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CHAPTER 1

Measure theory

In this chapter, we follow closely the content of [Tao16, Chapter 7].

1.1. Motivation

Studying integration in several variables, the general question we wish to answer is this:
Given some subset Ω of Rd, and some real-valued function f : Ω → R,

is it possible to integrate f on Ω and therefore define
∫
Ω
f?

In the case d = 1, we have already developed the notion of Riemann integral, which answers
the above question when Ω is an interval Ω = [a, b] ⊂ R, and f is Riemann integrable. However,
the class of Riemann integrable functions is rather unsatisfactorily small and the extension of this
notion to higher dimensions is possible but requires quite a bit of effort. For such reasons, we must
look beyond the Riemann integral and introduce the notion of the Lebesgue integral, which will be
the central topic of the first two chapters of the course.

Before we turn to the details, we begin with an informal discussion. In order to understand
how to compute an integral

∫
Ω
f , we must first understand a more basic and fundamental question:

How does one compute the length, area, or volume of a subset E ⊂ Rd?
This question is connected to that of integration, because if one integrates the function 1 on the
set E, then one should obtain the length of E (if it is one-dimensional), the area of E (if it is
two-dimensional), or the volume of E (if it is three-dimensional). To avoid splitting into cases
depending on the dimension, we shall refer to the measure of E as either the length, area, volume,
or hypervolume of E, depending on what Euclidean space Rd we are working in.

Ideally, to every subset E of Rd we would like to associate a nonnegative number m (E), which
will be the measure of E. We allow the possibility for m (E) to be zero (that happens, for example,
when E is just a single point or is the empty set) or for m (E) to be infinite (e.g., if E is all of Rd).
This measure should obey certain reasonable properties, for instance

(i) (Empty set) m(∅) = 0.
(ii) (Positivity) 0 ≤ m(E) ≤ +∞ ∀E ⊂ Rd.
(iii) (Normalization) being (0, 1)d := {(x1, . . . , xd) : 0 < xi < 1} the unit cube, m((0, 1)d) = 1.
(iv) (Additivity) m (E ∪ F ) = m (E) +m (F ) if E and F are disjoint.
(v) (Monotonicity) m (E) ≤ m (F ) whenever E ⊆ F ,
(vi) (Translation invariance) m (x+ E) = m (E) for any x ∈ Rd (i.e., if we shift E by the vector

x the measure should be the same).
Remarkably, it turns out that such a measure does not exist; one cannot assign a non-negative

number to every subset of Rd which has the above properties. This is quite a surprising fact, as it
goes against one’s intuitive concept of volume, but we will prove it later in these notes. An even
more dramatic example of this failure of intuition is the Banach-Tarski paradox, in which a unit ball
in R3 is decomposed into five pieces, and then the five pieces are reassembled via translations and
rotations to form two complete and disjoint unit balls, thus violating any concept of conservation
of volume; however we will not discuss this paradox here.
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2 1. MEASURE THEORY

What such paradoxes mean is that it is impossible to find a reasonable way to assign a measure
to every single subset of Rd. However, we can rescue the situation by only measuring a certain
class of sets in Rd, that we will define measurable sets. These are the only sets E for which we will
define the measure m(E), and once one restricts one’s attention to measurable sets, one recovers
all the above properties again.

1.2. The goal: Lebesgue measure

Let Rd be a Euclidean space. Our goal in this chapter is to define a concept of measurable set,
which will be a special category of subset of Rd and for every such measurable set E ⊂ Rd, we will
then define the Lebesgue measure m (E) to be a certain number in [0,∞].
The concept of measurable set will obey the following properties:

(i) (Borel property) every open set and every closed set in Rd are measurable.
(ii) (Complementarity) if E is measurable, then Rd\E is also measurable.
(iii) (Boolean algebra property) if (Ej)j∈J is any finite collection of measurable sets (with J

finite), then the union
⋃

j∈J Ej and intersection
⋂

j∈J Ej are also measurable.
(iv) (σ-algebra property) if (Ej)j∈J is any countable collection of measurable sets (with J

countable), then the union
⋃

j∈J Ej and intersection
⋂

j∈J Ej are also measurable.
Remark 1.1. Some of these properties are redundant: for instance, (iv) will imply (iii), and once
one knows all open sets are measurable, (ii) will imply that all closed sets are measurable also.

To every measurable set E, we associate the Lebesgue measure m(E) of E, which will obey the
following properties:

(i) (Empty set) m(∅) = 0.
(ii) (Positivity) 0 ≤ m(E) ≤ +∞ for every measurable set E.
(iii) (Monotonicity) if E ⊆ F , and E and F are both measurable, then m(E) ≤ m(F )

(iv) (Finite sub-additivity) if (Ej)j∈J is a finite collection of measurable sets, thenm
(⋃

j∈J Ej

)
≤∑

j∈J m (Ej).

(v) (Finite additivity) if (Ej)j∈J is a finite collection of disjoint measurable sets, thenm
(⋃

j∈J Ej

)
=∑

j∈J m (Ej).
(vi) (Countable sub-additivity) if (Ej)j∈J is a countable collection of measurable sets, then

m
(⋃

j∈J Ej

)
≤
∑

j∈J m (Ej).
(vii) (Countable additivity) if (Ej)j∈J is a countable collection of disjoint measurable sets, then

m
(⋃

j∈J Ej

)
=
∑

j∈J m (Ej).

(viii) (Normalization) The unit cube [0, 1]d =
{
(x1, . . . , xd) ∈ Rd : 0 ≤ xj ≤ 1 for all 1 ≤ j ≤ d}

has measure m
(
[0, 1]d

)
= 1.

(ix) (Translation invariance) If E is a measurable set, and x ∈ Rd, then x+E := {x+y : y ∈ E}
is also measurable, and m(x+ E) = m(E).

Remark 1.2. Many of these properties are redundant; for instance the countable additivity
property can be used to deduce the finite additivity property, which in turn can be used to derive
monotonicity (when combined with the positivity property). One can also obtain the subadditivity
properties from the additivity ones.
Remark 1.3. Note that m(E) can be +∞, and so in particular some of the sums in the above
properties may also equal +∞ (and since everything is positive we will never have to deal with
indeterminate forms such as −∞++∞).

Our goal for this chapter can then be stated in the following:
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Theorem 1.1 (Existence of Lebesgue measure). There exists a notion of a measurable set,
and a way to assign a number m(E) to every measurable subset E ⊆ Rd, which satisfies all of the
properties (i)-(ix).

1.3. First attempt: Outer measure

Before we construct Lebesgue measure, we first discuss a somewhat naive approach to finding
the measure of a set - namely, we try to cover the set by boxes, and then add up the volume of
each box. This approach will almost work, giving us a concept called outer measure which can be
applied to every set and obeys all of the properties (i)-(ix) except for the additivity properties (v),
(vii). Later we will have to restrict the outer measure to a class of special sets (called measurable
sets) to recover the additivity property.

We begin with the notion of an open box.

Definition (Open box). An open box (or box for short) B in Rd is any set of the form

B =
d∏

i=1

(ai, bi) :=
{
(x1, . . . , xd) ∈ Rd : xi ∈ (ai, bi) for all 1 ≤ i ≤ d

}
,

where bi ≥ ai are real numbers. We define the volume vol(B) of this box to be the number

vol(B) :=
d∏

i=1

(bi − ai) = (b1 − a1) (b2 − a2) . . . (bd − ad) .

Remark 1.4. The unit cube (0, 1)d is a box, and has volume 1.
Remark 1.5. In one dimension d = 1, boxes are the same as open intervals. One can easily check
in general dimension that open boxes are indeed open.
Remark 1.6. Note that if we have bi = ai for some i, then the box becomes empty, and has
volume 0 , but we still consider this to be a box.

We of course expect the measure m(B) of a box to be the same as the volume vol(B) of that
box. This is a natural fact that will be proved below and it is in fact an inevitable consequence of
the axioms (i)-(viii).

Definition (Covering by boxes). Let E ⊆ Rd be a subset of Rd. We say that a collection
(Bj)j∈J of boxes cover E iff

E ⊆
⋃
j∈J

Bj.

Suppose E ⊆ Rd can be covered by a finite or countable collection of boxes (Bj)j∈J . If we wish
E to be measurable, and if we wish to have a measure obeying the monotonicity and sub-additivity
properties (iii), (iv), (vi) and if we wish m (Bj) = vol (Bj) for every box j, then we must have

m(E) ≤ m

(⋃
j∈J

Bj

)
≤
∑
j∈J

m (Bj) =
∑
j∈J

vol (Bj)

We thus conclude

m(E) ≤ inf

{∑
j∈J

vol (Bj) : (Bj)j∈J covers E; J at most countable

}
.

Inspired by this, we define
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Definition (Outer measure). If E is a set, we define the outer measure m∗(E) of E to be the
quantity

m∗(E) := inf

{∑
j∈J

vol (Bj) : (Bj)j∈J covers E; J at most countable

}
.

Remark 1.7. Since
∑∞

j=1 vol (Bj) is non-negative, we know that m∗(E) ≥ 0 for all E. However, it
is quite possible that m∗(E) equal +∞.
Remark 1.8. We are allowing ourselves to use a countable number of boxes, because every subset
of Rd has at least one countable cover by boxes; in fact Rd itself can be covered by countably many
translates of the unit cube (0, 1)d.
Remark 1.9. The outer measure can be defined for every single set (not just the measurable ones),
because we can take the infimum of any non-empty set.

The outer measure obeys several of the desired properties of a measure:

Lemma 1.2 (Properties of outer measure). The outer measure has the following properties:
(i) (Empty set) The empty set ∅ has outer measure m∗(∅) = 0.
(ii) (Positivity) We have 0 ≤ m∗(E) ≤ +∞ for every measurable set E.
(iii) (Monotonicity) If A ⊆ B ⊆ Rd, then m∗(A) ≤ m∗(B).
(iv) (Translation invariance) If E is a subset of Rd, and x ∈ Rd, then m∗(x+ E) = m∗(E).
(v) (Countable sub-additivity) If (Aj)j∈J is a countable collection of subsets of Rd, then

m∗
(⋃

j∈J Aj

)
≤
∑

j∈J m
∗ (Aj).

(vi) (Homogeneity) If E is a subset of Rd, and a ∈ R, then m∗(aE) = |a|dm∗(E).

Proof. (i) We can cover ∅ with (0, ϵ)d for any ϵ > 0. It means

m∗(∅) ≤ vol
(
(0, ϵ)d

)
= ϵd.

We conclude that m∗(∅) = 0 by the fact that ϵ is arbitrary.
(ii) Follows from the definition of the volume, as observed in Remark 1.7.
(iii) Follows from the fact that any cover of B is a cover of A.
(iv) Similarly, (Bj)j∈J is a cover for E if and only if (x+Bj)j∈J is a cover for x+E. Moreover,

vol(x+Bj) = vol(Bj). We then deduce the claim, because:

m∗(E) = inf

{∑
j∈J

vol (Bj) : (Bj)j∈J covers E

}

= inf

{∑
j∈J

vol (x+Bj) : (Bj)j∈J covers E

}

= inf

{∑
j∈J

vol
(
B′

j

)
:
(
B′

j

)
j∈J covers x+ E

}
= m∗(x+ E).

(v) For any j ∈ N, by definition of the outer measure as an infimum, there exists
(
Bj

i

)
i∈Ij

a
countable cover of Aj by boxes such that∑

i∈Ij

vol(Bj
i ) ≤ m∗(Aj) +

ϵ

2j
.
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Taking
(
Bj

i

)
i∈Ij ,j∈N

as a cover for
⋃

j∈J Aj, it follows

m∗

(
∞⋃
j=1

Aj

)
≤
∑
j∈N

∑
i∈Ij

vol(Bj
i ) ≤

∑
j∈N

(
m∗(Aj) +

ϵ

2j

)
= ϵ+

∑
j∈N

m∗(Aj).

And we conclude by the fact that ϵ is arbitrary and we can take ε→ 0.
(vi) Assume that a is not 0, otherwise the claim follows from Remark 1.10. (Bj)j∈J is a cover

for E if and only if (aBj)j∈J is a cover for aE. Moreover, vol(aBj) = |a|d vol(Bj). We then
deduce the claim, because:

|a|dm∗(E) = |a|d inf

{∑
j∈J

vol (Bj) : (Bj)j∈J covers E

}

= |a|d inf

{
1

|a|d
∑
j∈J

vol (aBj) : (Bj)j∈J covers E

}

= inf

{∑
j∈J

vol
(
B′

j

)
:
(
B′

j

)
j∈J covers aE

}
= m∗(aE).

□

Remark 1.10. With a proof similar to (i), we can prove that sets containing only one point
x0 ∈ Rd have outer measure 0: m∗({x0}) = 0 ∀x0 ∈ Rd. Indeed, we can consider coverings of the
form (x0 − ε, x0 + ε)d ∀ε > 0.

The outer measure of a closed box is also what we expect:

Proposition 1.3 (Outer measure of closed box). For any closed box

B̄ =
d∏

i=1

[ai, bi] :=
{
(x1, . . . , xd) ∈ Rd : xi ∈ [ai, bi] for all 1 ≤ i ≤ d

}
,

we have

m∗(B̄) =
d∏

i=1

(bi − ai) .

Example 1.1. m∗([0, 1]d) = 1.

Proof. Clearly, we can cover the closed box B̄ =
∏d

i=1 [ai, bi] by the open boxes
d∏

i=1

(ai − ε, bi + ε) ∀ε > 0.

Thus we have

m∗(B̄) ≤ vol

(
d∏

i=1

(ai − ε, bi + ε)

)
=

d∏
i=1

(bi − ai + 2ε)

for every ε > 0. Taking limits as ε→ 0, we obtain

m∗(B̄) ≤
d∏

i=1

(bi − ai) .
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To finish the proof, we need to show that

m∗(B̄) ≥
d∏

i=1

(bi − ai) .

By the definition of m∗(B̄), it is equivalent to show that∑
j∈J

vol
(
B(j)

)
≥

d∏
i=1

(bi − ai)

whenever
(
B(j)

)
j∈J is a finite or countable cover of B̄. We use the notation with the superscript

B(j) because we will need the subscripts to denote components.
Since B̄ is closed and bounded, it is compact (by the Heine-Borel theorem), and in particular

every open cover has a finite subcover. Thus to prove the above inequality for countable covers, it
suffices to do it for finite covers.

To summarize, our goal is now to prove that∑
j∈J

vol
(
B(j)

)
≥

d∏
i=1

(bi − ai) (1.1)

whenever
(
B(j)

)
j∈J is a finite cover of

∏d
j=1 [ai, bi].

To prove the inequality (1.1), we shall use induction on the dimension d. First we consider
the base case d = 1. Here B is just a closed interval B = [a, b], and each box B(j) is just an open
interval B(j) = (aj, bj). We have to show that∑

j∈J

(bj − aj) ≥ (b− a)

To do this we use the Riemann integral. For each j ∈ J , let 1(aj ,bj) : R → R be the function such
that 1(aj ,bj)(x) = 1 when x ∈ (aj, bj) and 1(aj ,bj)(x) = 0 otherwise. Then we have that 1(aj ,bj) is
Riemann integrable (because it is piecewise constant, and compactly supported) and∫ ∞

−∞
1(aj ,bj) = bj − aj

Summing this over all j ∈ J , and interchanging the integral with the finite sum, we have∫ ∞

−∞

∑
j∈J

1(aj ,bj) =
∑
j∈J

(bj − aj) .

But since the intervals (aj, bj) cover [a, b], we have
∑

j∈J 1(aj ,bj)(x) ≥ 1 for all x ∈ [a, b]. For all
other values if x, we have

∑
j∈J 1(aj ,bj)(x) ≥ 0. Thus∫ ∞

−∞

∑
j∈J

1(aj ,bj) ≥
∫
[a,b]

1 = b− a

and the claim follows by combining this inequality with the previous equality. This proves (1.1)
when d = 1.

Now assume inductively that d > 1, and we have already proven the inequality (1.1) for
dimensions d− 1. We shall use a similar argument to the preceding one. Each box B(j) is now of
the form

B(j) =
d∏

i=1

(
a
(j)
i , b

(j)
i

)
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We can write this as
B(j) = A(j) ×

(
a
(j)
d , b

(j)
d

)
where A(j) is the d− 1-dimensional box A(j) :=

∏d−1
i=1

(
a
(j)
i , b

(j)
i

)
. Note that

vol
(
B(j)

)
= vold−1

(
A(j)

) (
b
(j)
d − a

(j)
d

)
where we have subscripted vold−1 by d− 1 to emphasize that this is d− 1-dimensional volume being
referred to here. We similarly write

B̄ = Ā× [ad, bd]

where Ā :=
∏d−1

i=1 [ai, bi], and again note that

vol(B) = vold−1(A) (bd − ad) ,

where A is the interior of Ā.
For each j ∈ J , let f (j) be the function such that f (j) (xd) = vold−1

(
A(j)

)
1(

a
(j)
d ,b

(j)
d

)(xd). Then

f (j) is Riemann integrable and∫ ∞

−∞
f (j) = vold−1

(
A(j)

) (
b
(j)
d − a

(j)
d

)
= vol

(
B(j)

)
and hence ∑

j∈J

vol
(
B(j)

)
=

∫ ∞

−∞

∑
j∈J

f (j). (1.2)

Now let xd ∈ [ad, bd] and (x1, . . . , xd−1) ∈ A. Then (x1, . . . , xd) lies in B, and hence lies in one of
the B(j). Clearly we have xd ∈

(
a
(j)
d , b

(j)
d

)
, and (x1, . . . , xd−1) ∈ A(j). In particular, we see that for

each xd ∈ [ad, bd], the set {
A(j) : j ∈ J ;xd ∈

(
a
(j)
d , b

(j)
d

)}
of d− 1-dimensional boxes covers A. Applying the inductive hypothesis (1.1) at dimension d− 1
we thus see that ∑

j∈J

f (j) (xd) =
∑

j∈J :xd∈
(
a
(j)
d ,b

(j)
d

) vold−1

(
A(j)

)
≥ vold−1(A).

Integrating this over [ad, bd], we obtain∫
[ad,bd]

∑
j∈J

f (j) ≥ vold−1(A) (bd − ad) = vol(B)

and in particular ∫ ∞

−∞

∑
j∈J

f (j) ≥ vold−1(A) (bd − ad) = vol(B)

since
∑

j∈J f
(j) is always non-negative. Combining this with (1.2) we obtain (1.1), and the induction

is complete.
□

Once we obtain the measure of a closed box, the corresponding result for an open box is easy:
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Corollary 1.4. For any open box

B =
d∏

i=1

(ai, bi) :=
{
(x1, . . . , xd) ∈ Rd : xi ∈ (ai, bi) for all 1 ≤ i ≤ d

}
,

we have

m∗(B) =
d∏

i=1

(bi − ai)

In particular, outer measure obeys the normalization property.

Proof. Note that we may assume that bi > ai for all i, since if bi = ai this follows from
Lemma 1.2 (i). Now observe that

d∏
i=1

[ai + ε, bi − ε] ⊂
d∏

i=1

(ai, bi) ⊂
d∏

i=1

[ai, bi]

for all ε > 0, assuming that ε is small enough that bi− ε > ai + ε for all i. Applying Proposition 1.3
and Lemma 1.2 (iii) we obtain

d∏
i=1

(bi − ai − 2ε) ≤ m∗

(
d∏

i=1

(ai, bi)

)
≤

d∏
i=1

(bi − ai) .

