebesgue measurable sets and it was proved that the collection of Lebesgue measurable
sets forms a o-algebra (cf lectures and lemmas 7.4.4 and 7.4.9 of|Tao16]) and that the Lebesgue
outer measure is o-additive on this o-algebra (cf. lectures and of [Taol6, Lemma 7.4.8]). Inspecting
the proofs, they did not make use of the specific structure of the Lebesgue measure and extend
without changes to this general setting showing properties (a) and (c) above.

As for property (b), it is enough to show that for every A € G, it holds p*(B) > u*(B N A) +
(BN A°) for every B € P(2). Indeed, the reverse inequality follows from the subaddivity of p*




132 A. COMPLEMENTS ON MEASURE THEORY

on P(2) (see Step 1). Fix € > 0. By the definition of the outer measure, we can find a countable
family of sets B, € G such that p*(B) > >, po(B,) — e. By finite additivity of 1o on G applied
to every B, = (B, NA)U (B, N A°) (see Remark A.2), we deduce

pH(B) > po(BuNA) + > po(Ba NAY) —e > p*(BNA) +p'(BNA°) —e,
n=1 n=1

where we used in the last inequality that {B, N A},en is a covering of BN A by sets in G and
{B, N A%},en is a covering of B N A by sets in G. We conclude by the arbitrariness of ¢.
O

A.3. Uniqueness

Given an algebra G and a pre-measure fy, Theorem A.1 allows to construct a measure pu on
the full measure space (£2,.4) such that u|g = po . However, such extensions of a pre-measure may
be non-unique. For instance, let G be the algebra generated by the intervals of the form [a,b). For
an interval [a,b), we define

+oo if [a,b) # @

0 otherwise

po(la, b)) = {

and, enforcing the condition (ii), it is straightforward to extend po to a pre-measure on G. Two
different extensions of py on (R, B(R)) are then given by

o 1(A) = +oo if A€ B(R)and A# o,
H1 10 otherwise .

e the counting measure, i.e. us(A) = card(A).

The goal of this chapter is therefore to establish conditions on G and p which guarantee that there
is at most one measure p on (£2,.4) with u|lg = po . The notion of Dynkin systems will prove useful.

DEFINITION (Dynkin system). A family of sets D C P(1Q2) is called a Dynkin system if the
following conditions hold:
(i) Qe D.
(i) DeD = D°eD.

(iii) If { Dy }nen is a countable family of pairwise disjoint sets in D, then |J,  Dn € D.

neN
Remark A.4 (Properties of Dynkin systems).

e Arbitrary intersections of Dynkin systems are Dynkin systems (show it yourself! ). Hence it
makes sense to introduce the smallest Dynkin system containing a family of set F C P(Q)
by setting

§(F) = N D.
D Dynkin system :FCD
We sometimes also say that §(F) is generated by F .

e A Dynkin system D is a o-algebra if and only if it is stable under intersections (i.e.
VA, B € D it holds AN B € D). Indeed, it is clear that every o-algebra is in particular a
Dynkin system and conversely, if a Dynkin system is stable under intersections then

Un.-U

neN neN

n—1
Dn\UDj] =J [D.nDfn---n D]
j=1

neN

also belongs to D, making it a o-algebra.
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The interest in Dynkin systems is motivated by the following fundamental result which ensures
that the smallest Dynkin system equals the o-algebra generated by a family of sets H, provided
that the family is stable under intersections. This is remarkable as there are a priori many more
Dynkin systems containing H than o-algebras.

THEOREM A.2 (Dynkin). Let Q a set, H C P(Q) a family of sets which is stable under
intersections (i.e. A, BeH = ANBe™H) Theno(H)=4H).

PROOF OF THEOREM A.2. Since every o-algebra is a Dynkin system, we already know that
o(H) 2 6(H) by minimality of §(#) . Similarly, to prove the reverse inclusion, it is enough to show
that 6(H) is a o-algebra by the minimality of o(#).

By Remark A.4, we only have to show that §(#) is stable under intersections. Fix A € 6(H) and
let us define Dy = {E € P(2) : ENA € §(H)}. We claim that Dy is a Dynkin system. Indeed,

(i) Q€ Dy, since QNA=A€d(H).