Sending ε→ 0 one obtains the result. □

We now compute some examples of outer measure on the real line R.
Example 1.2. Let us compute the one-dimensional measure of R. Since (−R,R) ⊂ R for all
R > 0, we have

m∗(R) ≥ m∗((−R,R)) = 2R

by Corollary 1.4. Letting R → +∞ we thus see that m∗(R) = +∞.
Example 1.3. Now let us compute the one-dimensional measure of Q. From Remark 1.10 we see
that for each rational number Q, the point {q} has outer measure m∗({q}) = 0. Since Q is clearly
the union Q =

⋃
q∈Q{q} of all these rational points q, and Q is countable, we have

m∗(Q) ≤
∑
q∈Q

m∗({q}) =
∑
q∈Q

0 = 0

and so m∗(Q) must equal zero. In fact, the same argument shows that every countable set has
measure zero. (This, incidentally, gives another proof that the real numbers are uncountable.)
Remark 1.11. One consequence of the fact that m∗(Q) = 0 is that given any ε > 0, it is possible
to cover the rationals Q by a countable number of intervals whose total length is less than ε. For
example, writing Q = (qi)i∈N, we can take an interval with length ε/2i around each qi ∈ Q, thus
obtaining that the total length of the intervals is

∑
i∈N ε/2

i = ε.
Example 1.4. Now let us compute the one-dimensional measure of the irrationals R\Q. From
finite sub-additivity we have

m∗(R) ≤ m∗(R\Q) +m∗(Q).

Since Q has outer measure 0 , and m∗(R) has outer measure +∞, we thus see that the irrationals
R\Q have outer measure +∞. A similar argument shows that [0, 1]\Q, the irrationals in [0, 1],
have outer measure 1.
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Example 1.5. By Proposition 1.3, the unit interval [0, 1] in R has one-dimensional outer measure
1, but the unit interval {(x, 0) : 0 ≤ x ≤ 1} in R2 has two-dimensional outer measure 0. Thus
one-dimensional outer measure and two-dimensional outer measure are quite different. Note that
the above remarks and countable additivity imply that the entire x-axis of R2 has two-dimensional
outer measure 0, despite the fact that R has infinite one-dimensional measure.

1.4. Outer measure is not additive

In light of Lemma 1.2, it would seem now that all we need to do is to verify the additivity
properties, and we have everything we need to have a usable measure. Unfortunately, these properties
fail for outer measure, even in one dimension, as it can be proved with Vitali’s construction.

Proposition 1.5 (Failure of countable additivity). There exists a countable collection (Aj)j∈J of

disjoint subsets of R, such that m∗
(⋃

j∈J Aj

)
̸=
∑

j∈J m
∗ (Aj).

Proof. We shall need some notation. Let Q be the rationals, and R be the reals. We say that
a set A ⊂ R is a coset of Q if it is of the form A = x+Q for some real number x. For instance,√
2 + Q is a coset of R, as is Q itself, since Q = 0 + Q. Note that a coset A can correspond to

several values of x; for instance 2 +Q is exactly the same coset as 0 +Q. Also observe that it is
not possible for two cosets to partially overlap; if x+Q intersects y +Q in even just a single point
z, then x− y must be rational (use the identity x− y = (x− z)− (y − z)), and thus x+Q and
y +Q must be equal. So any two cosets are either identical or distinct.

We observe that every coset A of the rationals Q has a non-empty intersection with [0, 1].
Indeed, if A is a coset, then A = x+Q for some real number x. If we then pick a rational number
q in [−x, 1− x] then we see that x+ q ∈ [0, 1], and thus A ∩ [0, 1] contains x+ q.

Let R/Q denote the set of all cosets of Q; note that this is a set whose elements are themselves
sets (of real numbers). For each coset A in R/Q, let us pick an element xA of A ∩ [0, 1]. (This
requires us to make an infinite number of choices, and thus requires the axiom of choice.) Let E be
the set of all such xA, i.e., E := {xA : A ∈ R/Q}. Note that E ⊆ [0, 1] by constrution.

Now consider the set
X =

⋃
q∈Q∩[−1,1]

(q + E) (1.3)

Clearly this set is contained in [−1, 2] (since q+x ∈ [−1, 2] whenever q ∈ [−1, 1] and x ∈ E ⊆ [0, 1]).
We claim that this set contains the interval [0, 1]. Indeed, for any y ∈ [0, 1], we know that y must
belong to some coset A (for instance, it belongs to the coset y+Q). But we also have xA belonging
to the same coset, and thus y − xA is equal to some rational q. Since y and xA both live in [0, 1],
then q lives in [−1, 1]. Since y = q + xA, we have y ∈ q + E, and hence y ∈ X as desired.

We claim that
m∗(X) ̸=

∑
q∈Q∩[−1,1]

m∗(q + E)

which would prove the claim. To see why this is true, observe that since [0, 1] ⊆ X ⊆ [−1, 2], that
we have 1 ≤ m∗(X) ≤ 3 by monotonicity and Proposition 1.3. For the right hand side, observe
from translation invariance that∑

q∈Q∩[−1,1]

m∗(q + E) =
∑

q∈Q∩[−1,1]

m∗(E).

The set Q ∩ [−1, 1] is countably infinite. Thus the right-hand side is either 0 (if m∗(E) = 0) or
+∞ (if m∗(E) > 0). Either way, it cannot be between 1 and 3, and the claim follows. □
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The above proof used the axiom of choice. This turns out to be necessary; one can prove using
some advanced techniques in mathematical logic that if one does not assume the axiom of choice,
then it is possible to have a mathematical model where outer measure is countably additive.

One can refine the above argument, and show in fact that m∗ is not finitely additive either:

Proposition 1.6 (Failure of finite additivity). There exists a finite collection (Aj)j∈J of disjoint
subsets of R, such that

m∗

(⋃
j∈J

Aj

)
̸=
∑
j∈J

m∗ (Aj) .

Proof. This is accomplished by an indirect argument. Suppose for sake of contradiction that
m∗ was finitely additive. Let E and X be the sets introduced in Proposition 1.5. From countable
sub-additivity and translation invariance we have

m∗(X) ≤
∑

q∈Q∩[−1,1]

m∗(q + E) =
∑

q∈Q∩[−1,1]

m∗(E).

Since we know that 1 ≤ m∗(X) ≤ 3, we thus have m∗(E) ̸= 0, since otherwise we would have
m∗(X) ≤ 0, a contradiction.

Since m∗(E) ̸= 0, there exists a finite integer n > 0 such that m∗(E) > 1/n. Now let J be a
finite subset of Q ∩ [−1, 1] of cardinality 3n. If m∗ were finitely additive, then we would have

m∗

(⋃
q∈J

q + E

)
=
∑
q∈J

m∗(q + E) =
∑
q∈J

m∗(E) > 3n
1

n
= 3.

But we know that
⋃

q∈J q+E is a subset of X, which has outer measure at most 3. This contradicts
monotonicity. Hence m∗ cannot be finitely additive. □

Remark 1.12. The examples here are related to the Banach-Tarski paradox, which demonstrates
(using the axiom of choice) that one can partition the unit ball in R3 into a finite number of pieces
which, when rotated and translated, can be reassembled to form two complete unit balls! Of course,
this partition involves non-measurable sets. We will not present this paradox here as it requires
some group theory which is beyond the scope of the course.

1.5. Measurable sets

As we mentioned in the introduction to this chapter and rigorously proved in section 1.4, m∗

cannot be countably or finite additive on all subsets of Rd. We need to exclude pathological sets to
recover finite and countable additivity. Fortunately, this can be done, thanks to a clever definition
by Constantin Carathéodory (1873-1950):

Definition (Lebesgue measurability). Let E be a subset of Rd. We say that E is Lebesgue
measurable, or measurable for short, iff we have the identity

m∗(A) = m∗(A ∩ E) +m∗(A\E)

for every subset A of Rd. If E is measurable, we define the Lebesgue measure of E to be
m(E) = m∗(E); if E is not measurable, we leave m(E) undefined.

Remark 1.13. In other words, E being measurable means that if we use the set E to divide up
an arbitrary set A into two parts, we keep the additivity property.



1.5. MEASURABLE SETS 11

The above definition is somewhat hard to work with, and in practice one does not verify a set
is measurable directly from this definition. Instead, we will use this definition to prove various
useful properties of measurable sets (Lemmas 1.7–1.14), and after that we will rely more or less
exclusively on the properties in those lemmas, and no longer need to refer to the above definition.

We begin by showing that a large number of sets are indeed measurable. The empty set E = ∅
and the whole space E = Rd are clearly measurable:

m∗(A) = m∗(A ∩∅) +m∗(A ∩ Rd) = m∗(∅) +m∗(A) = m∗(A).

Here is another example of a measurable set:

Lemma 1.7 (Half-spaces are measurable). The half-space{
(x1, . . . , xd) ∈ Rd : xd > 0

}
is measurable.

Proof. [This proof is the content of Series 2, ex. 2− 3] We first handle the case d = 1. Note
that since we are working in one dimension the volume of a cube corresponds to the length of
an interval. We have already proved that m∗(A) ≤ m∗(A ∩ (0,∞)) +m∗(A \ (0,∞)), by finite
subadditivity of m∗. Now, we prove the reverse inequality. Fix ε > 0 and consider {Bi}∞i=1 a
countable familly of intervals such that

∞∑
i=1

volBi ≤ m∗(A) + ε and A ⊆
∞⋃
i=1

Bi.

Now, for all i = 1, 2, . . ., define

B1
i = Bi ∩ (0,∞),

B2
i = Bi ∩ (−∞, ε/2i).

Note that B1
i and B2

i are open intervals and volB1
i + volB2

i ≤ volBi + ε/2i. Observe that

A ∩ (0,∞) ⊆
[ ∞⋃
i=1

Bi

]
∩ (0,∞) =

∞⋃
i=1

[Bi ∩ (0,∞)] =
∞⋃
i=1

B1
i .

In a similar way, we can prove A \ (0,∞) ⊆
⋃∞

i=1B
2
i . Finally, by definition of outer measure,

m∗(A ∩ (0,∞)) +m∗(A \ (0,∞)) ≤
∞∑
i=1

volB1
i +

∞∑
i=1

volB2
i ≤

∞∑
i=1

[
volBi +

ε

2i

]
≤ m∗(A) + 2ε.

Since this inequality is true for any ε > 0, we deduce

m∗(A ∩ (0,∞)) +m∗(A \ (0,∞)) ≤ m∗(A) .

This proves the claim when the dimension is one. We now deal with the case d > 1. We have
m∗(A) ≤ m∗(A∩E)+m∗(A\E) by finite subadditivity of m∗. Then we prove the reverse inequality.
Fix ε > 0 . There is a countable family of open boxes {Bi}∞i=1 such that

∞∑
i=1

volBi ≤ m∗(A) + ε, A ⊆
∞⋃
i=1

Bi.

Every Bi is an open box of the form Bi =
∏d

k=1(a
(i)
k , b

(i)
k ). Define for any i = 1, 2, . . .,

εi =
ε

2i
∏d−1

k=1 |a
(i)
k − b

(i)
k |
,
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and correspondingly,

B1
i =

d−1∏
k=1

(a
(i)
k , b

(i)
k )×

[
(a

(i)
d , b

(i)
d ) ∩ (0,∞)

]
,

B2
i =

d−1∏
k=1

(a
(i)
k , b

(i)
k )×

[
(a

(i)
d , b

(i)
d ) ∩ (−∞, εi)

]
.

Notice that B1
i and B2

i are open boxes and

volB1
i + volB2

i ≤
d−1∏
k=1

|a(i)k − b
(i)
k |
(
|a(i)d − b

(i)
d |+ εi

)
=

d∏
k=1

|a(i)k − b
(i)
k |+ ε/2i = volBi + ε/2i

We can prove that A ∩ E ⊆ ∪∞
i=1B

1
i and A \ E ⊆ ∪∞

i=1B
2
i . Finally,

m∗(A ∩ E) +m∗(A \ E) ≤
∞∑
i=1

volB1
i +

∞∑
i=1

volB2
i ≤

∞∑
i=1

[
volBi + ε/2i

]
≤ m∗(A) + 2ε.

Since this inequality is true for any ε, we deduce

m∗(A ∩ E) +m∗(A \ E) ≤ m∗(A) .

□

Remark 1.14. A similar argument will also show that any half-space of the form{
(x1, . . . , xd) ∈ Rd : xj > 0

}
or
{
(x1, . . . , xd) ∈ Rd : xj < 0

}
(1.4)

for some 1 ≤ j ≤ d is measurable.
Now we present some more properties of measurable sets.

Lemma 1.8 (Properties of measurable sets). The following properties hold.
(i) If E is measurable, then Rd\E is also measurable.
(ii) (Translation invariance) If E is measurable, and x ∈ Rd, then x+ E is also measurable,

and m(x+ E) = m(E).
(iii) (Homogeneity) If E is measurable, and a ∈ R, then aE is also measurable, and m(aE) =

|a|dm(E).
(iv) If E1 and E2 are measurable, then E1 ∩ E2 and E1 ∪ E2 are measurable.
(v) (Boolean algebra property) If E1, E2, . . . , EN are measurable, then

⋃N
j=1Ej and

⋂N
j=1Ej

are measurable.
(vi) Every open box, and every closed box, is measurable.
(vii) Any set E of outer measure zero (i.e., m∗(E) = 0) is measurable.

Proof. (i) We write, for any A ⊂ Rd, by measurability of E

m∗(A) = m∗(A ∩ E) +m∗(A \ E) = m∗(A ∩ (Ec)c) +m∗(A \ E)
= m∗(A \ Ec) +m∗(A ∩ Ec).

(ii) By translation invariance of m∗ (Lemma 1.2, (iv)), we have

m∗(A) = m∗(A− x) = m∗((A− x) ∩ E) +m∗((A− x) \ E)
= m∗(A ∩ (x+ E)) +m∗(A \ (x+ E)).
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(iii) Assume that a is not 0, otherwise the claim follows from (vii). By homogeneity of m∗

(Lemma 1.2, (vi)), we have

m∗(A) = |a|dm∗
(
1

a
A

)
= |a|d

[
m∗
((

1

a
A

)
∩ E

)
+m∗

((
1

a
A

)
\E
)]

= m∗ (A ∩ (aE)) +m∗ (A\ (aE)) .

(iv) We have to prove that

m∗(A) ≥ m∗(A ∩ (E1 ∪ E2)) +m∗(A \ (E1 ∪ E2)),

the other inequality being always true. We write, by measurability of E1 and E2, and by
subbaditivity of the outer measure (Lemma 1.2, (v)),

m∗(A) = m∗(A ∩ E1) +m∗(A ∩ Ec
1)

= m∗(A ∩ E1 ∩ E2) +m∗(A ∩ Ec
1 ∩ E2) +m∗(A ∩ E1 ∩ Ec

2) +m∗(A ∩ Ec
1 ∩ Ec

2)

≥ m∗(A ∩ (E1 ∪ E2)) +m∗(A ∩ Ec
1 ∩ Ec

2),

which yields the claim.
(v) Follows from (iii) by induction.
(vi) Open boxes can be seen as intersections of half-spaces, therefore by Lemma 1.7 and (iii)

we prove their measurability. In particular, we define

H(j)
aj

:=
{
(x1, . . . , xd) ∈ Rd : xj > aj

}
, G

(j)
bj

:=
{
(x1, . . . , xd) ∈ Rd : xj < bj

}
.

We can then write an open box as:

B =
d⋂

j=1

H(j)
aj

∩G(j)
bj
,

therefore by the boolean algebra property (iii) B is measurable. The proof for closed boxes
is analogue, by taking the half-planes

H(j)
aj

:=
{
(x1, . . . , xd) ∈ Rd : xj ≥ aj

}
, G(j)

aj
:=
{
(x1, . . . , xd) ∈ Rd : xj ≤ bj

}
.

(vii) Finally, if m∗(E) = 0, we have

m∗(A ∩ E) ≤ m∗(E) = 0

and
m∗(A ∩ Ec) ≤ m∗(A).

Therefore,
m∗(A) ≥ m∗(A ∩ E) +m∗(A \ E),

which yields the claim as the reverse inequality is always true.
□

With Lemma 1.8, we have proved many properties on our wish list of measurable sets, and we
are making progress towards finite additivity. We can actually prove it:

Lemma 1.9 (Finite additivity). If (Ej)j∈J is a finite collection of disjoint measurable sets and A
is any set (not necessarily measurable), we have

m∗

(
A ∩

⋃
j∈J

Ej

)
=
∑
j∈J

m∗ (A ∩ Ej) . (1.5)
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Furthermore, we have

m

(⋃
j∈J

Ej

)
=
∑
j∈J

m (Ej) . (1.6)

Proof. The equality in (1.6) follows from (1.5) by setting A := Rd. To prove (1.5), we show
the case |J | = 2, the general case following by induction. We know, by the measurability of E1 that

m∗ (A ∩ (E1 ∪ E2)) = m∗ (A ∩ (E1 ∪ E2) ∩ E1) +m∗ (A ∩ (E1 ∪ E2) ∩ Ec
1)

= m∗(A ∩ E1) +m∗(A ∩ E2).

For the general case, we reason by induction, proving the case |J | = N and supposing true the case
|J | = N − 1. We write

m∗

(
A ∩

N⋃
j=1

Ej

)
= m∗

(
A ∩

N⋃
j=1

Ej ∩ EN

)
+m∗

(
A ∩

N⋃
j=1

Ej ∩ Ec
N

)

= m∗(A ∩ EN) +m∗

(
A ∩

N−1⋃
j=1

Ej

)

= m∗(A ∩ EN) +
N−1∑
j=1

m∗(A ∩ Ej)

=
N∑
j=1

m∗(A ∩ Ej),

which conludes the proof. □

Remark 1.15. Lemma 1.9 and Proposition 1.6 combined can imply that there exist non-measurable
sets.

Corollary 1.10. If A ⊆ B are two measurable sets, then B\A is also measurable and, if in addition
m(A) < +∞, we have

m(B\A) = m(B)−m(A)

Proof. Remark that B = A ∪ (B \ A). By finite additivity (Lemma 1.9) we obtain

m(B) = m(A) +m(B \ A),

which yields the claim. □

Now we show countable additivity.

Lemma 1.11 (Countable additivity). If (Ej)j∈J is a countable collection of disjoint measurable
sets, then

⋃
j∈J Ej is measurable, and

m

(⋃
j∈J

Ej

)
=
∑
j∈J

m (Ej) (1.7)

Proof. Let E :=
⋃

j∈J Ej . Our first task will be to show that E is measurable. Thus, let A be
an arbitrary set (not necessarily measurable); we need to show that

m∗(A) = m∗(A ∩ E) +m∗(A\E). (1.8)
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Since J is countable, we can assume without loss of generality J = N. Note that

A ∩ E =
∞⋃
j=1

(A ∩ Ej)

and hence by countable sub-additivity

m∗(A ∩ E) ≤
∞∑
j=1

m∗ (A ∩ Ej) .

We rewrite this as

m∗(A ∩ E) ≤ sup
N≥1

N∑
j=1

m∗ (A ∩ Ej) .

Let FN be the set FN :=
⋃N

j=1Ej. Since the A ∩ Ej are all disjoint, and their union is A ∩ FN , we
see by finite additivity (Lemma 1.9) that

N∑
j=1

m∗ (A ∩ Ej) = m∗ (A ∩ FN)

and hence
m∗(A ∩ E) ≤ sup

N≥1
m∗ (A ∩ FN) .

Now we look at A\E. Since FN ⊆ E, we have A\E ⊆ A\FN . By monotonicity, we thus have

m∗(A\E) ≤ m∗ (A\FN)

for all N . In particular, we see that

m∗(A ∩ E) +m∗(A\E) ≤ sup
N≥1

m∗ (A ∩ FN) +m∗(A\E)

≤ sup
N≥1

m∗ (A ∩ FN) +m∗ (A\FN)

= m∗(A)

where in the last line we used that FN is measurable thanks to the finite additivity. But from finite
sub-additivity we have

m∗(A ∩ E) +m∗(A\E) ≥ m∗(A)

and the claim (1.8) follows. This shows that E is measurable.
To finish the lemma, we need to show (1.7). We first observe from countable sub-additivity that

m(E) ≤
∑
j∈J

m (Ej) =
∞∑
j=1

m (Ej) .

On the other hand, by finite additivity and monotonicity we have

m(E) ≥ sup
N≥1

m (FN) = sup
N≥1

N∑
j=1

m (Ej) =
∞∑
j=1

m (Ej)

and thus we have (1.7) as desired. □

Next, we prove measurability for countable unions and intersections.

Lemma 1.12 (σ-algebra property). If (Ej)j∈J is any countable collection of measurable sets (so J
is countable), then the union

⋃
j∈J Ej and the intersection

⋂
j∈J Ej are also measurable.
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Proof. We remark that
∞⋃
j=1

Ej = E1 ∪ (E2 \ E1) ∪ (E3 \ (E1 ∪ E2)) ∪ . . . ,

where the unions are disjoint unions. Combining finite additivity, Corollary 1.10 and countable
additivity, we obtain the claim for countable unions of measurable sets. For the case of the
intersection, note that

∞⋂
j=1

Ej =

(
∞⋃
j=1

Ec
j

)c

.

Using the measurability of the complement of a measurable set (Lemma 1.8 (i)) we conclude by the
property just obtained for unions. □

To finally prove measurability for open and closed sets, first need a preliminary lemma.

Lemma 1.13. Every open set can be written as a countable or finite union of open boxes.

Proof. [This proof is the content of Series 1, ex. 3 (iii)]. We first need some notation. Call
a box B =

∏d
i=1 (ai, bi) rational if all of its components ai, bi are rational numbers. Observe that

there are only a countable number of rational boxes (this is since a rational box is described by 2d
rational numbers, and so has the same cardinality as Q2d. But Q is countable, and the Cartesian
product of any finite number of countable sets is countable).

We make the following claim: given any open ball B(x, r), there exists a rational box B which
is contained in B(x, r) and which contains x. To prove this claim, write x = (x1, . . . , xd). For each
1 ≤ i ≤ d, let ai and bi be rational numbers such that

xi −
r

d
< ai < xi < bi < xi +

r

d

Then it is clear that the box
∏d

i=1 (ai, bi) is rational and contains x. A simple computation
using Pythagoras’ theorem (or the triangle inequality) also shows that this box is contained in
B(x, r).

Now let E be an open set, and let Σ be the set of all rational boxes B which are subsets of
E, and consider the union

⋃
B∈ΣB of all those boxes. Clearly, this union is contained in E, since

every box in Σ is contained in E by construction. On the other hand, since E is open, we see that
for every x ∈ E there is a ball B(x, r) contained in E, and by the previous claim this ball contains
a rational box which contains x. In particular, x is contained in

⋃
B∈ΣB. Thus we have

E =
⋃
B∈Σ

B

as desired; note that Σ is countable or finite because it is a subset of the set of all rational boxes,
which is countable. □

Lemma 1.14 (Borel property). Every open set, and every closed set, is Lebesgue measurable.

Proof. It suffices to do this for open sets, since the claim for closed sets then follows by
measurability of complements (Lemma 1.8(i)). Let E be an open set. By Lemma 1.13, E is the
countable union of boxes. Since we already know that boxes are measurable, and that the countable
union of measurable sets is measurable, the claim follows. □

The construction of Lebesgue measure and its basic properties are now complete. Now we
make the next step in constructing the Lebesgue integral - describing the class of functions we can
integrate.



1.6. MEASURABLE FUNCTIONS 17

1.6. Measurable functions

In the theory of the Riemann integral, we are only able to integrate a certain class of functions -
the Riemann integrable functions. We will now be able to integrate a much larger range of functions,
for instance, non-negative measurable functions.

Definition (Measurable functions). Let Ω be a measurable subset of Rd, and let f : Ω → Rm

be a function. A function f is measurable iff f−1(V ) is measurable for every open set V ⊆ Rm.

As discussed earlier, most sets that we deal with in real life are measurable, so it is only natural
to learn that most functions we deal with in real life are also measurable. For instance, continuous
functions are automatically measurable:

Lemma 1.15 (Continuous functions are measurable). Let Ω be a measurable subset of Rd, and let
f : Ω → Rm be continuous. Then f is also measurable.

Proof. Let V be any open subset of Rm. Then since f is continuous, f−1(V ) is open relative
to Ω, i.e., f−1(V ) = W ∩ Ω for some open set W ⊆ Rd. Since W is open, it is measurable; since Ω
is measurable, W ∩ Ω is also measurable. □

Because of Lemma 1.13, we have an easy criterion to test whether a function is measurable or
not:

Lemma 1.16. Let Ω be a measurable subset of Rd, and let f : Ω → Rm be a function. Then f is
measurable if and only if f−1(B) is measurable for every open box B.

Proof. The only if statement is trivial, so we only prove the other direction. By Lemma 1.13,
every open set V ⊆ Rm can be expressed as a countable union of open boxes, namely

V =
∞⋃
i=1

Bi.

Therefore

f−1(V ) = f−1

(
∞⋃
i=1

Bi

)
=

∞⋃
i=1

f−1(Bi)

is measurable by Lemma 1.11. □

Corollary 1.17. Let Ω be a measurable subset of Rd, and let f : Ω → Rm be a function. Suppose
that f = (f1, . . . , fm), where fj : Ω → R is the jth co-ordinate of f . Then f is measurable if and
only if all of the fj are individually measurable.

Proof. If f is measurable, by the fact that

f−1
j (a, b) = f−1(R× · · · × R︸ ︷︷ ︸

j−1 times

× (a, b)× R× · · · × R)

we get that f−1
j ((a, b)) is measurable, so we can conclude by Theorem 1.16 and the fact that

R× · · · × R× (a, b)× R× · · · × R
is open.

If fj is measurable ∀j, then

f−1

(
m∏
j=1

(aj, bj)

)
=

m⋂
j=1

f−1
j (aj, bj)

is measurable and again we conclude via Theorem 1.16. □



18 1. MEASURE THEORY

Unfortunately, it is not true that the composition of two measurable functions is automatically
measurable; however we can do the next best thing: a continuous function applied to a measurable
function is measurable.

Lemma 1.18. Let Ω be a measurable subset of Rd, and let W be an open subset of Rm. If
f : Ω → W is measurable, and g : W → Rp is continuous, then g ◦ f : Ω → Rp is measurable.

Proof. Take a open subset V ⊆ Rp. We have

(g ◦ f)−1(V ) = f−1
(
g−1(V )

)
.

As g is continuous, g−1(V ) is open, and as f is measurable, f−1 (g−1(V )) is measurable. □

This has an immediate corollary:

Corollary 1.19. Let Ω be a measurable subset of Rd. If f : Ω → R is a measurable function, then
so is |f |,max(f, 0), and min(f, 0).

Proof. Apply Lemma 1.18 with g(x) := |x|, g(x) := max(x, 0), and g(x) := min(x, 0) □

A slightly less immediate corollary:

Corollary 1.20. Let Ω be a measurable subset of Rd. If f : Ω → R and g : Ω → R are measurable
functions, then so is f + g, f − g, fg, max(f, g), and min(f, g). If g(x) ̸= 0 for all x ∈ Ω, then f/g
is also measurable.

Proof. Consider f + g. We can write this as k ◦ h, where h : Ω → R2 is the function
h(x) = (f(x), g(x)), and k : R2 → R is the function k(a, b) := a+ b. Since f, g are measurable, then
h is also measurable by Corollary 1.17. Since k is continuous, we thus see from Lemma 1.18 that
k ◦ h is measurable, as desired. A similar argument deals with all the other cases; the only thing
concerning the f/g case is that the space R2 must be replaced with {(a, b) ∈ R2 : b ̸= 0} in order
to keep the map (a, b) 7→ a/b continuous and well-defined. □

Another characterization of measurable functions is given by

Lemma 1.21. Let Ω be a measurable subset of Rd, and let f : Ω → R be a function. Then f is
measurable if and only if f−1((a,∞)) is measurable for every real number a.

Proof. The implication ⇒ is trivial. To prove the implication ⇐, by Theorem 1.16 it suffices
to show that f−1((a, b)) is measurable ∀a < b ∈ R. Note that

f−1([b,+∞)) =
⋂
n∈N

f−1

((
b− 1

n
,+∞

))
︸ ︷︷ ︸

measurable by hypothesis

.

We conclude that f−1([b,+∞)) is measurable by measurability of countable intersections of mea-
surable sets (Theorem 1.8 (iv)). Then, we have that

f−1((a, b)) = f−1((a,+∞)) ∩ f−1((−∞, b) = f−1((a,+∞)) ∩ f−1([b,+∞))C ,

which are both measurable sets. □

Inspired by this lemma, we extend the notion of a measurable function to the extended real
number system R∗ := R ∪ {+∞} ∪ {−∞} :

Definition (Measurable functions in the extended reals). Let Ω be a measurable subset of
Rd. A function f : Ω → R∗ is said to be measurable iff f−1((a,+∞]) is measurable for every real
number a.
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Note that Lemma 1.21 ensures that the notion of measurability for functions taking values in
the extended reals R∗ is compatible with that for functions taking values in just the reals R.

Measurability behaves well with respect to limits:

Lemma 1.22 (Limits of measurable functions are measurable). Let Ω be a measurable subset of
Rd. For each positive integer n, let fn : Ω → R∗ be a measurable function. Then the functions
supn≥1 fn, infn≥1 fn, lim supn→∞ fn, lim infn→∞ fn are also measurable. In particular, if the fn
converge pointwise to another function f : Ω → R∗, then f is also measurable.

Proof. We first prove the claim about supn≥1 fn. Call this function g. We have to prove that
g−1((a,+∞]) is measurable for every a. But by the definition of supremum, we have

g−1((a,+∞]) =
⋃
n≥1

f−1
n ((a,+∞]),

and the claim follows since the countable union of measurable sets is again measurable.
A similar argument works for infn≥1 fn. The claim for lim sup and lim inf then follow from the

identities
lim sup
n→∞

fn = inf
N≥1

sup
n≥N

fn

and
lim inf
n→∞

fn = sup
N≥1

inf
n≥N

fn.

□

1.7. The Cantor set

In this section, we introduce the Cantor (ternary) set1, a famous example of a Borel set which
has Lebesgue measure 0 and yet the cardinality of the continuum.

We define it inductively as follows. As a base case, we let
C0 := [0, 1] ;

C1 := [0, 1/3] ∪ [2/3, 1] ,

C2 := [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1] ,

that is, for k ∈ N≥1, the set Ck is the union of 2k disjoint closed intervals of length 3−k and, to
obtain Ck+1 from Ck, we remove the open middle third from each of the intervals in Ck. The
interval I1,1 =

(
1
3
, 2
3

)
, which is removed from C0 at the 1st stage to obtain C1, will be called the

removed (or complementary) interval of C1. In general, the 2k intervals that are removed from Ck

to obtain Ck+1 will be called the removed (or complementary) intervals of Ck+1 and will be labeled,
from left to right, as Ik+1,j, where j ∈ {1, . . . , 2k}.

We remark that, by induction, it is possible to show that

Ik,j =

(
3i+ 1

3k
,
3i+ 2

3k

)
for some i ∈ N, with 0 ≤ i ≤ 3k−1 − 1.

and that the intervals that remain to make up Ck after the Ik,j are removed are of the form[
3j + 0

3k
,
3j + 1

3k

]
and

[
3j + 2

3k
,
3j + 3

3k

]
. (1.9)

Now {Ck}k∈N is a nested sequence of non-empty compact sets:
· · · ⊂ Ck+1 ⊂ Ck ⊂ · · · ⊂ C2 ⊂ C1 ⊂ C0 .

1It was introduced by Henry John Stephen Smith [Smi75], Vito Volterra [Vol81], and Georg Cantor [Can84]. See
[Fle94] for a more detailed historical account.
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Figure 1. First few stages of the construction of the Cantor set.

The Cantor set is defined as

C :=
∞⋂
k=0

Ck .

If we denote by Ek the union of the open intervals that are removed at the k-th stage, then

C := [0, 1] \
∞⋃
k=1

Ek := [0, 1] \

 ∞⋃
k=1

2k−1⋃
j=1

Ik,j

 .

In the following proposition, we present some further properties of the Cantor set.

Theorem 1.23 (Properties of the Cantor set). The Cantor set C has the following properties:
(i) C is compact and non-empty.
(ii) C is measurable and its Lebesgue measure is 0.
(iii) C is nowhere dense2.
(iv) C is equal to the set of all x ∈ [0, 1] which have a ternary expansion containing only the

digits 0 and 2, i.e.,

C ≡

{
∞∑
n=1

an
3n

: an ∈ {0, 2} for n ∈ N∗

}
=:
{
a ∈ [0, 1] : a = (0.a1a2 . . .)3 with ai ∈ {0, 2} for i ∈ N∗

}
,

where (0.a1a2 . . .)3 denotes a possible ternary expansion of a ∈ [0, 1].
(v) C is perfect3.
(vi) C is totally disconnected4.
(vii) C is uncountable.

Remark 1.16. The ternary expansion mentioned in (iv) is not unique (see Exercise 5 of Series 2).
Notice, however, that while it may be possible for x ∈ R to have two different ternary representations
(check that 1

3
= (0.1000 . . .)3 = (0.0222 . . .)3, as an example), x cannot be written in more than one

way without using the digit 1. That is, we claim that, if
∑∞

n=1
αn

3n
=
∑∞

n=1
βn

3n
, where each of αn

and βn is either 0 or 2, then αn = βn for every n. Suppose that there exists an n such that αn ̸= βn.
Let m be the smallest integer such that αm ≠ βm. Then |αm − βm| = 2 and |αn − βn| ≤ 2 for every

2We say that a set E ⊂ R is nowhere dense (in R) if the interior of the closure of E (in R) is the empty set.
3We say that a set E is perfect if it is closed and each point of E is a limit point of E.
4We say that a set E is totally disconnected if, for each distinct x ∈ E and y ∈ S, there exist disjoint open sets

U and V such that x ∈ U , y ∈ V , and E = (U ∩ E) ∪ (V ∩ E).
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n, so that

0 =

∣∣∣∣∣
∞∑

n=m

αn

3n
−

∞∑
n=m

βn
3n

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=m

αn − βn
3n

∣∣∣∣∣
=

∣∣∣∣∣αm − βm
3m

+
∞∑

n=m+1

αn − βn
3n

∣∣∣∣∣
≥ |αm − βm|

3m
−

∣∣∣∣∣
∞∑

n=m+1

αn − βn
3n

∣∣∣∣∣
≥ |αm − βm|

3m
−

∞∑
n=m+1

|αn − βn|
3n

≥ 1

3m
|αm − βm| −

∞∑
n=m+1

2

3n

=
1

3m
,

which yields a contradiction. Hence, αn = βn for every n ∈ N∗.

Proof.
(i) For every k ∈ N, the set Ck is closed. Since any intersection of closed sets is closed, then

the Cantor set C :=
⋂∞

k=0Ck is closed. Finally, C is compact since it is both closed and
bounded (as subset of [0, 1]).

It remains to show that C ̸= ∅. For each k ∈ N, let xk ∈ Ck. Then {xk}k∈N ⊆ C1. By
compactness, there is a convergent subsequence

{
xkj
}
j∈N with limit x0 ∈ C1. However,{

xkj
}∞
j=2

⊆ C2. Thus x0 ∈ C2. An analogous reasoning shows that x0 ∈ Ck for all
k = 1, 2, . . .. In conclusion, x0 ∈

⋂
k∈NCk =: C.

(ii) For every k ∈ N, the set Ck is measurable. Since any countable intersection of measurable
sets is measurable, then the Cantor set C :=

⋂∞
k=0Ck is measurable. By construction, Ck

is formed by 2k disjoint intervals of length 3−k, so m(Ck) = (2/3)k . Since C ⊂ Ck for any
k ∈ N, we deduce

0 ≤ m(C) ≤ m(Ck) =

(
2

3

)k

.

Letting k → ∞ , we conclude m(C) = 0.
(iii) By (i), C is closed. By contradiction, let us suppose that C contains a (non-empty) open

interval I. By the monotonicity of the Lebesgue measure, we have m(I) ≤ m(C); however,
by (ii), m(C) = 0 which yields a contradiction.

(iv) Let us consider the map

f : {0, 2}N∗ → [0, 1]

a 7→
∑+∞

n=1
an
3n
.

To prove the claim of (iv), we need to show that f is a bijection between {0, 2}N∗ and C.
First, we note that f actually takes values in C ⊂ [0, 1]. By structure of Ck,

k∑
n=1

an
3n

∈ Ck.
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As a result, for a ∈ {0, 2}N∗ ,
+∞∑
n=1

an
3n

= lim
k→+∞

k∑
n=1

an
3n

∈ C.

Second, we prove that f is injective. Let a′, a′′ ∈ {0, 2}N∗ such that

a′i = a′′i for 1 ≤ j < N, a′N < a′′N .

Then, we have a′N = 0, a′′N = 2 and

f (a′) =
+∞∑
i=1

a′n
3n

=
N−1∑
n=1

a′′n
3n

+
+∞∑

i=N+1

a′n
3n

≤
N−1∑
n=1

a′′n
3n

+ 3−N−1 2

1− 1/3

=
N−1∑
n=1

a′′n
3n

+ 3−N

<
N∑

n=1

a′′n
3n

= f (a′′) .

Finally, we prove that f is surjective. Let x ∈ C, we need to show that there exists
a ∈ {0, 2}N∗ such that x = f(a). We start by observing that, since x ∈ [0, 1], we have

[0, 1] ∋ x =
+∞∑
i=1

xi
3i
, for some xi ∈ {0, 1, 2}. (1.10)

We need to show that xi ̸= 1 for all i ∈ N∗. Since x ∈ C, it belongs to an interval of the
form (1.9), i.e., for all n ∈ N∗, there exists a(n) := (a

(n)
1 , . . . , a

(n)
n ) ∈ {0, 2}n such that

xa(n) ≤ x ≤ xa(n) + 3−n,

with the notation xa :=
∑n

i=1
ai
3i

, which implies

x = lim
n→+∞

xa(n) = lim
n→+∞

(
n∑

i=1

a
(n)
i

3i

)
.

We now consider three cases. If x = xa(n) for some n ≥ 1, then

x = f
(
a
(n)
1 , . . . , a(n)n , 0, 0, . . .

)
.

If x = xa(n) + 3−n for some n ≥ 1, then

x =
n∑

i=1

a
(n)
i

3j
+

+∞∑
i=n+1

2

3i︸ ︷︷ ︸
=3−n−1 2

1−1/3
=3−n

= f
(
a
(n)
1 , . . . , a(n)n , 2, 2, . . .

)
,

The third case is xa(n) < x < xa(n) + 3−n. We first note that (because of (1.10))

0 ≤ x−
n∑

i=1

xi
3i

≤
+∞∑
i=n

xi
3i

≤ 3−n−12
1

1− 1
3

= 3−n,
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and then (because of xa(n) < x < xa(n) + 3−n)

3n
n∑

i=1

xi
3i︸ ︷︷ ︸

∈N

≤ 3nx ≤ 3n
n∑

i=1

xi
3j

+ 1, 3nxa(n)︸ ︷︷ ︸
∈N

< 3nx < 3nxa(n) + 1.

This implies
n∑

i=1

xi3
n−i = 3nxa(n) =

n∑
i=1

a
(n)
i 3n−i.

and, thus,

x1︸︷︷︸
∈N

+
n∑

i=2

xi3
1−i

︸ ︷︷ ︸
∈[0,6×3−2× 3

2)=[0,1)

= a
(n)
1︸︷︷︸
∈N

+
n∑

i=1

a
(n)
i 31−i

︸ ︷︷ ︸
∈[0,1)

,

Taking the floor function (or integer part function) of each side of the last identity, we get
x1 = a

(n)
1 ; similarly, we deduce xi = a

(n)
i for 1 ≤ i ≤ n, so that each xi belongs to {0, 2}.