(ii) if £ € Dy, then by definition EN A € 6(H). Moreover, also A° € §(H) as §(H) is stable
under complements and hence, exploiting the stability of §(#) under disjoint unions, we
deduce that (E°NA)*=FEUA°= A°U(ENA) € d(H). But this implies E°N A € 6(H)
(as 0(H) is stable under complements) and thus by definition E¢ € §(H).

(iii) if {En}nen € Dy is a sequence of pairwise disjoint sets, then £, N A are pairwise disjoint
sets in 0(H) and since §(H) is stable under countable disjoint unions, we conclude that
(Upen Bn) N A =U,en(En N A) € 6(H) and hence by definition | J, .y En € Da.

We furthermore claim that H C Dy. Indeed, if B € H, then H C Dg as H is stable under
intersections. By minimality of §(#), we then deduce that in fact 6(4) C Dp and hence in
particular AN B € §(H). Since B was an arbitrary set in 7, this shows the claimed inclusion.

Using once more the minimality of §(#), we infer that §(#) C D4, which means, by definition,
that AN B € 0(H) for all B € 6(H). Since A was an arbitrary set in §(#), this shows that §(H) is
stable under intersections, thus a o-algebra. 0

The relevance of Dynkin’s theorem lays in the fact that it is the right tool to study the
uniqueness of the extension of pre-measures. We give here one possible uniqueness criterion (see
also Remark A.5).

Corollary A.3 (Uniqueness of Carathédory’s extension). Let (€2,.4) be a measurable space. Let G
be an algebra generating A and o be a pre-measure on G as in Theorem A.1. Under the additional
hypothesis that 119() < 400, the extension measure p on (Q,.A), constructed in Theorem A.1, is
unique on A.

PROOF OF COROLLARY A.3. Let pu, s be two measures on (92, A) extending po, that is
p1(G) = ua(G) = po(G) for all G € G. Observe that since Q2 € G the additional hypothesis
guarantees that

11(9) = 10(Q) = p12() < +00. (A.2)
In other words, both 7 and ps are finite measures and hence by o-additivity it holds in particular
that

11i(A) = p1o () — 1 (A) (A.3)
for all A € A and i = 1,2. We now introduce D := {A € A : pu1(A) = p2(A)} and claim that it is
a Dynkin system. Indeed,

(i) 2 € D follows from (A.2).
(ii) let A € D. Using (A.3) we have p1(A°) = po(2) — u1(A) = po(2) — pa(A) = p2(A°) and
thus also A€ D.
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(iii) if {D,}nen € D are pairwise disjoint sets, then by o-additivity of p; and ps on A it holds

M1 (U Dn> = ZNI(Dn) = ZN2<Dn> = K2 <U Dn) )

showing that J, .y Dn € D.

By assumption G C D and by minimality, we infer 6(G) C D . Moreover by Theorem A.2 (since G is
stable under intersections, see Remark A.1), we have §(G) = 0(G) and, since o(G) = A, we deduce
A C D, or in other words, u1(A) = ua(A) for all A € A, showing that the extension is unique. [

Remark A.5 (Uniqueness under a o-finiteness assumption). The assumption o(€2) < 400 in
Corollary A.3 can be relaxed. Indeed, it is enough that there exists a countable family {G,, } ,en € G
such that Q = |,y G and for every n € N it holds 10(G,) < +o0o. Up to considering G}, :=

Gn \ Uz;i G, instead of GG, we can always assume that GG, are pairwise disjoint.

Observe that the only point in the proof of Corollary A.3 that fails under these relaxed assumptions,
is the stability of D under complements (as (A.3) no longer holds). Instead, we introduce for every
n € N the collection D,, = {A € A : iu(ANG,) =pu(ANG,)}. As uy(Gr) < 400, we have by
o-additivity of i and pe on A that p;(A°NG,) = puo(Ey,) — i(ANG,) forall A€ Aandi=1,2.
With this observation, one proceeds as in the proof of Corollary A.3 to show that D,, is a Dynkin
system and that A C D,,. Therefore A C (1, .y D» and thus for A € A, it holds by o-additivity

p(A) = ZMl(Aﬁ Gn) = ZM(AO Gh) = p2(A),

neN

showing the uniqueness of the extension.

EXERCISE 1 (Uniqueness of Lebesgue measure). Let i be a measure on (RY, B(RY)) satisfying
the following conditions:

(1) p is translation-invariant, i.e. (A + x) = u(A) for all A € B(R?) and every x € R?.
(2) u([0,1)4) =: X < +00.
Prove that p = Am on B(R™), where m denotes the n-dimensional Lebesque measure.

SOLUTION. One can proceed in three steps.

Step 1: We show that (B) = km(B) holds for every box B = [\ [a:, b;) with a;,b; € Q.
Consider first a box B = H?Zl[(], %) . Observe that [0, p;) is the union of p; translates of the interval
[0,1) (being [k, k+1) for k=0,...,p; —1). In particular, H?:ﬂ();])i) is the finite union of Hle D
disjoint boxes of the form Hle[ki, ki +1) where k; =1,...,p; — 1 fori=1,...,d. By translation-
invariance of u, we have, setting k == (ky, ... ka), w(TToy[ki, ki +1)) = p(k +1[0,1)%) = X and by o-
additivity of 1, N(Hle[o,pi)) = M1, pi . With a similar reasoning, we have for any qi,...,qqs € N
by translation invariance and o-additivity that p(T],[0,p:)) = [T, ¢ 1 1,0, %)) . Combining
both properties, we deduce that u(B) = A[[, = Mmn(B). By translation invariance, we deduce
that this equality holds in fact for all boxes with rational endpoints.

Step 2: Consider H = {B = [[\_]as, b;) : ai, b € Q}. We show that H is stable under in-
tersections and that o(H) = B(R?) .

The stability under intersections is straightforward to verify. It is clear that o(H) C B(R?) as
H C B(RY). To show the reverse inequality, it is by minimality enough to show that o(H) contains
all open sets. By definition, every open set U C R? can be written as a countable union of open
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boxes with rational endpoints Hle(ai, b;) . Since open boxes with rational endpoints can be writ-
ten as a countable union of half-open boxes [[,(ai, b;) = U3, H?:ﬂai‘*‘%, b;) , they belong to o(H) .

Step 3: The Dynkin argument.

Let By == [—k,k)? for k > 1. Let Dy == {A € B(R?) : u(AN By) = Am(AN By)}. We claim that
Dy, is a Dynkin system and that H C Dy . With the claim, we apply Theorem A.2 and Step 2, to
deduce that B(RY) = o(H) = 6(H) C Dy.. Thus B(R?) C (>, Dx and we conclude that for every
A € B(RY)

p(A) = lim pu(AN Bg) = lim Am(AN Bg) = Am(A).
k—o00 k—o00

Remark A.6. The attentive reader will notice that we prove that the Lebesgue measure on B(R?)
is the unique translation invariant-measure with ([0, 1]¢) = 1 only on B(R?), but we do not give
any uniqueness statement of the Lebesgue measure on larger o-algebra of all Lebesgue measurable
sets M(R?). The uniqueness on M (RR?) is related to the procedure of “completion of a measurable

fact” (a measurable space is called complete if the subsets of all null-sets are measurable) and the
fact that the completion of (RY, B(R?),m) is given by (R, M(R?),m).

A.4. Probability measures from cumulative distribution functions

We recall the definition of a joint cumulative distribution function from Probability (Definition
1.31 of [Aru2l]).

DEFINITION. Any function F : RY — [0,1] is called a joint cumulative distribution function
(short “cdf”), if it satisfies the following conditions:

(i) F is non-decreasing in each coordinate.
(ii) F(xq,...,2q) — Lif all of z; = 400.
iii) F

(iii) F(x1,...,2q) — 0 if at least one of z; - —o0.

(iv) F is right-continuous, meaning that for every («7*,...,z]') converging to (xy,...,z4) such
that for all m > 1 we have 2" > x; for all ¢ = 1,...,d, it holds that F(z7",...,2") —
F(zy,...,2q).

(v) Let A = (a1,b1] X -+ X (aq,bqg) and V = {a1,b1} x -+ x {aq,bqs}, where a;,b; €
(—00,+00) Vi = 1,...,d (V is the set of the vertices of the finite rectangle A); if v € V|
let sgn(v) = (—1)#°fa v Then,

Ay F = Z sgn(v) F(v).