(v) To prove that C is perfect, we need to show that it is closed (which follows from (i)) and
that every x ∈ C is a limit point of C. Let x ∈ C and let ε > 0. We choose an integer n
such that 3−k < ε. Since x ∈ Ck, there exists a closed interval I of length 3−k such that
x ∈ I ⊆ Ck. Let a be an endpoint of I that is distinct from x and note that a ∈ C and
0 < |x− a| < ε. Hence, x is a limit point of C.

(vi) To prove that C is totally disconnected, we argue as follows. Let x, y ∈ C be distinct and
assume, without loss of generality, that x < y. Let ε = |x− y|. We choose k so large that
3−k < ε. Then x, y ∈ Ck, but x and y cannot both be in the same interval of Ck (since
these intervals are of length 3−k ). Then there exists t between x and y that does not
belong to Ck (and, in particular, is not an element of C). Let us define U := {s : s < t}
and V := {s : s > t}. Then x ∈ U ∩ C, hence U ∩ C ≠ ∅; analogously, V ∩ C ̸= ∅.
Moreover, (U ∩ C) ∩ (V ∩ C) = ∅. As a result, we conclude that C = (C ∩ U) ∪ (C ∩ V )
(i.e., that C is totally disconnected).

(vii) The bijectivity of the map f defined in (iv) shows that cardC = card{0, 2}N∗ . In turn, we
have card{0, 2}N∗

= card{0, 1}N∗
= card[0, 1] = cardR. Since these sets are uncountable5,

C is also uncountable.
□

Remark 1.17 (Alternative proofs of the uncountability of the Cantor set). We point out that (v)
actually implies (vii)6.

5This is the content of Cantor’s theorem on the uncountability of the real numbers. For the sake of completeness,
let us provide a quick proof of the uncountability of P := {0, 1}N∗

=
∏∞

n=1{0, 1} (which, in turn, is in bijection
with the subset of real numbers in [0, 1] whose decimal expansions consist of only digits 0 and 1). We suppose, for
the sake of finding a contradiction, that it is countable. Then we can write P = {an : n ∈ N}. We can rewrite
an := {an,m}m∈N for all n. We then construct a sequence x = {xn} such that

xn :=

{
1 if an,n = 0,

0 if an,n = 1.

Then x is a sequence with terms either 0 or 1 , but x ̸= an for any n ∈ N, i.e., x ∈ P \ {an : n ∈ N} = ∅, which is a
contradiction.

6Let us sketch a proof of this fact. Let E ⊂ R be a (non-empty) perfect set. Since E has accumulation points, it
cannot be finite. Therefore it is either countable or uncountable. We will prove that it is uncountable.

Let us suppose, for the sake of finding a contradiction, that E is countable instead, i.e. E = {ai}i∈N.
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Another proof of (vii) is essentially contained in Section 1.9: indeed, the uncountability of C
follows from the construction of the Cantor–Lebesgue function. Since it maps the Cantor ternary
set C onto the interval [0, 1], cardC ≥ card[0, 1]. On the other hand, cardC ≤ card[0, 1] because
C ⊂ [0, 1]. By Cantor–Bernstein–Schröder’s theorem, we then deduce that cardC = card[0, 1].

1.8. σ-algebras

Measures are defined for families of sets that satisfy specific properties. For this reason, we
introduce the structure of σ-algebra.

Definition (σ-algebra). Let X (usually, X = Rd) be a set, A ⊆ 2X is a σ-algebra if:
(i) X ∈ A
(ii) E ∈ A⇒ EC ∈ A
(iii) {Ei}+∞

i=1 ⊆ A⇒
⋃+∞

i=1 Ei ∈ A

Remark 1.18. ∅ ∈ A and {Ei}+∞
i=1 ⊆ A ⇒

⋂+∞
i=1 Ei ∈ A, using the fact that complements and

countable unions of elements of A belong to A as well.
Remark 1.19. By the properties in Lemma 1.8, measurable sets form a σ-algebra. Let us denote
it with M.

On σ-algebras, we can define measures:

Definition (Measure). Let (E,A) be a measurable space. A map µ : A → [0,+∞] is a
measure on (E,A), if it satisfies the following conditions:

(i) µ(∅) = 0;
(ii) µ

(⋃
n∈NAn

)
=
∑∞

n=1 µ(An) ∀{An}n∈N ⊂ A countable family of pairwise disjoint sets.

Remark 1.20. Positive linear combinations of measures are measures.
Example 1.6. Some examples of measure spaces are:

(i) (Rd,M,m) that is the Lebesgue measure space;
(ii) (R,P(R), δx0), where δ0 is the Dirac Delta centered at x0 = 0 (recall that δx0 is such that∫

R ϕ(x)δx0(x)dx = ϕ(x0) ∀ϕ ∈ C∞
c (R));

(iii) (R,P(R),
∑N

n=1 δn) is a measure space;
(iv) (R,P(R),

∑∞
n=1 δn) is a measure space.

Definition (σ-algebra generated by a collection). Let E be a set and A ⊆ 2E. The σ-algebra
generated by A is the smallest σ-algebra containing all elements of A.

This σ-algebra corresponds to the intersection of all the σ-algebras containing all elements of A,
and one could check that the intersection of σ-algebras is still a σ-algebra.

Definition (Borel σ-algebra). The Borel σ-algebra B is the σ-algebra generated by open sets.

Remark 1.21. Equivalently, the Borel σ-algebra B is the σ-algebra generated by the collection of
boxes.

The set U1 := (a1 − 1, a1 + 1) is a neighborhood of a1. Since a1 is a limit point of E, there exist infinitely many
elements of E belonging to U1. Next, we take a bounded open interval U2 such that Ū2 ⊆ U1, U2 ∩ E ̸= ∅, and
a1 ̸∈ Ū2. Inductively, we find Ui+1 such that Ūi+1 ⊆ Ui, ai ̸∈ Ūi+1, and Ui+1 ∩ E ̸= ∅.

For every i ∈ N, the sets Vi := Ūi ∩ E are compact (closed and bounded) and non-empty (by construction).
However, ai−1 ̸∈ Vi. As a consequence, a1 ̸∈ V :=

⋂
i∈N Vi (because a1 ̸∈ V2), a2 ̸∈ V (because a2 ̸∈ V3), and,

inductively, ai ̸∈ V for all i ∈ N. Hence V , being a subset of E = {ai}i∈N, is empty. However, V cannot be empty
because it is obtained as the intersection of non-empty nested compact sets (the proof that such an intersection is
not empty follows along the same lines as the proof of the second half of (i)); this yields a contradiction.
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1.9. B ⊊ M

First of all, we know that B ⊆ M, because M is a σ-algebra containing open sets. We will now
prove that the inclusion is strict, because there exists measurable sets that are not Borel.

Let P be the Cantor set.
We define the Lebesgue function f : [0, 1] → R.
Given x ∈ (0, 1], we can write its binary expansion

x =
∞∑
i=1

ai
2i

= 0.a1a2a3 . . . ai ∈ {0, 1} ∀i ∈ N (1.11)

The binary expansion can be made unique if we identify the expansions

0.a1 . . . ak−101 . . . 1 . . . and 0.a1 . . . ak−110 . . . 0 . . . ,

and assume that the expansions are of the first form (therefore, infinitely many an are equal to 1,
except for x = 0). With this convention, we can define:

f(x) :=
∞∑
i=1

2ai
3n

(1.12)

Figure 2. First few stages of the construction of the Cantor–Lebesgue function.

Lemma 1.24. We can prove for f the following properties:
(i) f([0, 1]) ⊆ P ;
(ii) f is strictly monotone;
(iii) f is measurable.

Proof. Let us prove the various points of the lemma:
(i) since 2ai ∈ {0, 2}, it follows from the definition of the Cantor set that f([0, 1]) ⊆ P .
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(ii) to prove monotonicity, we take 0 < x < y < 1 and consider their binary expansions (unique
with our convention):

x =
∞∑
n=1

an
2n

y =
∞∑
n=1

bn
2n
.

We have that if x < y, then there exists 1 ≤ k < +∞ such that aj = bj ∀j = 1, . . . , k − 1
and ak < bk, which implies ak = 0 and bk = 1.
We then have

f(y)− f(x) =
2

3k
+

∞∑
n=k+1

2(bn − an)

3n
≥ 2

3k
−

∞∑
n=k+1

2

3n
=

1

3k
> 0.

(iii) from the previous point, we have that f is strictly increasing, and therefore it is measurable.
□

Lemma 1.25. Let f : R → R∗ be measurable. Then, f−1(B) is measurable ∀B ∈ B.

Proof. We claim that
Af =

{
B ⊆ R : f−1(B) is measurable.

}
is a σ-algebra containing intervals.
We can prove the claim using the fact that f is measurable:

(i) f−1(R) = R, that is measurable;
(ii) B ∈ Af ⇒ R \ B ∈ Af because f−1(R \ B) = R \ f−1(B). Since B ∈ Af , f−1(B) is

measurable, and therefore its complement is measurable as well;
(iii) {Bn}n∈N ⊂ Af ⇒

⋃
n∈NBn ∈ Af , because f−1

(⋃
n∈NBn

)
=
⋃

n∈N f
−1(Bn), and the

countable union of measurable sets is measurable.
Then, since B is the smallest σ-algebra containing open sets, we can conclude the proof.

□

Now we can show that there exists measurable sets which are not Borel:

Theorem 1.26. There exists a Lebesgue-measurable set A ∈ M such that A /∈ B.

Proof. Take the Vitali set V ⊆ [0, 1], that is non-measurable, and the Lebesgue function f .
Let

B = f(V ) ⊂ f([0, 1]) = P

We can prove that B is measurable: indeed, B ⊆ P , and P is a measurable set with measure 0.
Therefore, its subset B is measurable as well by Lemma 1.8.

Let us now prove that B is not Borel: we assume by contradiction that B is Borel. Then f−1(B)
is measurable by Lemma 1.25. However, since f is injective, we have that f−1(f(V )) = V , which is
not measurable and therefore leads to a contradiction. □



CHAPTER 2

Lebesgue integration

In this chapter, we follow closely the content of [Tao16, Chapter 8].

For the Riemann integral, the typical approach consists in first integrating a particularly simple
class of functions (the piecewise constant functions). Once one learns how to integrate them, one
can then integrate other Riemann integrable functions by a similar procedure and we shall use a
similar philosophy to construct the Lebesgue integral.

We begin by considering a special subclass of measurable functions, called simple functions.
Then we will show how to integrate simple functions, and then from there we will integrate all
measurable functions (or at least the absolutely integrable ones).

2.1. Simple functions

Definition (Simple functions). Let Ω be a measurable subset of Rd, and let f : Ω → R be
a measurable function. We say that f is a simple function if the image f(Ω) is finite. In other
words, there exists a finite number of real numbers c1, c2, . . . , cN such that for every x ∈ Ω, we have
f(x) = cj for some 1 ≤ j ≤ N .

Example 2.1. Let Ω be a measurable subset of Rd, and let E be a measurable subset of Ω. We
define the characteristic function 1E : Ω → R by setting 1E(x) := 1 if x ∈ E, and 1E(x) := 0
if x /∈ E. Then 1E is a measurable function because E is measurable, and is a simple function,
because the image 1E(Ω) is {0, 1} (or {0} if E is empty, or {1} if E = Ω).

We remark on three basic properties of simple functions: they form an algebra, they are linear
combinations of characteristic functions, and they approximate non-negative measurable functions.
More precisely, we have the following three lemmas:

Lemma 2.1. Let Ω be a measurable subset of Rd, and let f : Ω → R and g : Ω → R be simple
functions. Then f + g and fg are also simple functions. Also, for any scalar c ∈ R, the function
cf is also a simple function.

Proof. It follows from the fact that (f + g)(Ω) ⊂ f(Ω) + g(Ω), (fg)(Ω) ⊂ f(Ω) · g(Ω), and
(cf)(Ω) = c · (f(Ω)) are finite. □

Lemma 2.2. Let Ω be a measurable subset of Rd, and let f : Ω → R be a simple function. Then
there exists a finite number of real numbers c1, . . . , cN , and a finite number of disjoint measurable
sets E1, E2, . . . , EN in Ω, such that f =

∑N
i=1 ci1Ei

.

Proof. Define {c1, . . . , cN} := f(Ω) and Ej := f−1({cj}) to recover the claim. □

Lemma 2.3. Let Ω be a measurable subset of Rd, and let f : Ω → R be a measurable function.
Suppose that f is always non-negative, i.e., f(x) ≥ 0 for all x ∈ Ω. Then there exists a sequence
f1, f2, f3, . . . of simple functions, fn : Ω → R, such that the fn are non-negative and increasing,

0 ≤ f1(x) ≤ f2(x) ≤ f3(x) ≤ . . . for every x ∈ Ω

and converge pointwise to f :

lim
n→∞

fn(x) = f(x) for every x ∈ Ω

27
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Proof. The functions

fn(x) := sup
j∈Z

{
j

2n
:
j

2n
≤ min(f(x), 2n)

}
= min

(
⌊2nf(x)⌋

2n
, 2n
)

are non-negative, increasing, and limn→∞ fn(x) = f(x).
First we prove that for all a ∈ R and all n ∈ N we have supj∈Z

{
j
2n

: j
2n

≤ a
}

= ⌊2na⌋
2n

. Let
b = supj∈Z

{
j
2n

: j
2n

≤ a
}
, then 2nb ∈ Z and 2nb ≤ 2na, so 2nb ≤ ⌊2na⌋. For the converse inequality,

we have that ⌊2na⌋ ≤ 2na, so ⌊2na⌋ ≤ 2nb. This proves the formula.
To prove monotonicity, we prove that for all a ∈ R and all n ∈ N we have ⌊2na⌋

2n
≤ ⌊2n+1a⌋

2n+1 . To do
this, notice that ⌊2na⌋ ≤ 2na and so 2⌊2na⌋ ≤ 2n+1a. Since 2⌊2na⌋ ∈ Z, we get 2⌊2na⌋ ≤ ⌊2n+1a⌋
and dividing by 2n+1 gives the claim.
To prove convergence, it suffices to see that for all a ∈ R and n ∈ N we have 0 ≤ a− ⌊2na⌋

2n
< 2−n.

This can be seen through the inequality ⌊2na⌋ ≤ 2na < ⌊2na⌋+ 1. Since 2n → +∞ as n → +∞,
we get pointwise convergence. □

Remark 2.1. One can actually approximate a non-negative measurable function via simple
functions having compact support. Indeed, we can consider the sequence

{1Bk
ϕk}k∈N s.t. 1Bk

ϕk ↑ f,

where ϕk are simple functions that approach f given by Lemma 2.3 and Bk are closed balls of
radius k .

We now show how to compute the integral of simple functions.

Definition (Lebesgue integral of simple functions). Let Ω be a measurable subset of Rd, and
let f : Ω → R be a simple function which is non-negative; thus f is measurable and the image f(Ω)
is finite and contained in [0,∞). We then define the Lebesgue integral

∫
Ω
f of f on Ω by∫

Ω

f :=
∑

λ∈f(Ω);λ>0

λm({x ∈ Ω : f(x) = λ}).

We will also sometimes write
∫
Ω
f as

∫
Ω
fdm (to emphasize the role of Lebesgue measure m) or

use a dummy variable such as x, e.g.,
∫
Ω
f(x)dx.

Example 2.2. Let f : R → R be the function which equals 3 on the interval [1, 2], equals 4 on the
integral (2, 4), and is zero everywhere else. Then∫

Ω

f := 3×m([1, 2]) + 4×m((2, 4)) = 3× 1 + 4× 2 = 11.

Or if g : R → R is the function which equals 1 on [0,∞) and is zero everywhere else, then∫
Ω

g = 1×m([0,∞)) = 1×+∞ = +∞

Thus the simple integral of a simple function can equal +∞. (The reason why we restrict this
integral to non-negative functions is to avoid ever encountering the indefinite form +∞+ (−∞)).
Remark 2.2. Note that this definition of integral corresponds to one’s intuitive notion of integration
(at least of non-negative functions) as the area under the graph of the function (or volume, if one is
in higher dimensions).

Another formulation of the integral for non-negative simple functions is as follows.

Lemma 2.4. Let Ω be a measurable subset of Rd, and let E1, . . . , EN are a finite number of disjoint
measurable subsets in Ω. Let c1, . . . , cN be non-negative numbers (not necessarily distinct). Then
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we have ∫
Ω

N∑
j=1

cj1Ej
=

N∑
j=1

cjm (Ej) .

Proof. We can assume that none of the cj are zero, since we can just remove them from
the sum on both sides of the equation. Let f :=

∑N
j=1 cj1Ej

. Then f(x) is either equal to one
of the cj (if x ∈ Ej ) or equal to 0 (if x /∈

⋃N
j=1Ej ). Thus f is a simple function, and f(Ω) ⊆

{0} ∪ {cj : 1 ≤ j ≤ N}. Thus, by the definition,∫
Ω

f =
∑

λ∈{cj :1≤j≤N}

λm({x ∈ Ω : f(x) = λ})

=
∑

λ∈{cj :1≤j≤N}

λm

 ⋃
1≤j≤N :cj=λ

Ej

 .

But by the finite additivity property of Lebesgue measure, this is equal to∑
λ∈{cj :1≤j≤N}

λ
∑

1≤j≤N :cj=λ

m (Ej)∑
λ∈{cj :1≤j≤N}

∑
1≤j≤N :cj=λ

cjm (Ej) .

Each j appears exactly once in this sum, since cj is only equal to exactly one value of λ. So the
above expression is equal to

∑
1≤j≤N cjm (Ej) as desired. □

Some basic properties of Lebesgue integration of non-negative simple functions:

Proposition 2.5. Let Ω be a measurable set, and let f : Ω → R and g : Ω → R be non-negative
simple functions.

(i) We have 0 ≤
∫
Ω
f ≤ +∞. Furthermore, we have

∫
Ω
f = 0 if and only if m({x ∈ Ω : f(x) ̸=

0}) = 0.
(ii) We have

∫
Ω
(f + g) =

∫
Ω
f +

∫
Ω
g.

(iii) For any positive number c, we have
∫
Ω
cf = c

∫
Ω
f .

(iv) If f(x) ≤ g(x) for almost every x ∈ Ω, then we have
∫
Ω
f ≤

∫
Ω
g.

We make a very convenient notational convention: if a property P (x) holds for all points in Ω,
except for a set of measure zero, then we say that P holds for almost every point in Ω. Thus (i)
asserts that

∫
Ω
f = 0 if and only if f is zero for almost every point in Ω.

Proof. From Lemma 2.2 or from the formula

f =
∑

λ∈f(Ω)\{0}

λ1{x∈Ω:f(x)=λ}

we can write f as a combination of characteristic functions, say

f =
N∑
j=1

cj1Ej

where E1, . . . , EN are disjoint subsets of Ω and the cj are positive. Similarly we can write

g =
M∑
k=1

dk1Fk
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where F1, . . . , FM are disjoint subsets of Ω and the dk are positive.
(i) Since

∫
Ω
f =

∑N
j=1 cjm (Ej) it is clear that the integral is between 0 and infinity. If f

is zero almost everywhere, then all of the Ej must have measure zero and so
∫
Ω
f = 0.

Conversely, if
∫
Ω
f = 0, then

∑N
j=1 cjm (Ej) = 0, which can only happen when all of the

m (Ej) are zero (since all the cj are positive). But then
⋃N

j=1Ej has measure zero, and
hence f is zero almost everywhere in Ω.