We will let u(A) = A4F, so we must assume
A4 F > 0 for all rectangles A.

A fundamental result in Probability shows that there is a one-to-one correspondence between
probability measures P on (R?, B(R?)) and cumulative distribution functions F. More precisely, we
have the following

THEOREM A.4. (Theorem 1.32 of [Aru21])

(i) Each probability measure on (R B(R?)) gives rise to a cdf F : R — [0, 1] through

Flzy, ... ,xq) =P <H(—oo,xi]> . (A.4)

=1

(ii) Conversely, given a cdf F : R? — [0,1], there exists a unique probability measure P on
(R, B(RY)) such that (A.4) holds for all (z1,...24) € RY.
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The item (i) of Theorem A.4 is a straightforward consequence of basic properties of probability
measures and the definition (A.4) and has been established in the probability course. The item
(ii) of Theorem A.4 instead has been proven only in dimension d = 1 in the probability course.
The proof took advantage of the fact that F' has pseudo-inverse which is a peculiarity of the
one-dimensional case and as such, the proof does not extend to higher dimension. We here present
an alternative proof, relying on Carathéodory’s construction, which extends to all dimensions.

PROOF OF (11) OF THEOREM A.4 vViA CARATHEODORY. We introduce

d
Go = {H I; where I; = (s;,t;] or I; = (s;,00) with —o0 <s; <t; < oo} u{o}

=1

and G = {Ufil G, : G; € go}. One verifies that G is an algebra (see Exercise 2). Moreover, we

claim that 0(G) = B(R?). The inclusion o(G) C B(R?) is trivial as G C B(R?). For the reverse
inclusion, we observe that o(G) also contains all open boxes B = Hz 1(si,t;). Since every open set
can be written as a countable union of open boxes, this implies that o(G) contains all open sets
and hence, since B(R?) is generated by all open sets, we have B(RY) C o(G) .

It now suffices to construct a pre-measure py on G (i.e. a map p : G — [0, +00] satisfying (i)
and (ii) of Theorem A.1) such that

° ,uo(Hle(—oo,xi]) = F(xy,...,14) for all z € RY,

o 1p(RY) =1.
Indeed, Theorem A.1 and Corollary A.3 then guarantee the existence of a unique measure p on
(R, B(RY)) such that ju|g = po; this guarantees both the validity of (A.4) as well as u(R?) = 1,
making g a probability measure on (R¢, B(R?)) .

In order to present the main idea, we show the construction of the pre-measure o only for x = 1
and leave the case d > 2 as an exercise (see Exercise 2). We first extend the cdf F': R — [0, 1] to a
function defined on R U {#o00} by setting F'(—oo0) = 0 and F(+oc0) == 1.

In a first step, we define py on Gy by setting

po((s,t]) == F(t) — F(s) if —oo<s<t<oo,
fo((s,00)) = F(+00) = F(s) = 1= F(s).

By definition (@) = 0 and po(R) = F(400) — F'(—o0) = 1. Moreover, by construction it holds that
po((s,t]) + po((t,7r]) = po((s,r]) and po((s,t]) + po((t,00)) = po((s,00)). Using this two properties
it is easy to verify that pg is finitely additive on Gy .

The finite additivity allows us in a second step to define yy on all of G. Indeed, every G € G
can be written as G = |\, G; with G; € Gy . Up to considering G, = G; \Ui_, Gx = Gi NN, G5
instead of G; (G} € Gy because Gy is closed under intersections and complements), we can assume
w.l.o.g. that the sets G; are pairwise disjoint. This allows to define uo(G) = Zfil to(Gi). po is
well-defined (i.e. it is independent of the choice of the family {G;}¥, thanks to the finite additivity)
and by construction, g is finitely additive on G, meaning that (ii) holds for finite families of
pairwise disjoint sets. We are left to establish it for countable families. Let therefore {A,},en € G
be a countable family of pairwise disjoint sets such that also A = J,.y An € G. For k > 1 fixed,
we rewrite A = By UL, A; with By == Uispir 4i = AN Nf_, A¢. By stability under complements
and finite intersections, B, € G and hence by finite additivity of ug on G we have

po(A) = (UA> + po(Br) ZMO )+ o(Bg) -
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We deduce the validity of (ii) by taking k — oo, if
lim po(By) =0. (A.5)
k—o0

To show (A.5), observe that By C By, is a decreasing sequence of sets with (.-, B = @
Hence, since 1 is monotone, limg_,o, pto(By) € [0, 1] exists and we assume by contradiction that
limy o0 po(Bg) =: ¢ > 0. We will show that this assumption is absurd by showing that under this
assumption, (7),cy Br would contain a non-empty set.

To do so, we first observe that for every interval I € Gy and any € > 0, there exists I’ € Gy and
a compact K such that I’ C K C [ and such that pu(I") > po(I) — €. Indeed,

o if [ = (s,t]: then po(I) = F(t) — F(s) and thanks to the right-continuity of F, there exists
s € (s,t) such that F(s') — F(s) < ¢ and hence setting I’ := (¢, t] and K = [(s + ¢)/2,1],
we have that K is compact, I' C K C I and po(I') = F(t) — F(s') > po(I) — €.
o if I = (s,00): then po(I) =1 — F(s). Thanks to the to the right-continuity of F’, there
exists s € (s,00) such that F(s) — F(s) < 5 and since limy_,o, F'(t) = 1, there exists
t" € (s',00) such that F(t') > 1 — £ . Hence setting I' :== (s, '], K' = [(s + 5")/2,'], we
have that K is compact, I' C K C I and po(I') = F(t') — F(s") > uo(I) — €.
Since every By is made out of a disjoint union of intervals I € Gy, this shows that for every By there
exists a compact K, and B, € G such that B, C K, C By, and po(Bj) > po(Bg) — c2~**1) . Now
we set C), == ﬂj.::l K; and we observe that {C} }1>1 is a decreasing family of compact sets. We claim
that (), oy Cr # @ which gives the desired contradiction since (), .y Ci € (e Br by construction.
It is a general fact from topology that the intersection of a decreasing sequence of non-empty
compact sets is non-empty' and so, it suffices to show that Cj, # @ for every k& > 1. By construction
ﬂ?:l B} C Cy and, since By, \ Ul?_l(Bj \ B)) C ﬂ?zl Bj, we have by finite (sub-)additivity

(ﬂB)>uo n) = N0<O(BJ\B;))>HO _CZQ (+1) g

j=1
In particular, ﬂFl B} # @ and hence Cy, # & . 0

EXERCISE 2. Let F : R* — [0,1] a two-dimensional joint cumulative distribution function.
The goal of this exercise is to use Carathédory’s construction to show the existence of a unique
probability measure P on (R? B(R?)) such that

P((—o00,x1] X (—00,x9]) = F(x1, 2) for all v = (x1,1,) € R?. (A.6)

(a) As above, we introduce again the collections of sets

2
Go = {H I; where I; = (s;,t;] or I; = (s;,00) with — oo < s5; < t; < oo} u{o},
i=1
N
G = {UGZ- : Giego} .
i=1

Show that G is an algebra.

(b) Define a map po : Go — [0,1] such that po(@) = 0, such that j1o(R*) = 1 and such that
o 18 additive on finitely many disjoint sets in Gy (meaning that whenever A, B € Gy with
AN B =g, then it holds that jis(AU B) = pio(A) + po(B) ).

ndeed, by contradiction, assume that Cy 1 C C}, are compact, that Cy # @ for all k > 1 and that (), .y Cr = @
Then the family Oy = Cf, is an open cover for C; (and hence for every Cj with & > 1). By compactness, we can
extract a finite subcover. Since the Cy are decreasing, the family Oy is increasing and the subcover in fact only
consist of one open set O . This is absurd as O cannot possibly cover Cf which by assumption is non-empty.
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(¢) Extend pg to G ad verify that ug is a pre-measure on G (i.e. verify the properties (i) and
(ii) of Theorem A.1).
(d) Deduce that there exists a unique probability measure P on (R, B(R)) satisfying (A.6).