(ii) Write E0 := Ω\
⋃N

j=1Ej and c0 := 0, then we have Ω = E0 ∪ E1∪ . . . ∪ EN and

f =
N∑
j=0

cj1Ej
.

Similarly if we write F0 := Ω\
⋃M

k=1 Fk and d0 := 0 then

g =
M∑
k=0

dk1Fk

Since Ω = E0 ∪ . . . ∪ EN = F0 ∪ . . . ∪ FM , we have

f =
N∑
j=0

M∑
k=0

cj1Ej∩Fk

and

g =
M∑
k=0

N∑
j=0

dk1Ej∩Fk

and hence
f + g =

∑
0≤j≤N ;0≤k≤M

(cj + dk)1Ej∩Fk

By Lemma 2.4, we thus have∫
Ω

(f + g) =
∑

0≤j≤N ;0≤k≤M

(cj + dk)m (Ej ∩ Fk) .

On the other hand, we have∫
Ω

f =
∑

0≤j≤N

cjm (Ej) =
∑

0≤j≤N ;0≤k≤M

cjm (Ej ∩ Fk)

and similarly ∫
Ω

g =
∑

0≤k≤M

dkm (Fk) =
∑

0≤j≤N ;0≤k≤M

dkm (Ej ∩ Fk)

and the claim (ii) follows.
(iii) Since cf =

∑N
j=1 ccj1Ej

, we have∫
Ω

cf =
N∑
j=1

ccjm (Ej) .

Since
∫
Ω
f =

∑N
j=1 cjm (Ej), the claim follows.
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(iv) First assume that f(x) ≤ g(x) for every x ∈ Ω. Set h = g − f , then h is a non-negative
simple function. By (ii), we thus have

∫
Ω
g =

∫
Ω
f +

∫
Ω
h. From (i), we know that

∫
Ω
h ≥ 0

and so
∫
Ω
f ≤

∫
Ω
g.

To treat the general case, let A = {x ∈ Ω : f(x) > g(x)}, then by assumption we have
m(A) = 0 and f(x)1Ac(x) ⩽ g(x)1Ac(x) for every x ∈ Ω. Since the product of two
non-negative simple functions is a non-negative simple function (Lemma 2.1), by the
preceding discussion, we get

∫
Ω
f1Ac ≤

∫
Ω
g1Ac . To conclude, it suffices to prove that∫

Ω
f =

∫
Ω
f1Ac and similarly for g. To see this, note that f1Ac =

∑N
j=1 cj1Ej∩Ac . Since

E1, . . . , EN are disjoint, we have that E1 ∩ Ac, . . . , EN ∩ Ac are also disjoint, thus∫
Ω

f =
N∑
j=1

cjm(Ej) =
N∑
j=1

cjm(Ej ∩ Ac) =

∫
Ω

f1Ac .

□

2.2. Integration of non-negative measurable functions

We now pass from the integration of non-negative simple functions to the integration of non-
negative measurable functions. We will allow our measurable functions to take the value of +∞
sometimes.

Definition (Majorization). Let f : Ω → R and g : Ω → R be functions. We say that f
majorizes g, or g minorizes f , iff we have f(x) ≥ g(x) for every x ∈ Ω.

We sometimes use the phrase “f dominates g" instead of “f majorizes g".

Definition (Lebesgue integral for non-negative functions). Let Ω be a measurable subset of
Rd, and let f : Ω → [0,∞] be measurable and non-negative. Then we define the Lebesgue integral∫
Ω
f of f on Ω to be∫

Ω

f := sup

{∫
Ω

s : s is simple and non-negative, and minorizes f
}

.

Remark 2.3. We can compare this notion to that of a lower Riemann integral, but interestingly
we will not need to match this lower integral with an upper integral here.
Remark 2.4. Note that if Ω′ is any measurable subset of Ω, then we can define

∫
Ω′ f as well by

restricting f to Ω′, thus
∫
Ω′ f :=

∫
Ω′ f
∣∣
Ω′ .

We have to check that this definition is consistent with our previous notion of Lebesgue integral
for non-negative simple functions; in other words, if f : Ω → R is a non-negative simple function,
then the value of

∫
Ω
f given by this definition should be the same as the one given in the previous

definition. But this is clear because f certainly minorizes itself, and any other non-negative simple
function s which minorizes f will have an integral

∫
Ω
s less than or equal to

∫
Ω
f , thanks to

Proposition 2.5 (iv).
Remark 2.5. Note that

∫
Ω
f is always at least 0 , since 0 is simple, non-negative, and minorizes f .

Of course,
∫
Ω
f could equal +∞. Some basic properties of the Lebesgue integral on non-negative

measurable functions (which supersede Proposition 2.5):

Proposition 2.6. Let Ω be a measurable set, and let f : Ω → [0,+∞] and g : Ω → [0,+∞] be
non-negative measurable functions.

(i) We have 0 ≤
∫
Ω
f ≤ +∞. Furthermore, we have

∫
Ω
f = 0 if and only if f(x) = 0 for

almost every x ∈ Ω.
(ii) For any positive number c, we have

∫
Ω
cf = c

∫
Ω
f .

(iii) If f(x) ≤ g(x) for almost every x ∈ Ω, then we have
∫
Ω
f ≤

∫
Ω
g.
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(iv) If f(x) = g(x) for almost every x ∈ Ω, then
∫
Ω
f =

∫
Ω
g.

(v) If Ω′ ⊆ Ω is measurable, then
∫
Ω′ f =

∫
Ω
f1Ω′ ≤

∫
Ω
f .

Proof. (i) Observe that
∫
Ω
f ≥ 0 because s ≡ 0 is a simple function that minorizes f .

Furthermore, if
∫
Ω
f = 0 then f = 0 almost everywhere. Suppose for contradiction this is

not the case. Let say f ≥ δ > 0 on a subset E ⊂ Ω of positive measure. Then h := δ1E is
a simple function that minorizes f . Therefore∫

Ω

f ≥
∫
Ω

h > 0,

which is a contradiction.
(ii) Notice that:

c

∫
Ω

f = c sup

{∫
Ω

s : s is simple and non-negative, and minorizes f
}

= sup

{∫
Ω

cs : s is simple and non-negative, and minorizes f
}

= sup

{∫
Ω

s : s is simple and non-negative, and minorizes cf
}

=

∫
Ω

cf,

where we have used the fact that if s is a simple function that minorizes f , then cs is a
simple function that minorizes cf .

(iii) Let A = {x ∈ Ω : f(x) > g(x)} then by assumption we have m(A) = 0. For any s non-
negative simple function minorizing f , we have that s1Ω\A is a non-negative simple function
minorizing g. From the proof of Proposition 2.5 (iv), we see that

∫
Ω
s =

∫
Ω
s1Ac ⩽

∫
Ω
g.

Since s was arbitrary we deduce that
∫
Ω
f ≤

∫
Ω
g.

(iv) Comes by applying (iii) in both directions.
(v) Comes from (iii) applied to f1Ω′ ≤ f1Ω:∫

Ω′
f =

∫
Ω

f1Ω′ ≤
∫
Ω

f1Ω =

∫
Ω

f.

□

Remark 2.6. Proposition 2.6 (iv) is quite interesting; it says that one can modify the values of a
function on any measure zero set (e.g., you can modify a function on every rational number), and
not affect its integral at all. It is as if no individual point, or even a measure zero collection of
points, has any “vote" in what the integral of a function should be; only the collective set of points
has an influence on an integral.
Remark 2.7. Note that we do not yet try to interchange sums and integrals. From the definition
it is fairly easy to prove that

∫
Ω
(f + g) ≥

∫
Ω
f +

∫
Ω
g, but to prove equality requires more work

and will be done later.
With the Lebesgue integral it is possible to interchange an integral with a limit if the functions

are increasing:

Theorem 2.7 (Monotone convergence theorem). Let Ω be a measurable subset of Rd, and let
(fn)

∞
n=1 be a sequence of non-negative measurable functions from Ω to R which are increasing in the

sense that

0 ≤ f1(x) ≤ f2(x) ≤ f3(x) ≤ . . . for almost every x ∈ Ω.
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(Note we are assuming that fn(x) is increasing with respect to n; this is a different notion from
fn(x) increasing with respect to x.) Then we have

0 ≤
∫
Ω

f1 ≤
∫
Ω

f2 ≤
∫
Ω

f3 ≤ . . .

and ∫
Ω

sup
n
fn = sup

n

∫
Ω

fn.

Proof. Let A = {x ∈ Ω : (fn(x))n∈N is not increasing}, then by assumption m(A) = 0. Using
Proposition 2.6 (iv), we have

∫
Ω
fn =

∫
Ω
fn1Ω\A for every n ∈ N. Since supn∈N fn = supn∈N fn1Ω\A

almost everywhere on Ω, we have by Proposition 2.6 (iv) that
∫
Ω
supn∈N fn =

∫
Ω
supn∈N fn1Ω\A. So

we may assume that (fn(x))n∈N is increasing for every x ∈ Ω.
The first conclusion is clear from Proposition 2.6 (iii). Now we prove the second conclusion. From
Proposition 2.6 (iii) again we have ∫

Ω

sup
m
fm ≥

∫
Ω

fn

for every n; taking suprema in n we obtain∫
Ω

sup
m
fm ≥ sup

n

∫
Ω

fn

which is one half of the desired conclusion. To finish the proof we have to show∫
Ω

sup
m
fm ≤ sup

n

∫
Ω

fn

From the definition of
∫
Ω
supm fm, it will suffice to show that∫

Ω

s ≤ sup
n

∫
Ω

fn

for all simple non-negative functions which minorize supm fm.
Fix s. We will show that

(1− ε)

∫
Ω

s ≤ sup
n

∫
Ω

fn

for every 0 < ε < 1; the claim then follows by taking limits as ε→ 0. Fix ε. By construction of s,
we have

s(x) ≤ sup
n
fn(x)

for every x ∈ Ω. Hence, for every x ∈ Ω there exists an N (depending on x ) such that

fN(x) ≥ (1− ε)s(x)

Since the fn are increasing, this will imply that fn(x) ≥ (1 − ε)s(x) for all n ≥ N . Thus, if we
define the sets En by

En := {x ∈ Ω : fn(x) ≥ (1− ε)s(x)}
then we have E1 ⊂ E2 ⊂ E3 ⊂ . . . and

⋃∞
n=1En = Ω.

From Proposition 2.6 (v) we have

(1− ε)

∫
En

s =

∫
En

(1− ε)s ≤
∫
En

fn ≤
∫
Ω

fn

so to finish the argument it will suffice to show that

sup
n

∫
En

s =

∫
Ω

s
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Since s is a simple function, we may write s =
∑N

j=1 cj1Fj
for some measurable Fj and positive cj.

Since ∫
Ω

s =
N∑
j=1

cjm (Fj)

and ∫
En

s =

∫
En

N∑
j=1

cj1Fj∩En =
N∑
j=1

cjm (Fj ∩ En)

it thus suffices to show that
sup
n
m (Fj ∩ En) = m (Fj) .

This follows because Fj ∩ En ≤ Fj and Fj ∩ En ↑ Fj. □

We can now interchange addition and integration thanks to this theorem:

Lemma 2.8 (Interchange of addition and integration). Let Ω be a measurable subset of Rd, and let
f : Ω → [0,+∞] and g : Ω → [0,+∞] be measurable functions. Then

∫
Ω
(f + g) =

∫
Ω
f +

∫
Ω
g.

Proof. By Lemma 2.3, there exists a sequence 0 ≤ s1 ≤ s2 ≤ . . . ≤ f of simple functions
such that supn sn = f , and similarly a sequence 0 ≤ t1 ≤ t2 ≤ . . . ≤ g of simple functions such
that supn tn = g. Since the sn are increasing and the tn are increasing, it is then easy to check
that sn + tn is also increasing and supn (sn + tn) = f + g. By the monotone convergence theorem
(Theorem 2.7) we thus have ∫

Ω

f = sup
n

∫
Ω

sn∫
Ω

g = sup
n

∫
Ω

tn∫
Ω

(f + g) = sup
n

∫
Ω

(sn + tn) .

But by Proposition 2.5 (ii) we have
∫
Ω
(sn + tn) =

∫
Ω
sn +

∫
Ω
tn. By Proposition 2.5 (iv),

∫
Ω
sn and∫

Ω
tn are both increasing in n, so

sup
n

(∫
Ω

sn +

∫
Ω

tn

)
=

(
sup
n

∫
Ω

sn

)
+

(
sup
n

∫
Ω

tn

)
and the claim follows. □

Of course, once one can interchange an integral with a sum of two functions, one can handle an
integral and any finite number of functions by induction. More surprisingly, one can handle infinite
sums as well of non-negative functions:

Corollary 2.9. If Ω is a measurable subset of Rd, and g1, g2, . . . are a sequence of non-negative
measurable functions from Ω to [0,+∞], then∫

Ω

∞∑
n=1

gn =
∞∑
n=1

∫
Ω

gn.

Proof. We have
∞∑
n=1

∫
Ω

gn = lim
N→∞

N∑
n=1

∫
Ω

gn = lim
N→∞

∫
Ω

N∑
n=1

gn =

∫
Ω

∞∑
n=1

gn,

where the last equality is given by Theorem 2.7 (by non-negativity of gn). □
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Remark 2.8. Note that we do not need to assume anything about the convergence of the above
sums; it may well happen that both sides are equal to +∞. However, we do need to assume
non-negativity.

One could similarly ask whether we could interchange limits and integrals; in other words, is it
true that ∫

Ω

lim
n→∞

fn = lim
n→∞

∫
Ω

fn.

Unfortunately, this is not true, as the following “moving bump" example shows.
Example 2.3. For each n = 1, 2, 3 . . ., let fn : R → R be the function fn = 1[n,n+1). Then
limn→∞ fn(x) = 0 for every x, but

∫
R fn = 1 for every n, and hence limn→∞

∫
R fn = 1 ̸= 0. In other

words, the limiting function limn→∞ fn can end up having significantly smaller integral than any of
the original integrals.

However, the following very useful lemma of Fatou shows that the reverse cannot happen - there
is no way the limiting function has larger integral than the limit of the original integrals:

Lemma 2.10 (Fatou’s lemma). Let Ω be a measurable subset of Rd, and let f1, f2, . . . be a sequence
of measurable function from Ω to R such that fn ≥ 0 almost everywhere on Ω for all n ∈ N. Then∫

Ω

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
Ω

fn.

Proof. For every n ∈ N, let An = {x ∈ Ω : fn(x) < 0}, then by assumption m(An) = 0 and
by countable subadditivity, we deduce that m(A) = 0 where A =

⋃
n∈NAn. By Proposition 2.6 (iv),

we have that
∫
Ω
fn =

∫
Ω
fn1Ω\A for every n ∈ N and

∫
Ω
lim infn→∞ fn =

∫
Ω
lim infn→∞ fn1Ω\A. So

we may assume that fn(x) ≥ 0 for every x ∈ Ω and every n ∈ N.
Recall that

lim inf
n→∞

fn = sup
n

(
inf
m≥n

fm

)
and hence by the monotone convergence theorem∫

Ω

lim inf
n→∞

fn = sup
n

∫
Ω

(
inf
m≥n

fm

)
.

By Proposition 2.6 (iii) we have ∫
Ω

(
inf
m≥n

fm

)
≤
∫
Ω

fj

for every j ≥ n; taking infima in j we obtain∫
Ω

(
inf
m≥n

fm

)
≤ inf

j≥n

∫
Ω

fj.

Thus ∫
Ω

lim inf
n→∞

fn ≤ sup
n

inf
j≥n

∫
Ω

fj = lim inf
n→∞

∫
Ω

fn

as desired. □

Note that we are allowing our functions to take the value +∞ at some points. It is even possible
for a function to take the value +∞ but still have a finite integral; for instance, if E is a measure
zero set, and f : Ω → R is equal to +∞ on E but equals 0 everywhere else, then

∫
Ω
f = 0 by

Proposition 2.6 (i). However, if the integral is finite, the function must be finite almost everywhere:

Lemma 2.11. Let Ω be a measurable subset of Rd, and let f : Ω → [0,+∞] be a non-negative
measurable function such that

∫
Ω
f is finite. Then f is finite almost everywhere (i.e., the set

{x ∈ Ω : f(x) = +∞} has measure zero).
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Proof. Suppose for contradiction this is not the case. Denote

E := {x ∈ Ω : f(x) = +∞}
and suppose that m(E) = δ > 0. Then, the function

g(x) =

{
+∞ if x ∈ E

0 otherwise

is dominated by f . Therefore ∫
Ω

f ≥
∫
Ω

g = +∞,

which is a contradiction. □

Form Corollary 2.9 and Lemma 2.11 one has a useful lemma.

Lemma 2.12 (Borel-Cantelli lemma). Let Ω1,Ω2, . . . be measurable subsets of Rd such that∑∞
n=1m (Ωn) is finite. Then the set

Ω :=
{
x ∈ Rd : x ∈ Ωn for infinitely many n

}
is a set of measure zero. In other words, almost every point belongs to only finitely many Ωn.

Proof. We observe that

Ω =
∞⋂
n=1

En, with En :=
∞⋃
k=n

Ωk.

Let ε > 0 be given. We claim that m(Ω) < ε. By the arbitrariness of ε > 0, this will suffice to
conclude the proof.

Since
∑∞

k=1m (Ωk) < ∞, we can find a sufficiently large n ∈ N such that
∑∞

k=nm (Ωk) < ε.
Therefore, by subadditivity,

m (En) ≤
∞∑
k=n

m (Ωk) < ε.

On the other hand, we have Ω ⊂ En for all n ∈ N, so we conclude that m(Ω) < ε. □

2.3. Integration of absolutely integrable functions

We have now completed the theory of the Lebesgue integral for nonnegative functions. Now we
consider how to integrate functions which can be both positive and negative. However, we do wish
to avoid the indefinite expression +∞+ (−∞), so we will restrict our attention to a subclass of
measurable functions - the absolutely integrable functions.

Definition (Absolutely integrable functions). Let Ω be a measurable subset of Rd. A measur-
able function f : Ω → R∗ is said to be absolutely integrable if the integral

∫
Ω
|f | is finite.

Of course, |f | is always non-negative, so this definition makes sense even if f changes sign.
Absolutely integrable functions are also known as L1(Ω) functions.

If f : Ω → R∗ is a function, we define the positive part f+ : Ω → [0,+∞] and negative part
f− : Ω → [0,+∞] by the formulae

f+ := max(f, 0); f− := −min(f, 0).

From Corollary 1.19 we know that f+ and f−are measurable. Observe also that f+and f− are
non-negative, that f = f+ − f−, and |f | = f+ + f−.
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Definition (Lebesgue integral). Let f : Ω → R∗ be an absolutely integrable function. We
define the Lebesgue integral

∫
Ω
f of f to be the quantity∫

Ω

f :=

∫
Ω

f+ −
∫
Ω

f−

Note that since f is absolutely integrable,
∫
Ω
f+and

∫
Ω
f−are less than or equal to

∫
Ω
|f | and

hence are finite. Thus
∫
Ω
f is always finite; we are never encountering the indeterminate form

+∞− (+∞).
Note that this definition is consistent with our previous definition of the Lebesgue integral for

non-negative functions, since if f is nonnegative then f+ = f and f− = 0. We also have the useful
triangle inequality ∣∣∣∣∫

Ω

f

∣∣∣∣ ≤ ∫
Ω

f+ +

∫
Ω

f− =

∫
Ω

|f |.

Proposition 2.13. Let Ω be a measurable set, and let f : Ω → R and g : Ω → R be absolutely
integrable functions.

(i) For any real number c (positive, zero, or negative), we have that cf is absolutely integrable
and

∫
Ω
cf = c

∫
Ω
f .