SOLUTION. (a) Since G is by definition stable by unions, we only have to show that it is
stable under complements and intersections with the following steps:
(’L) ifGl,GQ € go then G1 N G2 € go N

We can use the fact that for some sets A, B,C, D we have (A x B)N (C x D) =
(ANC) x (BN D) to reduce the argument to each dimension and apply the fact that
the intersections of two intervals (of one of the forms in the definition of Go) is either
an interval (of one of the same forms) or the empty set. Hence the intersections of
sets in Gy is still in Gy v

(ii) if Gy = UN Gy, Gy = Uj]\ilGQ,i € G (with each Gy1; and Go; in Gy) then GyNGy € G

because
N M N M
Gl N G2 - (U Gl,i) N (U Ggﬂ') - U U Gl,i N GQJ € go \/
i=1 i=1 i=1 j:lm

(111) if G € Gy then G° € G :
For some sets A, B we can’t say that (A x B)¢ = (A°) x (B¢) so we can’t use the
argument used for (i). However, as shown in the figure 1, we can actually obtain the
complement by adding up to 4 other sets of Gy. This can be easily generalized to the
case where A X B is unbounded. v’

A€ x B¢

FIGURE 1. Black: the set A x B € Gy we are considering. Gray: the set (A°) x (B°).
Dark gray: the 4 sets we need to add to obtain the complement (A x B)¢

(iv) if G = UY,G; € G (with each G; in Gy) then G° € G :

because

i=1 Y '

€G by (iii) by (i)
(b) We define po(2) =0, and fora < b and ¢ < d

wo((a,b] x (¢,d]) = F(b,d) — F(a,d) — F(b,c) + F(a,c).
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For simplicity, let us just focus on the case where a,b,c,d are all finite (we can handle
the cases a = 400, etc. as done for the one-dimensional case in the notes). To verify
finite additivity on Gy, we need to show that if A, B € Gy with ANB =@ and AU B € Gy,
then po(AU B) = po(A) + po(B). Indeed, by our definition of uo, for a; < by < ¢; and
as < by < co, we have

to((a1,b1] X (ag, ba]) 4 po((a1, b1] x (ba, c2]) = po((ar, b1] X (az, c2)),

and

po((ay, bi] x (a2, ba]) + po((by, e1] x (a2, b2]) = po((as, c1] % (az, bo]).
Note that o satisfies the desired properties because

° () =

e NO((_Ooab] X (_007 ]) = F(b> d)

e NO((avb] X (—OO,d]) = F(b7 d) - F(CL,d)

e NO((_OO7b] X <C7 ]) = F(b7 d) B F(b7 C)

e uo((a,b] x (¢,d]) = F(b,d) — F(a,d) — F(b,c) + F(a,c)

o 1p((—00,b] X R) = limy o F(b,d)

o 1p(R X (—00,d]) = limy_,o F(b,d)

e 1o((a,00) x (¢,d)) = F(b,d) — F(a,d) — F(b,c) + F(a,c)

e HJO((avb) X (C’ OO)) = F<b>d) —F a>d) - F(b,C) —I—F(G,C)

¢ NO((_OQb] x (¢, OO)) - NO((_OOJ)] X R) - MO((_Oovb] X (—OO,C]) = _F(bvc) +
limg oo F'(b,d)

o ..
e /1’0((@7 OO) X (Cv OO)) = F(b7 d) o F((J,, d) o F(bv C) + F((Z,C)

(c) The first assumption (i) is verified by definition. For the exact same reasons as for the
one-dimensional case (from the notes), we can extend py to a premeasure on G. The only
(slight) difference is we have to prove that for every box I € Gy and any € > 0, there ezists
I' € Gy and a compact K such that I' C K C I and such that po(I') > po(I) —e. For
simplicity, let’s just show this is true for the case where I = (a,b] x (¢,d] and a,b,c,d are
finite.

By the right-continuity of F, there is an a’ € (a,b) and ¢ € (¢,d) so that F(d',d) —
F(a,d) <€/2 and F(V',c)— F(b,c) <¢€/2. Set I' = (a’,b] x (¢, d] and K = [(a+a)/2,b] x
[(b+V)/2,d]. Then,
po(1) = po(l') = (F(b,d) — F(a,d) = F(b,c) + F(a,c)) = (F(b,d) — F(a',d) = F(b,c) + F(d',))
= F(d,d) — F(a,d) + F(b,d') — F(b,c) + F(a,c) — F(d',d) <,
where we used that F(a,c) — F(a',d) <0 since F is nondecreasing in each coordinate. By
the right-continuity of F, there is an o’ € (a,b) and ¢’ € (¢,d) so that F(a",d) — F(a,d) <
¢/3 for all a" € (a,d'] and F(V',c) — F(b,c) < ¢/3 for all b" € (b,V]. By the right-
continuity of F, there is a U > 0 such that F(a +t,c +1t) — F(a,c) < €/3 for all
t € (0,t]. Let a = min{d’,a + '} and b = min{t/,b +t'}. Set I' = (a,b] x (¢,d] and
K =[(a+a)/2,b] x [(b+b)/2,d]. Then,
po(1) = po(I') = (F(b,d) — F(a,d) = F(b,c) + F(a,c)) = (F(b,d) — F(a,d) — F(b,¢) + F(a,¢))
= F(a,d) — F(a,d) + F(b,¢) — F(b,c) + F(a,c) — F(a,¢) <e.
(d) This follows directly from Theorem 2.4 and Corollary 3.4 (as for the one-dimensional case).






APPENDIX B

The Laplace Transform

We introduce an integral transform akin to the Fourier transform. We will see that it enjoys
properties making it applicable to resolution of ODEs, turning these into algebraic equations.

B.1. Definition

We have seen in Chapter 5 that integral transforms can allow one to rephrase certain problems
into a more tractable language. A kernel integral transform of general type takes the following
form. Given a function f : {2 C R — C of sufficient regularity, one can define

K[f)(y) = / f (@)K (. y)da

for some sufficiently regular "kernel" K : €2 x Q@ — C. The case of the Fourier transform takes
Q) =R and K(z,y) = e 2™, In a similar manner, the Laplace transform is a kernel integral
transform of the following shape.

DEFINITION. |Laplace Transform| Let f : Ry — C. Its Laplace transform is

CIf1(s) = / et (e

defined on the domain D(L[f]) = {s € [0, +oo[: et f(t) € L}(R)}. We will also denote the Laplace
transform of f by F = L[f].

Remark B.1. (1) £ is an integral transform with kernel K (s,t) = e~ and Q = Rx;

(2) We take the domain of L[f] to live within the reals. More generally one usually considers
a complex variable s;

(3) As we will see, £ transforms derivatives into multiplications. Thus its principal use will be
in solving differential equations, by turning ODEs (of solution f) into algebraic equations
solvable in F'. This then raises the question of whether one can invert the Laplace transform
in a meaningful way.

As is explicited in the definition of the Laplace transform, £[f] is generally not defined on R>.
In fact D(L[f]) might be empty. If non-empty however, D(L[f]) is large in the following sense.

Lemma B.1. If s € D(L[f]), then R>s C D(L[f]).
PROOF. Let s € D(L[f]), s' > s. Then

e —s’td _ e (s—8")t —stqt < > —st
/0 )]t / D)ttt < / FBle < oo,
so that s € D(L[f]). O

Remark B.2. D(L[f]) is not necessarily closed, as is shown by f(t) = €', of domain R.;.
We want a nice class of functions for which L£[f] is non-empty. We take Remark B.2 as
inspiration.

DEFINITION. Let a € R.y. The exponential class Exp, is defined by
Bxp, = {f € Lbo(Rso) : [F(1)] = O(c™) as t — +o0} .
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Lemma B.2. Let f € Exp,. Then R-, C D(L[f]).
PROOF. Let K > 0,C > 0 be such that |f(t)] < C* Vt > K. Then

[T = [Ciswre s [T

K

K 00
< / F(b)|e—dt + C / (=30t gy
0 K

1

ioc; While the second converges iff s > a, as required. [

The first integral converges since f € L

B.2. Properties and Applications

In what follows we do not carry along domain considerations, and assume the unexplicited
functions f, g are regular enough for each expression to make sense.