(ii) The function f + g is absolutely integrable, and
∫
Ω
(f + g) =

∫
Ω
f+

∫
Ω
g.

(iii) If f(x) ≤ g(x) for almost every x ∈ Ω, then we have
∫
Ω
f ≤

∫
Ω
g.

(iv) If f(x) = g(x) for almost every x ∈ Ω, then
∫
Ω
f =

∫
Ω
g.

Proof. (i) First of all, notice that since f is absolutely integrable, cf is also absolutely
integrable. Now, if c = 0, the result is obvious. If c is positive, we have using the linearity
of the integral for nonnegative functions that∫

Ω

(cf) dx =

∫
Ω

(cf)+ dx−
∫
Ω

(cf)− dx =

∫
Ω

cf+ dx−
∫
Ω

cf− dx = c

∫
Ω

f dx. (2.1)

If c is negative instead, we have∫
Ω

(cf) dx =

∫
Ω

(cf)+ dx−
∫
Ω

(cf)− dx =

∫
Ω

|c|f− dx−
∫
Ω

|c|f+ dx = −
(∫

Ω

|c|f+ dx−
∫
Ω

|c|f− dx

)
= −

∫
Ω

|c|f dx (2.1)
= −|c|

∫
Ω

f dx = c

∫
Ω

f dx.

(ii) We begin by showing that f+g is absolutely integrable. Indeed, by the triangular inequality
and the monotonicity of the integral for nonnegative functions, we have∫

Ω

|f + g| dx ≤
∫
Ω

|f | dx+
∫
Ω

|g| dx < +∞.

Note that
(f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g−,

and so
(f + g)+ + f− + g− = (f + g)− + f+ + g+.

Therefore, using linearity of the integral for nonnegative functions,∫
Ω

(f + g)+dx+

∫
Ω

f−dx+

∫
Ω

g−dx =

∫
Ω

(f + g)−dx+

∫
Ω

f+dx+

∫
Ω

g+dx. (2.2)
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Thus, ∫
Ω

(f + g) dx
def
=

∫
Ω

(f + g)+ dx−
∫
Ω

(f + g)− dx

(2.2)
=

∫
Ω

f+ dx−
∫
Ω

f− dx+

∫
Ω

g+ dx−
∫
Ω

g− dx

def
=

∫
Ω

f dx+

∫
Ω

g dx.

(iii) The assumption f(x) ≤ g(x) guarantees f+(x) ≤ g+(x) and g−(x) ≤ f−(x) for almost
every x ∈ Ω and therefore, by the monotonicity of the integral for nonnegative functions,∫

Ω

f dx =

∫
Ω

f+ dx−
∫
Ω

f− dx ≤
∫
Ω

g+ dx−
∫
Ω

g− dx =

∫
Ω

g dx.

(iv) Comes by applying (iii) in both directions.
□

As mentioned in the previous section, one cannot necessarily interchange limits and integrals,
lim
∫
fn =

∫
lim fn, as the “moving bump example" showed. However, it is possible to exclude

the moving bump example, and successfully interchange limits and integrals, if we know that the
functions fn are all majorized by a single absolutely integrable function. This important theorem is
known as the Lebesgue dominated convergence theorem, and is extremely useful:

Theorem 2.14 (Lebesgue dominated convergence thm). Let Ω be a measurable subset of Rd,
and let f1, f2, . . . be a sequence of measurable functions from Ω to R∗ which converge pointwise
almost everywhere. Suppose also that there is an absolutely integrable function F : Ω → [0,+∞]
such that |fn(x)| ≤ F (x) for almost every x ∈ Ω and all n = 1, 2, 3, . . .. Then∫

Ω

lim
n→∞

fn = lim
n→∞

∫
Ω

fn.

Proof. Let f : Ω → R∗ be the function f(x) := lim supn→∞ fn(x). By Lemma 1.22, f is
measurable. Also, since |fn(x)| ≤ F (x) for all n and almost all x ∈ Ω, we see that each fn is
absolutely integrable, and by taking limits we obtain |f(x)| ≤ F (x) for almost all x ∈ Ω, so f is
also absolutely integrable. Let us now define F̃ that dominates fn everywhere: to do so, consider
the set

A :=
⋃
n∈N

{x ∈ Ω s.t. F (x) < fn(x)},

and set F̃ = +∞ on A, F̃ = F on Ω \ A. Note that m(A) = 0 because it is a countable union of
sets with zero measure, and therefore F̃ is still absolutely integrable.
Our task is now to show that limn→∞

∫
Ω
fn =

∫
Ω
f . Note that the functions F̃ +fn are non-negative

everywhere and converge pointwise almost everywhere to F̃ + f . We can apply Fatou’s lemma
(Lemma 2.10) combined with Proposition 2.6 (iv):∫

Ω

F̃ + f ≤ lim inf
n→∞

∫
Ω

F̃ + fn

and thus ∫
Ω

f ≤ lim inf
n→∞

∫
Ω

fn
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But the functions F̃−fn are also non-negative everywhere and converge pointwise almost everywhere
to F̃ − f . We can apply Fatou’s lemma combined with Proposition 2.6 (iv) again:∫

Ω

F̃ − f ≤ lim inf
n→∞

∫
Ω

F̃ − fn

Since the right-hand side is
∫
Ω
F̃ − lim supn→∞

∫
Ω
fn (why did the lim inf become a lim sup?), we

thus have ∫
Ω

f ≥ lim sup
n→∞

∫
Ω

fn

Thus the lim inf and lim sup of
∫
Ω
fn are both equal to

∫
Ω
f , as desired. □

Finally, we record a lemma which is not particularly interesting in itself, but will have some
useful consequences later in these notes.

Definition (Upper and lower Lebesgue integral). Let Ω be a measurable subset of Rd, and let
f : Ω → R be a function (not necessarily measurable). We define the upper Lebesgue integral

∫
Ω
f

to be ∫
Ω

f := inf

{∫
Ω

g : g is an absolutely integrable function

from Ω to R that majorizes f
}

and the lower Lebesgue integral
∫
Ω
f to be∫

Ω

f := sup

{∫
Ω

g : g is an absolutely integrable function

from Ω to R that minorizes f
}
.

Here we adopt the convention inf ∅ = +∞ and sup∅ = −∞.
It is easy to see that

∫
Ω
f ≤

∫
Ω
f (use Proposition 2.13 (iii)). When f is absolutely integrable then

equality occurs. The converse is also true:

Lemma 2.15. Let Ω be a measurable subset of Rd, and let f : Ω → R be a function (not necessarily
measurable). Let A be a real number, and suppose

∫
Ω
f =

∫
Ω
f = A. Then f is absolutely integrable,

and ∫
Ω

f =

∫
Ω

f =

∫
Ω

f = A

Proof. By definition of upper Lebesgue integral, for every integer n ≥ 1 we may find an
absolutely integrable function f+

n : Ω → R which majorizes f such that∫
Ω

f+
n ≤ A+

1

n

Similarly we may find an absolutely integrable function f−
n : Ω → R which minorizes f such that∫

Ω

f−
n ≥ A− 1

n

Let F+ := infn f
+
n and F− := supn f

−
n . Then F+ and F− are measurable (by Lemma 1.22) and

absolutely integrable (because they are squeezed between the absolutely integrable functions f+
1
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and f−
1 , for instance). Also, F+ majorizes f and F− minorizes f . Finally, we have∫

Ω

F+ ≤
∫
Ω

f+
n ≤ A+

1

n

for every n, and hence ∫
Ω

F+ ≤ A

Similarly we have ∫
Ω

F− ≥ A

but F+ majorizes F−, and hence
∫
Ω
F+ ≥

∫
Ω
F−. Hence we must have∫

Ω

F+ =

∫
Ω

F− = A

In particular ∫
Ω

F+ − F− = 0

By Proposition 2.6 (i), we thus have F+(x) = F−(x) for almost every x. But since f is squeezed
between F−and F+, we thus have f(x) = F+(x) = F−(x) for almost every x. In particular, f differs
from the absolutely integrable function F+ only on a set of measure zero and is thus measurable
and absolutely integrable, with ∫

Ω

f =

∫
Ω

F+ =

∫
Ω

F− = A

as desired. □

2.4. Consequences of the dominated convergence theorem

In this chapter, we will see how the dominated convergence theorem enables us to extend the
continuity of the integrand function to its Lebesgue integral, and how to interchange derivatives
and integrals. Note that, throughout the section, we will consider continuity or derivatives in a
variable that is not the variable of integration.

Theorem 2.16. Let Ω ⊆ Rd be a measurable set and X be a metric space. Let x0 ∈ X and
f : Ω×X → R be a function such that

(1) ∀x ∈ X, the function ω 7→ f(ω, x) is measurable,
(2) for almost all ω ∈ Ω, the function x 7→ f(ω, x) is continuous at x0,
(3) there exists g ∈ L1(Ω) such that

|f(ω, x)| ≤ g(ω)

for almost every ω ∈ Ω and all x ∈ X.
Then the function F : X → R defined by

F (x) =

∫
Ω

f(ω, x)dω, ∀x ∈ X

is well defined and continous at x0.
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Proof. From the bound |f(ω, x)| ≤ g(ω) for almost every ω ∈ Ω and all x ∈ X, we see that
for all x ∈ X the function ω 7→ f(ω, x) is in L1(Ω) and so F is well defined.
To prove continuity at x0, consider a sequence (xn)n∈N ⊂ X such that xn → x0 as n→ ∞.
For all n ∈ N define the function fn : Ω → R by fn(ω) = f(ω, xn). We see that fn ∈ L1(Ω) for all
n ∈ N and fn(ω) → f(ω, x0) for almost every ω ∈ Ω.
Since each fn satisfies |fn| ≤ g almost everywhere, we can apply the dominated convergence theorem
to get

lim
n→∞

F (xn) = lim
n→∞

∫
Ω

f(ω, xn)dω =

∫
Ω

f(ω, x0)dω = F (x0).

This is true for any sequence (xn)n∈N ⊂ X converging to x0 which proves that F is continous at
x0. □

Theorem 2.17. Let Ω ⊆ Rd be a measurable set and I ⊆ R be an open interval. Let t0 ∈ I and
f : Ω× I → R be a function such that

(1) ∀t ∈ I, the function ω 7→ f(ω, t) is in L1(Ω),
(2) for almost all ω ∈ Ω, the function t 7→ f(ω, t) is differentiable at t0,
(3) there exists g ∈ L1(Ω) such that

|f(ω, t)− f(ω, t0)| ≤ g(ω)|t− t0|
for almost every ω ∈ Ω and all t ∈ I.

Then the function F : I → R defined by

F (t) =

∫
Ω

f(ω, t)dω, ∀t ∈ I

is well defined, differentiable at t0 and satisfies

F ′(t0) =

∫
Ω

∂f

∂t
(ω, t0)dω.

Proof. The first condition insures that F is well defined.
Set tn = t0 + n−1. Since the function

ω 7→ ∂f

∂t
(ω, t0)

is the pointwise almost everywhere limit of the sequence fn defined on Ω by

fn(ω) =
f(ω, tn)− f(ω, t0)

tn − t0
, ∀ω ∈ Ω,

then it is measurable.
Now consider an arbitrary sequence (tn)n∈N ⊂ I\{t0} converging to t0: for almost every ω ∈ Ω, we
have

lim
n→∞

f(ω, tn)− f(ω, t0)

tn − t0
=
∂f

∂t
(ω, t0)

and the convergence is dominated by g by hypothesis. Therefore, we can use the dominated
convergence theorem and we get

lim
n→∞

F (tn)− F (t0)

tn − t0
= lim

n→∞

∫
Ω

f(ω, tn)− f(ω, t0)

tn − t0
dω =

∫
Ω

∂f

∂t
(ω, t0)dω.

Notice that as a result of the dominated convergence theorem, we get that the function

ω 7→ ∂f

∂t
(ω, t0)

is in L1(Ω).
Since the sequence (tn)n∈N was arbitrary, we get the result. □
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Corollary 2.18. Let Ω ⊂ R be a measurable set and I ⊂ R be an open interval. Let f : Ω× I → R
be a function such that

(1) ∀t ∈ I, the function ω 7→ f(ω, t) is in L1(Ω),
(2) for almost all ω ∈ Ω, the function t 7→ f(ω, t) is C1,
(3) there exists g ∈ L1(Ω) such that∣∣∣∣∂f∂t (ω, t)

∣∣∣∣ ≤ g(ω)

for almost every ω ∈ Ω and all t ∈ I.
Then the function F : I → R defined by

F (t) =

∫
Ω

f(ω, t)dω, ∀t ∈ I

is C1 and satisfies

F ′(t) =

∫
Ω

∂f

∂t
(ω, t)dω, ∀t ∈ I.

2.5. Comparison with the Riemann integral

We have spent a lot of effort constructing the Lebesgue integral, but have not yet addressed the
question of how to actually compute any Lebesgue integrals, and whether Lebesgue integration is
any different from the Riemann integral (say for integrals in one dimension). Now we show that the
Lebesgue integral is a generalization of the Riemann integral. To clarify the following discussion,
we shall temporarily distinguish the Riemann integral from the Lebesgue integral by writing the
Riemann integral

∫
I
f as R.

∫
I
f .

Our objective here is to prove

Proposition 2.19. Let I ⊆ R be an interval, and let f : I → R be a Riemann integrable function.
Then f is also absolutely integrable, and

∫
I
f = R.

∫
I
f

Proof. Write A := R.
∫
I
f . Since f is Riemann integrable , we know that the upper and lower

Riemann integrals are equal to A. Thus, for every ε > 0, there exists a partition P of I into smaller
intervals J such that

A− ε ≤
∑
J∈P

|J | inf
x∈J

f(x) ≤ A ≤
∑
J∈P

|J | sup
x∈J

f(x) ≤ A+ ε

where |J | denotes the length of J . Note that |J | is the same as m(J), since J is a box.
Let f−

ε : I → R and f+
ε : I → R be the functions

f−
ε (x) =

∑
J∈P

inf
x∈J

f(x)1J(x)

and
f+
ε (x) =

∑
J∈P

sup
x∈J

f(x)1J(x);

these are simple functions and hence measurable and absolutely integrable. By Lemma 2.4 we have∫
I

f−
ε =

∑
J∈P

|J | inf
x∈J

f(x)

and ∫
I

f+
ε =

∑
J∈P

|J | sup
x∈J

f(x)
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and hence
A− ε ≤

∫
I

f−
ε ≤ A ≤

∫
I

f+
ε ≤ A+ ε

Since f+
ε majorizes f , and f−

ε minorizes f , we thus have

A− ε ≤
∫
Ω

f ≤
∫
Ω

f ≤ A+ ε

for every ε, and thus ∫
Ω

f =

∫
Ω

f = A

and hence by Lemma 2.15, f is absolutely integrable with
∫
I
f = A, as desired. □

Thus every Riemann integrable function is also Lebesgue integrable, at least on bounded
intervals.
Remark 2.9. The converse is not true: take for instance the function f : [0, 1] → R defined by
f(x) := 1 when x is rational, and f(x) := 0 when x is irrational. Then we know that f is not
Riemann integrable. On the other hand, f is the characteristic function of the set Q ∩ [0, 1], which
is countable and hence measure zero. Thus f is Lebesgue integrable and

∫
[0,1]

f = 0.

2.6. Fubini’s theorem

In one dimension we have shown that the Lebesgue integral is connected to the Riemann integral.
Now we will try to understand the connection in higher dimensions. To simplify the discussion we
shall just study two-dimensional integrals, although the arguments we present here can easily be
extended to higher dimensions.

We shall study integrals of the form
∫
R2 f . Note that once we know how to integrate on R2, we

can integrate on measurable subsets Ω of R2, since
∫
Ω
f can be rewritten as

∫
R2 f1Ω.

Let f(x, y) be a function of two variables. In principle, we have three different ways to integrate
f on R2. First of all, we can use the two-dimensional Lebesgue integral, to obtain

∫
R2 f . Secondly,

we can fix x and compute a one-dimensional integral in y, and then take that quantity and integrate
in x, thus obtaining

∫
R

(∫
R f(x, y)dy

)
dx. Secondly, we could fix y and integrate in x, and then

integrate in y, thus obtaining
∫
R

(∫
R f(x, y)dx

)
dy.

Fortunately, if the function f is absolutely integrable on f , then all three integrals are equal:

Theorem 2.20 (Fubini’s theorem). Let f : R2 → R be an absolutely integrable function. Then
there exists absolutely integrable functions F : R → R and G : R → R such that for almost every
x, f(x, y) is absolutely integrable in y with

F (x) =

∫
R
f(x, y) dy

and for almost every y, f(x, y) is absolutely integrable in x with

G(y) =

∫
R
f(x, y) dx.

Finally, we have ∫
R
F (x)dx =

∫
R2

f =

∫
R
G(y) dy.

Remark 2.10. Very roughly speaking, Fubini’s theorem says that∫
R

(∫
R
f(x, y)dy

)
dx =

∫
R2

f =

∫
R

(∫
R
f(x, y)dx

)
dy.
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This allows us to compute two-dimensional integrals by splitting them into two one-dimensional
integrals. The reason why we do not write Fubini’s theorem this way, though, is that it is possible
that the integral

∫
R f(x, y)dy does not actually exist for every x, and similarly

∫
R f(x, y)dx does

not exist for every y; Fubini’s theorem only asserts that these integrals only exist for almost every
x and y. For instance, if f(x, y) is the function which equals 1 when y > 0 and x = 0, equals -1
when y < 0 and x = 0, and is zero otherwise, then f is absolutely integrable on R2 and

∫
R2 f = 0

(since f equals zero almost everywhere in R2 ), but
∫
R f(x, y)dy is not absolutely integrable when

x = 0 (though it is absolutely integrable for every other x ).

Proof. The proof of Fubini’s theorem is quite complicated and we will only give a sketch here.
We begin with a series of reductions.

Roughly speaking (ignoring issues relating to sets of measure zero), we have to show that∫
R

(∫
R
f(x, y)dy

)
dx =

∫
R2

f

together with a similar equality with x and y reversed. We shall just prove the above equality, as
the other one is very similar. We perform some reductions:

(i) First of all, it suffices to prove the theorem for non-negative functions, since the general
case then follows by writing a general function f as a difference f+−f−of two non-negative
functions, applying Fubini’s theorem to f+and f−separately and then using linearity of
the integral (Proposition 2.13 (i) and (ii)). Thus we will henceforth assume that f is
non-negative.

(ii) Next, it suffices to prove the theorem for non-negative functions f supported on a
bounded set such as [−N,N ]× [−N,N ] for some positive integer N . Indeed, once one
obtains Fubini’s theorem for such functions, one can then write a general function f as the
supremum of such compactly supported functions as

f = sup
N>0

f1[−N,N ]×[−N,N ]

apply Fubini’s theorem to each function f1[−N,N ]×[−N,N ] separately, and then take suprema
using the monotone convergence theorem. Thus we will henceforth assume that f is
supported on [−N,N ]× [−N,N ].

(iii) By another similar argument, it suffices to prove the theorem for nonnegative simple
functions supported on [−N,N ]× [−N,N ], since one can use Lemma 2.2 to write f as the
supremum of simple functions (which must also be supported on [−N,N ]), apply Fubini’s
theorem to each simple function, and then take suprema using the monotone convergence
theorem. Thus we may assume that f is a non-negative simple function supported on
[−N,N ]× [−N,N ].

(iv) Next, we see that it suffices to prove the theorem for characteristic functions supported
in [−N,N ] × [−N,N ]. This is because every simple function is a linear combination
of characteristic functions, and so we can deduce Fubini’s theorem for simple functions
from Fubini’s theorem for characteristic functions. Thus we may take f = 1E for some
measurable E ⊆ [−N,N ]× [−N,N ].