Proposition B.3 (Properties of the Laplace Transform). The Laplace transform enjoys the following
properties:

(1) (Linearity) Llaf + bg] = aL[f] + bL]g] Ya,b € C
(2) (Derivatives in t) Derivatives are transformed into products: ¥n € N,

LIF)(s) = S"ELf(s) — 30500

(8) (Derivatives in s) Products are transformed into derivatives:
n n dn
LI FO(s) = (-1 LIf](s)

(4) (Translation) L[f](s — a) = L[e™ f(t)](s)
(5) (Scaling) For a > 0, L[f(at)](s) = a *L[f](sa™1)

PROOF. (1) This is an immediate consequence of linearity of integrals.
(2) We first consider n = 1. Integrating by parts gives

/0 ettt = F(1)e T + s / " f(0etdt = sLIf)(s) — £(0).

One can then conclude by induction:

n—1

L7)(s) = sEL () = 7D(0) = " LIf](3) = 3 5" F90)

i=0
(3) We begin with n = 1. By Corollary 2.18 we have

FENE = [T e = [T ia=—cis o

By induction we then conclude, for
dr d
L) = ()" L[ () = (1) L[ f (1)
(4)

Clf1(s —a) = / " F)el o = / e f(t)etdt = L f(1))(s).
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(5)
Llf(ab)|(s) = /0 Flat)e=tdt = o~ /0 F)e= st = o' L[f](sa~)
]

Let us now see how these properties, in particular (2), help us to solve ODEs. Suppose given
an ODE of the form
G(f, f',...,f™) =h h "nice", say in Exp,
FO(0) = a; a; € C,i=0,...n—1

If G is compatible enough with L, for example it is linear, or has non constant coefficients given by
polynomials of degree k& < n, we obtain after applying the Laplace transform

G(F, F',...,F®_£0),.., f™0)=H

with some new set of initial conditions. The hope is that this is easier to solve and the solution F'

has an easy to find Laplace inverse.

Remark B.3. (1) We will not explicit £~ or show injectivity of £. However in practice it
suffices to find an appropriate candidate for this inverse and check explicitly that it satisfies
the initial ODE.

(2) The case discussed above is particular, and can already be solved by standard methods
of ODE resolution. However beyond providing us an alternative means of resolution, the
Laplace transform also gives a transform to an often physically meaningful domain (in
electrical engineering, the s-space is often called the frequency domain for reasons similar to
the Fourier transform, while the ¢-space is the time domain). It also makes exact computer
resolution of ODEs computationally simpler.

Before seeing explicit examples of this procedure, we need to have a toolkit of a few know

Laplace transforms.

Example B.1. A quick integral computation shows that £[1](s) = s7!, defined on R+(. We can use

this with the translation property of £ to immediately obtain £[e™](s) = (s — a)~'. Differentiating

in s gives L[t"](s) = n!s~ "V, Finally, we may observe that
1 s +1ib s
s—ib  s2+ b2 52 4+ b2’

We thus have the following preliminary table of Laplace transforms:

b

E[COS(bt) + Zsm(bt)] = 32——|—b2

— L[cos(bt)] = L[sin(bt)] =

Laplace transforms
ft) L[f](s)
C Cs™1
tn nls~—(+D)
e (s —a)™?
cos(bt) s(s*+0*)7!
sin(bt) b(s* +b*)~!

Let us now run a few example ODEs
Example B.2. (1)

y' =2y +y=0
y(0) =1
y'(0)=1
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Applying L gives
s*Y — sy(0) — y/(0) — 25Y +2y(0) +Y =0

which has solution (after applying initial conditions) ¥ = & [t now remains to find a
Laplace inverse. We give two methods. Note that Y (s +2) = sm%)z = sL[t](s +1). Thus

Y(s) = (s —2)L[t](s — 1) = (s — 2)L[te'] = L[(te?) — 2te!] = L]e* — te']

we thus claim y(t) = (1 — t) is a solution of our ODE. This can be verified by plugging it

back in (thus all computations above are only formal in nature). Alternatively we could

write Y = & — ﬁ and run similar computations using properties (2) and (4) of the

Laplace transform to find the same answer.

y" +y = sin(2t)
y(0) =0

y'(0) =1
Then applying £ we obtain

1 2
Y = 1
5241 <32+4+ )

Note that (s* +1)~! = L[sin(¢)]. We thus get, after a partial fractions decomposition
2 1 1 . o . 1.
Y = 3 (1 R 4) + L[sin(t)] = L {5 sin(t) — 3 sin(2t)

and one may again verify that y = gsin(t) — %sin(%) solves the initial ODE.
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