Our task is then to show (ignoring sets of measure zero) that∫
[−N,N ]

(∫
[−N,N ]

1E(x, y)dy

)
dx = m(E)
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It will suffice to show the upper Lebesgue integral estimate∫
[−N,N ]

(∫
[−N,N ]

1E(x, y) dy

)
dx ≤ m(E) (2.3)

We will prove this estimate later. Once we show this for every set E, we may substitute E with
[−N,N ]× [−N,N ]\E and obtain∫

[−N,N ]

(∫
[−N,N ]

(1− 1E(x, y)) dy

)
dx ≤ 4N2 −m(E).

But the left-hand side is equal to∫
[−N,N ]

(
2N −

∫
[−N,N ]

1E(x, y)dy

)
dx

which is in turn equal to

4N2 −
∫
[−N,N ]

(∫
[−N,N ]

1E(x, y)dy

)
dx

and thus we have ∫
[−N,N ]

(∫
[−N,N ]

1E(x, y)dy

)
dx ≥ m(E)

In particular we have ∫
[−N,N ]

(∫
[−N,N ]

1E(x, y)dy

)
dx ≥ m(E)

and hence by Lemma 2.15 we see that
∫
[−N,N ]

1E(x, y)dy is absolutely integrable and∫
[−N,N ]

(∫
[−N,N ]

1E(x, y)dy

)
dx = m(E).

A similar argument shows that∫
[−N,N ]

(∫
[−N,N ]

1E(x, y)dy

)
dx = m(E)

and hence ∫
[−N,N ]

(∫
[−N,N ]

1E(x, y)dy −
∫
[−N,N ]

1E(x, y)dy

)
dx = 0.

Thus by Proposition 2.6 (i) we have∫
[−N,N ]

1E(x, y)dy =

∫
[−N,N ]

1E(x, y)dy

for almost every x ∈ [−N,N ]. Thus 1E(x, y) is absolutely integrable in y for almost every x, and∫
[−N,N ]

1E(x, y) is thus equal (almost everywhere) to a function F (x) such that∫
[−N,N ]

F (x)dx = m(E)

as desired.
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It remains to prove the bound (2.3). Let ε > 0 be arbitrary. Since m(E) is the same as the
outer measure m∗(E), we know that there exists an at most countable collection (Bj)j∈J of boxes
such that E ⊆

⋃
j∈J Bj and ∑

j∈J

m (Bj) ≤ m(E) + ε

Each box Bj can be written as Bj = Ij × I ′j for some intervals Ij and I ′j. Observe that

m (Bj) = |Ij|
∣∣I ′j∣∣ = ∫

Ij

∣∣I ′j∣∣ dx =

∫
Ij

(∫
I′j

dy

)
dx

=

∫
[−N,N ]

(∫
[−N,N ]

1Ij×I′j
(x, y)dx

)
dy

=

∫
[−N,N ]

(∫
[−N,N ]

1Bj
(x, y)dx

)
dy.

Adding this over all j ∈ J (using Corollary 2.9) we obtain∑
j∈J

m (Bj) =

∫
[−N,N ]

(∫
[−N,N ]

∑
j∈J

1Bj
(x, y)dx

)
dy.

In particular we have ∫
[−N,N ]

(∫
[−N,N ]

∑
j∈J

1Bj
(x, y)dx

)
dy ≤ m(E) + ε.

But
∑

j∈J 1Bj
majorizes 1E and thus∫

[−N,N ]

(∫
[−N,N ]

1E(x, y)dx

)
dy ≤ m(E) + ε.

But ε is arbitrary, and so we have (2.3) as desired. This completes the proof of Fubini’s theorem. □

We have a similar result in the case in which the integrand is non-negative:

Theorem 2.21 (Tonelli’s theorem). Let f : R2 → R such that f ≥ 0. Then, defining F : R → R
and G : R → R as:

F (x) =

∫
R
f(x, y) dy, G(y) =

∫
R
f(x, y) dx,

we have ∫
R
F (x)dx =

∫
R2

f =

∫
R
G(y) dy.

Remark 2.11. Note that in this case we do not have neither hypothesis nor conclusions on
absolute integrability: whenever we have a non-negative integrand, it is possible to swap the order
of integration even if the integral is infinite.

2.7. Change of variables

In Chapter 1 we have seen that the Lebsegue measure is translation invariant and homogeneous.
We start this section with a change of variable formula carrying these properties into integration.
The method used in the proof of the following proposition is very important and should be learned.
Before stating the result, we need the following lemma:



2.7. CHANGE OF VARIABLES 47

Lemma 2.22. Let f : Rd → R be a measurable function, and x ∈ Rd, and α ∈ R\{0}, then the
functions g, h : Rd → R defined by g(y) = f(x+ y) and h(y) = f(αy) are measurable.

Proof. For any a ∈ R, we have

g−1(a,+∞) = f−1(a,+∞)− x and h−1(a,+∞) =
1

α
f−1(a,+∞).

From Lemma 1.8 we know these sets are measurable for every a ∈ R so g and h are measurable by
Lemma 1.21. □

Proposition 2.23 (Translation and Dilation). Let f : Rd → [0,+∞] be a measurable function, and
x ∈ Rd, and α ∈ R\{0}, then∫

Rd

f(y)dy =

∫
Rd

f(x+ y)dy and
∫
Rd

f(y)dy = |α|d
∫
Rd

f(αy)dy.

The result holds also for f ∈ L1(Rd).

Proof. It suffices to prove the result for non-negative functions as the general case follows
by writing a general function f as a difference f+ − f− of two non-negative functions, applying
the change of variable formula to f+ and f− separately and then concluding using linearity of the
integral. We assume henceforth that f is non-negative.
We claim that it suffices to prove the theorem for non-negative simple functions. Indeed, any
non-negative function f may be written as the increasing limit of a sequence of non-negative simple
functions f = limn→∞ ↑ fn. Using the monotonce convergence theorem, we get∫

Rd

f(y)dy = lim
n→∞

∫
Rd

fn(y)dy = lim
n→∞

∫
Rd

fn(x+ y)dy =

∫
Rd

f(x+ y)dy,

since a function h is simple if and only if h(x + ·) is simple, and limn→∞ ↑ fn(x + ·) = f(x + ·).
The reduction for the dilation formula is proved similarly.
By linearity, it thus suffices to prove the formula for indicator of measurable sets, i.e. f = 1E for
E ⊂ Rd some measurable set. Notice that in this case, the formulas read

m(E) = m(E − x) and m(E) = |α|dm
(
1

α
E

)
which were proven in Lemma 1.8 (ii) and (iii). □

The remainder of this section is not examinable.
Notice that the above two formulas address the following problem:
Given an adequate function g, find an expression for

∫
Rd f ◦ g of the form

∫
Rd fk for some function

k (which depends only on g).
In measure theoretic terms, this problem can be succinctly stated as characterizing the density of
the pushforward measure through (an adequate) g of the Lebesgue measure.
Proposition 2.23 gives a solution to this problem in the cases g1(y) = x+ y and g2(y) = αy. Our
goal by the end of this section is to prove a similar result for g being a C1 diffeomorphism between
two open sets.
An intermediate step in our quest is for linear automorphisms of Rd, namely for g(x) =Mx where
M is an invertible d× d matrix with real coefficients.

Lemma 2.24. Let D be a diagonal d× d invertible matrix, then for any f : Rd → [0,+∞] Borel
function, we have ∫

Rd

f(x)dx =

∫
Rd

f(Dx)| det(D)|dx.
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Proof. Since D is assumed to be invertible, it induces a homeomorphism of Rd. In particular,
D−1 is a continous linear map and since f is taken to be Borel the composition x 7→ f(Dx) is Borel
measurable.
Using the standard reduction method, we see that it suffices to prove this formula for indicator
functions of Borel sets, namely for f = 1A for some A ⊂ Rd a Borel set. In this case the formula
reads

m(A) =

∫
Rd

1A(Dx)| det(D)|dx =

∫
Rd

1D−1A(x)| det(D)|dx = | det(D)|m(D−1A).

By setting E = D−1A, which is also a Borel set, it suffices to prove that for all Borel sets E, we
have

m(DE) = | det(D)|m(E).

As D is a diagonal matrix, for any box B ⊂ Rd, DB is also a box and vol(DB) = | det(D)| vol(B).
Moreover, a collection of boxes (Bj)j∈J covers E if and only if (DBj)j∈J covers DE. We then
deduce the claim, because:

| det(D)|m(E) = inf

{∑
j∈J

vol (Bj) : (Bj)j∈J covers E

}

= | det(D)| inf

{
1

| det(D)|
∑
j∈J

vol (DBj) : (Bj)j∈J covers E

}

= inf

{∑
j∈J

vol(B′
j) :
(
B′

j

)
covers DE

}
= m(DE).

□

Lemma 2.25. Let P be an orthogonal d× d matrix, then for any f : Rd → [0,+∞] Borel function,
we have ∫

Rd

f(x)dx =

∫
Rd

f(Px)dx.

Proof. As in Lemma 2.24, we have that x 7→ f(Px) is measurable, and using the standard
reduction method, it suffices to prove the formula for f = 1A for A ⊂ Rd a Borel set, namely

m(A) =

∫
Rd

1A(Px)dx =

∫
Rd

1P−1A(x)dx = m(P−1A).

By setting E = P−1A, which is also a Borel set, it suffices to that for all Borel sets E, we have

m(E) = m(PE).

To do this, consider the function µ defined on B, the Borel sets of Rd, by µ(E) = m(PE). It is easy
to verify that µ is a measure. We claim that µ is also translation invariant and finite on compact
sets. To see this, for any x ∈ Rd we have

µ(E + x) = m(P (E + x)) = m(PE + Px) = m(PE) = µ(E).

Notice that we used the linearity of P and the translation invariance of the Lebesgue measure.
Since P is a continuous function, it maps compact sets to compact sets. Combining this with the
fact that the Lebesgue measure is finite on compact sets, we get that µ is finite on compact sets.
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By Exercise 1 of the appendix, we know that ∃λ < +∞ such that µ = λm.
Let B denote the unit ball of Rd. As P is an orthogonal matrix, we have PB = B and so

λm(B) = µ(B) = m(PB) = m(B),

from which we deduce that λ = 1 (because m(B) > 0 is finite). □

We have proved a formula for particular cases of linear change of variables. We now give a
result from linear algebra which will allow us to treat the general linear case.

Lemma 2.26 (Polar decomposition). Let M be an invertible d× d matrix then there exists P a
d× d orthogonal matrix and S a d× d symmetric positive matrix such that M = PS.

Proof. M∗M is a symmetric positive definite d× d, so by the spectral theorem, we can find
λ1, . . . , λd > 0 positive numbers and {u1, . . . , ud} an orthonormal basis of Rd such that

M∗M =
d∑

k=1

λkuku
∗
k.

Since ⟨Muj,Muk⟩ = u∗jM
∗Muk = λku

∗
juk = λkδjk, the family

{
1√
λ1
Mu1, . . . ,

1√
λd
Mud

}
is an

orthonormal basis of Rd.
Set

S =
d∑

k=1

√
λkuku

∗
k

and define P such that

Puk =
1√
λk
Muk, ∀k = 1, . . . , d.

As P maps an orthonormal basis into an orthonormal basis, it is an orthogonal matrix. It remains
to check that M = PS. To do this it suffices to check the equality on some basis. For every
j = 1, . . . , d we have

PSuj = P
d∑

k=1

√
λkuku

∗
kuj =

d∑
k=1

√
λkδkjPuk =Muj.

□

Proposition 2.27. Let f : Rd → [0,+∞] be a Borel function, and M be an invertible d× d matrix,
then ∫

Rd

f(x)dx =

∫
Rd

f(Mx)| det(M)|dx.

We have a similar formula if f ∈ L1(Rd) is a Borel function.

Proof. The measurability of x 7→ f(Mx) follows from the fact that M is a homeomorphism
and that f is a Borel function. Using the standard reduction argument, it suffices to prove the
formula for f = 1A for some A ⊂ Rd a Borel set. In this case the formula reads

m(A) =

∫
Rd

1A(Mx)| det(M)|dx =

∫
Rd

1M−1A(x)| det(M)|dx = | det(M)|m(M−1A).

By setting E =M−1A, which is a Borel set, it suffices to prove that for all Borel sets E, we have

m(ME) = | det(M)|m(E).
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Using Lemma 2.26, we can write M = PS for some orthogonal matrix P and some symmetric
positive definite matrix S. By the spectral theorem, we can write S = QDQ∗ for some orthogonal
matrix Q and some diagonal matrix D. Using Lemma 2.25 and Lemma 2.24, we get

m(ME) = m(PQDQ∗E) = m(QDQ∗E) = m(DQ∗E) = | det(D)|m(Q∗E) = | det(D)|m(E).

Since the determinant is multiplicative, we have det(M) = det(P ) det(Q) det(D) det(Q∗), in
particular | det(M)| = | det(D)| since P,Q ∈ O(d). □

Having proved the change of variables in the linear case, we can now attack the C1 diffeomorphism
case. The idea is to approximate locally a C1 map by an affine map which we know how treat
by the preceding discussion. We still need to make this approximation quantitative which is the
content of Lemma 2.28 and to have a ’localization’ principle which will allow us to ’reassemble’ the
various pieces of our approximation, see Lemma 2.31.

Lemma 2.28. Let Ω ⊂ Rd be an open set and φ : Ω → Rd be a C1 map. Suppose that Dφ(x) is
invertible for some x ∈ Ω, then ∀ε ∈ (0, 1), ∃δ > 0 such that ∀η ∈ (0, δ), we have

φ(x) +Dφ(x)B̄ (0, (1− ε)η) ⊂ φ
(
B̄(x, η)

)
⊂ φ(x) +Dφ(x)B̄ (0, (1 + ε)η) .

Proof. First assume that Dφ(x) = Id the identity matrix. By definition of differentiability,
we can find δ > 0 with B(x, δ) ⊂ Ω such that

|φ(y)− φ(x)− (y − x)| ≤ ε|y − x|, ∀y ∈ B(x, δ).

In particular, we get

(1− ε)|y − x| ≤ |φ(y)− φ(x)| ≤ (1 + ε)|y − x|, ∀y ∈ B(x, δ).

Fix η ∈ (0, δ), then for any y ∈ B̄(x, η), we have

|φ(y)− φ(x)| ≤ (1 + ε)|y − x| ≤ (1 + ε)η

which yields the inclusion
φ(B̄(x, η)) ⊂ φ(x) + B̄(0, (1 + ε)η).

To get the other inclusion, note that by the inverse function theorem, φ is an open map on B(x, δ).
For any η ∈ (0, δ), we have that

φ−1
[
∂φ(B̄(x, η))

]
∩ B̄(x, η) ⊂ ∂B̄(x, η).

Informally, this relation is saying that the boundary of the image is included only in the image of
the boundary.
From this, ∀z ∈ ∂φ(B̄(x, η)), we have z = φ(y) for some y ∈ ∂B̄(x, η) and so

|z − φ(x)| = |φ(y)− φ(x)| ≥ (1− ϵ)|y − x| = (1− ϵ)η.

We claim that this implies the desired inclusion, namely

φ(x) + B̄(0, (1− ϵ)η) ⊂ φ(B̄(x, η)).

Suppose this is not the case, then ∃w ∈ B(φ(x), (1 − ϵ)η) such that w ̸∈ φ(B̄(x, η)). Take
t := sup{s ∈ (0, 1) : (1− s)φ(x) + sw ̸∈ φ(B̄(x, η))}. Since φ(B̄(x, η)) is compact and φ is an open
map in B(x, δ), we have (1− t)φ(x) + tw ∈ ∂φ(B̄(x, η)). But it holds that

|(1− t)φ(x) + tw − φ(x)| = t|w − φ(x)| < (1− ε)η,

which is a contradiction. To treat the general case, consider the auxiliary map ψ = Dφ(x)−1φ.
Then ψ is C1 and satisfies Dψ(x) = Id. By the previous discussion, we can thus find δ > 0 such
that for any η ∈ (0, δ), we have

ψ(x) + B̄(0, (1− ε)η) ⊂ ψ(B̄(x, η)) ⊂ ψ(x) + B̄(0, (1 + ε)η).
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Applying the map Dφ(x) to this sequence of inclusions and using the linearity we get

φ(x) +Dφ(x)B̄(0, (1− ε)η) ⊂ φ(B̄(x, η)) ⊂ φ(x) +Dφ(x)B̄(x, (1 + ε)η).

□

Definition (Dyadic cubes). For every n ∈ N, the dyadic cubes of order n in Rd are

Qn =

{
d∏

i=1

[
ki
2n
,
ki + 1

2n

)
: k1, . . . , kd ∈ Z

}
.

The dyadic cubes in Rd are
Q =

⋃
n∈N

Qn.

Proposition 2.29 (Properties of the dyadic cubes). The following properties hold.
(i) For every n ∈ N, Qn is a partition of Rd,
(ii) The diameters of dyadic cubes of order n goes to 0 as n→ ∞,
(iii) For n ≤ m, Q ∈ Qn and Q̃ ∈ Qm, either Q̃ ⊂ Q or Q̃ ∩Q = ∅.

Proof.
(i) ∀z ∈ R and ∀n ∈ N, ∃!k ∈ Z given by k = ⌊2nz⌋ such that z ∈ [2−nk, 2−n(k + 1)). So

∀x ∈ Rd, ∃!(k1, . . . , kd) ∈ Zd such that x ∈
∏d

k=1 [2
−nki, 2

−n(ki + 1)).
(ii) ∀n ∈ N and ∀Q ∈ Qn, we have diam(Q) = 2−n

√
d which goes to 0 as n→ ∞.

(iii) For n ≤ m, take Q ∈ Qn and Q̃ ∈ Qm. Assume Q̃ ∩ Q ̸= ∅, we will show that Q̃ ⊂ Q.
The result follows easily from the case d = 1, so assume that d = 1. Then we have
Q = [2−nk, 2−n(k + 1)) and Q̃ = [2−mj, 2−m(j + 1)) for some k, j ∈ Z. Since Q̃ ∩Q ̸= ∅,
we have 2−nk < 2−m(j + 1) which implies 2m−nk < j + 1. Since 2m−nk ∈ Z, we deduce
2m−nk ≤ j and so 2−nk ≤ 2−mj. Similarly, 2−mj < 2−n(k+1) gives 2−m(j+1) ≤ 2−n(k+1)
and so Q̃ ⊂ Q.

□

Lemma 2.30. Let Ω ⊂ Rd be a nonempty open set, then for any N ∈ N, Ω can be written as the
union of a countable disjoint collection of dyadic cubes of order at least N .

Proof. Define
IN = {Q ∈ QN : Q ⊂ Ω}

and inductively for n > N

In =

Q ∈ Qn : Q ⊂ Ω\
n−1⋃
k=N

⋃
Q̃∈Ik

Q̃

 .

The subcollection of dyadic cubes given by I :=
⋃

n≥N In is disjoint by Proposition 2.29 (iii) and is
countable since Q is countable. Moreover, by construction, we have that

⋃
Q∈I Q ⊂ Ω, so it only

remains to prove the converse inclusion.
Take x ∈ Ω, then ∃δ > 0 such that B(x, δ) ⊂ Ω. Using Proposition 2.29 (i) and (ii), we know that
there exists n ≥ N sufficiently large such that ∃Q ∈ Qn with x ∈ Q ⊂ B(x, δ). In the inductive
construction, if

x ∈
n−1⋃
k=N

⋃
Q̃∈Ik

Q̃

there is nothing to prove. If this is not the case, then Q ∈ In. We thus have Ω =
⋃

Q∈I Q. □
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Lemma 2.31. Let Ω ⊂ Rd be a non empty open set and δ > 0 be a positive number, then there
exists (Bn)n∈N a countable collection of disjoint closed balls such that

diam(Bn) < δ ∀n ∈ N and m

(
Ω\
⋃
n∈N

Bn

)
= 0.

Proof. Set
Θ :=

ωd

4d

where ωd is the Lebesgue measure of the unit ball in Rd.
For a dyadic cube Q =

∏d
i=1[2

−nki, 2
−n(ki+1)) in Rd, let c(Q) :== (2−n(k1+1/2), . . . , 2−n(kd+1/2))

denote its center and r(Q) := 2−n denote its sidelenght. Finally, set B(Q) = B̄(c(Q), r(Q)/4) be
the closed ball with the same center as Q and radius 1/4 of the side length of Q. Notice that

Θ =
m(B(Q))

m(Q)
∈ (0, 1).

Assume now that Ω is bounded. Take N ∈ N large enough so that 2−n
√
d < δ. By Lemma 2.30, we

can find a countable collection of dyadic cubes (Q(0)
n )n∈N of order at least N such that Ω =

⋃
n∈NQ

(0)
n .

By the assumption on the order of the dyadic cubes, we get diam(Q
(0)
n ) < δ for all n ∈ N.

Let F1 =
⋃

n∈NB(Q
(0)
n ), then

m(F1) =
∑
n∈N

m(B(Q(0)
n )) = Θ

∑
n∈N

m(Q(0)
n ) = Θm(Ω).

Since m(Ω) <∞, we can find N1 ∈ N such that

m

(
N1⋃
n=1

B(Q(0)
n )

)
≥ Θ

2
m(Ω).

Set Ω1 = Ω\
⋃N1

n=1B(Q
(0)
n ), which is open and satisfies

m(Ω1) = m

(
Ω\

N1⋃
n=1

B(Q(0)
n )

)
= m(Ω)−

N1∑
n=1

m(B(Q(0)
n )) ≤

(
1− Θ

2

)
m(Ω) <∞.

By the same procedure, we can find finitely many disjoint closed balls (B(Q
(1)
n ))n=1,...,N2 of diameter

less than δ included in Ω1 such that

m

(
N2⋃
n=1

B(Q(1)
n )

)
≥ Θ

2
m(Ω1).

Set Ω2 = Ω1\
⋃N2

n=1B(Q
(1)
n ), which is open and satisfies

m(Ω2) = m

(
Ω1\

N2⋃
n=1

B(Q(1)
n )

)
≤
(
1− Θ

2

)
m(Ω1) ≤

(
1− Θ

2

)2

m(Ω).

Continue this procedure inductively so that at step k, we have finitely many disjoint closed balls
(B(Q

(k)
n )n=1,...,Nk

of radius at most δ included in Ωk = Ωk−1\
⋃Nk−1

n=1 B(Qk−1
n ) which satisfy

m(Ωk) = m

(
Ωk−1\

Nk⋃
n=1

B(Qk
n)

)
≤
(
1− Θ

2

)
m(Ωk−1) ≤

(
1− Θ

2

)k

m(Ω).
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By construction, the family of closed balls {B(Qj
n) : j ∈ N0, n = 1, . . . , Nj} is disjoint and included

in Ω and satisfies (using the previous bounds)

m

Ω\
∞⋃
j=0

Nj⋃
n=1

B(Q(j)
n )

 ≤
(
1− Θ

2

)k

m(Ω) ∀k ∈ N.

To treat the general case, i.e. Ω unbounded, write Ω = A ∪
⋃

n≥1Ωn where Ωn = Ω ∩ {x ∈ Rd :
n − 1 < |x| < n} for every n ∈ N and A is a null set. Each Ωn is open and bounded and so the
previous result applies, putting together all the closed balls and using countable subadditivity of
the Lebesgue measure gives the result. □

Lemma 2.32. Let f : Rd → Rd be a k-Lipschitz function for some k > 0 and A ⊂ Rd be some set

then m∗(f(A)) ≤
(
2k

√
d
)d
m∗(A).

Proof. In the definition of outer measure, we used cover with boxes. Had we defined the outer
measure using only covers with cubes, we would have gotten the same outer measure, we leave this
as an exercise.
Now take a collection of cubes (Bn)n∈N that cover A, then for every n, we can find a cube B̃n such

that f(Bn) ⊂ B̃n and vol(B̃n) ≤
(
2k

√
d
)d

vol(Bn). This implies

m∗(f(A)) ⩽
∑
n∈N

vol(B̃n) ⩽
(
2k

√
d
)d∑

n∈N

vol(Bn).

Since the cover of A (Bn)n∈N was arbitrary, we deduce the result. □

Remark 2.12. In particular if A is a null set, then f(A) is a null set and so measurable.

Theorem 2.33 (Change of variables formula). Let U,D be two open subsets of Rd and g : U → D
be a C1 diffeomorphism. Let f : D → [0,+∞] be a Borel measurable function, then∫

D

f(x)dx =

∫
U

f(g(u))| detDg(u)|du.

We have a similar formula if f ∈ L1(U) is a Borel function.

Proof. | detDG| is a polynomial of the partial derivatives of g and so is continuous hence
measurable. Since f is Borel and g is continuous, we have that f ◦ g is Borel measurable. Using
the standard reduction argument, it suffices to prove the result for indicator functions of Borel sets,
namely f = 1A for A ⊂ D a Borel set. In this case, the formula reads

m(A) =

∫
U

1A(g(u))| detDg(u)|du =

∫
U

1g−1(A)(u)| detDg(u)|du =

∫
g−1(A)

| detDg(u)|du.

By setting E = g−1(A) which is a Borel set, it suffices to prove that for all Borel sets, we have

m(g(E)) =

∫
E

| detDg(u)|du.

We will first prove this for E an open set of U such that Ē ⊂ U is compact. Take ε ∈ (0, 1), by
Lemma 2.28 we can find δ > 0 such that for any η ∈ (0, δ) and any x ∈ E, we have

g(x) +Dg(x)B̄(0, (1− ε)η) ⊂ g(B̄(x, η)) ⊂ g(x) +Dg(x)B̄(0, (1 + ε)η).

The uniformity in x ∈ E comes from the fact that Dg is continuous on E which is assumed to be
compact.
Take η ∈ (0, δ) such that (1 + ε)−1 ≤ |detDg(x)

detDg(y)
| ≤ (1 + ε) for all x, y ∈ E with |x− y| ≤ η.
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By Lemma 2.31, we can find countably many disjoint closed balls (Bn)n∈N in U of radius less than
η such that m(U\

⋃
n∈NBn) = 0. In particular, we get m(E\

⋃
n∈NBn) = 0 and by Remark 2.12,

m(g(E\
⋃

n∈NBn)) = 0. Denote xn the center of the ball Bn and rn its radius, from Proposition 2.27,
we get

m(g(E)) = m

(
g

(⋃
n∈N

Bn

))
=
∑
n∈N

m(g(Bn))

≤
∑
n∈N

m(Dg(xn)B̄(0, (1 + ε)rn))

= (1 + ϵ)d
∑
n∈N

m(B̄(xn, rn))| detDg(xn)|

≤ (1 + ε)d+1
∑
n∈N

∫
Bn

| detDg(x)|dx

= (1 + ε)d+1

∫
⋃

n∈N Bn

| detDg(x)|dx

= (1 + ε)d+1

∫
E

| detDg(x)|dx.

Similarly ∫
E

| detDg(x)|dx =
∑
n∈N

∫
Bn

| detDg(x)|dx

≤ (1 + ε)
∑
n∈N

m(Bn)| detDg(xn)|

≤ 1 + ε

(1− ε)d

∑
n∈N

m(g(xn) +Dg(xn)B̄(0, (1− ε)rn))

≤ 1 + ε

(1− ε)d

∑
n∈N

m(g(Bn))

=
1 + ε

(1− ε)d
m

(
g

(⋃
n∈N

Bn

))

=
1 + ε

(1− ε)d
m(g(E)).

Letting ε→ 0 gives the result in the case where E is open and Ē ⊂ U is compact. For a general
open set E ⊂ U , we can write E as an increasing limit of open sets compactly contained in U and
use the monotone convergence theorem to conclude.
To treat a general Borel set E ⊂ U , assume first that Dg is bounded on U . Take ε > 0, use the
outer regularity of the Lebesgue measure and Lemma 2.32 to find A ⊂ U an open set such that
m(A\E) ≤ ε and m(g(A\E)) ≤ ε, then we get∣∣∣∣m(g(E))−

∫
E

| detDg(x)|dx
∣∣∣∣ ≤ m(g(A\E)) +m(A\E)∥Dg∥∞ ≤ ε(1 + ∥Dg∥∞).

To remove the assumption that Dg is bounded, we can write E as an increasing limit of sets
compactly contained in U and use the monotone convergence theorem. □
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Remark 2.13. We have proved the change of variable formulas for Borel function. The result
remains valid in the case of Lebesgue measurable functions but we first need to prove the mea-
surability of f ◦ g. We do not this here and simply state that this can be done by proving that
C1 diffeomorphisms preserve Lebesgue measurability (use Remark 2.12 and the fact that every
Lebesgue measurable set is almost Borel measurable).





CHAPTER 3

Lp Spaces

This chapter is inspired by [Dac, Chapter 16] and [Buf22, Chapter 2].

In this chapter, we generalize the notion of absolutely integrable functions, trying to understand
what are the implications of the integrability of a general power p ≥ 1 of the modulus of the
function. We begin with the following defintion:

Definition (Lp norm). Let Ω ⊆ Rd be a measurable set, let f : Ω → R∗ and p ∈ [1,∞). We
define

∥f∥Lp(Ω) :=

(∫
Ω

|f |p
) 1

p

. (3.1)

From the above, we then naturally define at the first attempt the space of functions with finite Lp

norm:
Lp(Ω) :=

{
f : Ω → R∗ measurable, s.t. ∥f∥Lp(Ω) < +∞

}
. (3.2)

Remark 3.1. In the case p = 1, L1(Ω) is the space of absolutely integrable functions on Ω.
Moreover, it holds that

f ∈ Lp(Ω) ⇐⇒ |f |p ∈ L1(Ω).

We would like to introduce a normed vector space from the definitions (3.1)-(3.2); in order to do
so, we need to enforce the vanishing property of the norm (that means, ∥f∥Lp(Ω) = 0 ⇐⇒ f = 0).
In our case, since ∥f∥Lp(Ω) = 0 ⇒ f = 0 a.e., we wish to identify in Lp functions that coincide
almost everywhere. To do so, we introduce the equivalence relation:

f ∼ g ⇐⇒ f = g a.e.

and define Lp spaces as follows:

Definition (Lp space).

(Lp(Ω); ∥·∥Lp) = (
{
f : Ω → R∗ measurable s.t. ∥f∥Lp(Ω) < +∞

}
/ ∼ ; ∥·∥Lp).

We now introduce a space that morally contains functions that are bounded (up to a set of
measure 0).

Definition (L∞ norm). Let us define

∥f∥L∞(Ω) := ess sup
x∈Ω

|f(x)| = inf {α ≥ 0 : |f | < α a.e.}

Remark 3.2. If f is continuous, sup and ess sup coincide.
Remark 3.3. Notice that ∥·∥L∞(Ω) is well defined on an equivalence class, because

f = g a.e. =⇒ ess sup |f | = ess sup |g|.
Example 3.1. ess sup1Q = 0, because 1Q = 0 a.e.

Definition (L∞ space). L∞(Ω) := {f : Ω → R∗ measurable, s.t. ∥f∥L∞ < +∞}.

We will now introduce the Hölder inequality, a fundamental tool to work with Lp spaces. To do
so, we need the following definition.

57
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Definition (Conjugate Hölder exponents). Let p ∈ [1,+∞]. The conjugate Hölder exponent
is p′ such that

1

p
+

1

p′
= 1 ⇐⇒ p′ =

p

p− 1
,

with the convention 1/+∞ = 0.

Example 3.2. 1 is the conjugate of +∞, 2 is the conjugate of itself.

Theorem 3.1 (Hölder inequality). Let Ω be measurable, p ∈ [1,+∞], then

∥fg∥L1(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lp′ (Ω) ∀f, g measurable,

where p′ is the conjugate Hölder exponent of p.

Proof. If p = 1 (symmetrically, p = +∞), we get that p′ = +∞ (p′ = 1). Therefore,

∥fg∥L1(Ω) ≤
∫
Ω

|f ||g| ≤
∫
Ω

|f |∥g∥L∞(Ω) ≤
(∫

Ω

|f |
)
∥g∥L∞(Ω) = ∥f∥L1(Ω)∥g∥L∞(Ω).

If p, p′ ≠ 1,+∞, we observe that the inequality is invariant under multiplications by constants: the
Hölder inequality therefore holds if and only if

∥λ1fλ2g∥L1(Ω) = λ1λ2∥fg∥L1(Ω) ≤ λ1∥f∥Lp(Ω)λ2∥g∥Lp′ (Ω) ≤ ∥λ1f∥Lp(Ω)∥λ2g∥Lp′ (Ω) for all λ1, λ2 > 0.

Therefore, we may reduce ourselves to the case

∥f∥Lp(Ω) = ∥g∥Lp′ (Ω) = 1.

Indeed, assume
∥fg∥L1(Ω) ≤ 1 ∀f, g s.t. ∥f∥Lp(Ω) = ∥g∥Lp′ (Ω) = 1. (3.3)

By applying the inequality (3.3) to

f =
F

∥F∥Lp(Ω)

and g =
G

∥G∥Lp′ (Ω)

,

we retrieve that
∥FG∥L1(Ω)

∥F∥Lp(Ω)∥G∥Lp′ (Ω)

≤ 1 =⇒ ∥FG∥L1(Ω) ≤ ∥F∥Lp(Ω)∥G∥Lp′ (Ω).

To prove (3.3), we can use the Young’s inequality for real numbers X, Y > 0, p ∈ (1,+∞):

XY ≤ Xp

p
+
Y p′

p′
,

in order to obtain that ∫
Ω

|fg| ≤
∫
Ω

|f |p

p
+

|g|p′

p′
=

1

p
+

1

p′
= 1,

which concludes the proof. □

Remark 3.4. The Hölder inequality with p = p′ = 2 is known as Cauchy-Schwartz inequality:∫
Ω

fg ≤ ∥f∥L2(Ω)∥g∥L2(Ω).

We can generalize the Cauchy-Schwartz inequality to the case in which f, g are complex-valued:
indeed, we have that ∣∣∣∣∫

Ω

fg

∣∣∣∣ ≤ ∫
Ω

|f ||g| ≤ ∥f∥L2(Ω)∥g∥L2(Ω).
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Remark 3.5. Via Hölder inequality, we can also prove that

∥fg∥Lr ≤ ∥f∥Lp∥g∥Lq ∀r, p, q s.t
1

r
=

1

p
+

1

q
.

Indeed, setting F = f r, G = gr and applying Hölder inequality with conjugate exponents p/r and
q/r, we can prove that:(∫

Ω

|fg|r
)1/r

=

(∫
Ω

|FG|
)1/r

≤
(∫

Ω

|F |p/r
)1/p(∫

Ω

|G|q/r
)1/q

=

(∫
Ω

|f |p
)1/p(∫

Ω

|g|q
)1/q

.

We now state and prove some useful properties of Lp spaces.

Proposition 3.2. Let Ω ⊂ Rd be measurable and 1 ≤ p ≤ q ≤ +∞, then
(i) Lp(Ω) is a vector space.
(ii) If m(Ω) < +∞, then ∥f∥Lp(Ω) ≤ K∥f∥Lq(Ω) for all f : Ω → R∗ measurable, where K

depends on m(Ω), p and q. In particular,

Lq(Ω) ⊆ Lp(Ω).

(iii) If m(Ω) < +∞, then limp→+∞∥f∥Lp(Ω) = ∥f∥L∞(Ω).
(iv) The Minkowski inequality holds:

∥f + g∥Lp(Ω) ≤ ∥f∥Lp(Ω) + ∥g∥Lp(Ω) ∀f, g ∈ Lp(Ω)

This property enables us to conclude that ∥·∥Lp(Ω) is a norm on Lp, because it satisfies the
triangular inequality.

Proof. [The proof is contained in Series 6, ex. 7]
(i) Let f, g ∈ Lp(Ω) and λ, µ ∈ R. Notice that λf + µg is measurable, and we need to prove

that λf + µg ∈ Lp(Ω).
If p = +∞, we have that λf + µg ∈ L∞(Ω), because

{x ∈ Ω : |f(x) + g(x)| > ∥f∥L∞(Ω) + ∥g∥L∞(Ω)} ⊆ {x ∈ Ω : |f(x)|+ |g(x)| > ∥f∥L∞(Ω) + ∥g∥L∞(Ω)}
⊆ {x ∈ Ω : |f(x)| > ∥f∥L∞(Ω)} ∪ {x ∈ Ω : |g(x)| > ∥g∥L∞(Ω)}.

Since

m({x ∈ Ω : |f(x)| > ∥f∥L∞(Ω)}) = m({x ∈ Ω : |g(x)| > ∥g∥L∞(Ω)}) = 0,

by definition of the essential supremum, we conclude that

m({x ∈ Ω : |f(x) + g(x)| > ∥f∥L∞(Ω) + ∥g∥L∞(Ω)}) = 0.

Therefore,
∥f + g∥L∞(Ω) ≤ ∥f∥L∞(Ω) + ∥g∥L∞(Ω).

Assume now 1 ≤ p < +∞. The function x→ |x|p is convex for this choice of p, hence

∀x, y ∈ R |x+ y|p ≤ 2p−1(|x|p + |y|p).

Therefore,

∥λf + µg∥pLp(Ω) =

∫
Ω

|λf(x) + µg(x)|pdx ≤ 2p−1
(
|λ|p∥f∥pLp(Ω) + |µ|p∥g∥pLp(Ω)

)
< +∞,

which proves that λf + µg ∈ Lp(Ω).
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(ii) Let Ω be bounded and 1 ≤ p < q ≤ +∞. Let f ∈ Lq(Ω), and first assume that 1 < q < +∞.
By applying Hölder inequality with exponents q/p and q/(q−p) (admissible choice provided
that q > p), we get that

∥f∥pLp(Ω) =

∫
Ω

|f |pdx ≤
(∫

Ω

(|f |p)q/pdx
)p/q (∫

Ω

1dx

)1−p/q

= (∥f∥Lq(Ω))
pm(Ω)1−p/q.

By taking the p−th root, we get:

∥f∥Lp(Ω) ≤ ∥f∥Lq(Ω)m(Ω)1/p−1/q.

When q = +∞, we have that:

∥f∥Lp(Ω) =

(∫
Ω

|f |pdx
)1/p

≤
(∫

Ω

∥f∥pL∞(Ω)dx

)1/p

= m(Ω)1/p∥f∥L∞(Ω). (3.4)

(iii) Let f ∈ L∞(Ω). We can prove using (3.4) that

lim sup
p→+∞

∥f∥Lp(Ω) ≤ ∥f∥L∞(Ω),

because m(Ω)1/p → 1 as p→ +∞.
Now, we need to prove that lim infp→+∞∥f∥Lp(Ω) ≥ ∥f∥L∞(Ω).
To do so, fix 0 < ε < ∥f∥L∞(Ω) and consider the set

Aε := {x ∈ Ω : |f(x)| ≥ ∥f∥L∞(Ω) − ε}.
By definition of the essential supremum, we have that m(Aε) > 0. Thus,∫

Ω

|f |pdx ≥
∫
Aε

|f |pdx ≥ m(Aε)(∥f∥L∞(Ω) − ε)p > 0,

and therefore, taking the p-th root, we have that

∥f∥Lp(Ω) ≥ m(Aε)
1/p(∥f∥L∞(Ω) − ε).

Since m(Aε) > 0, we have that m(Aε)
1/p → 1 as p→ +∞, and we get that:

lim inf
p→+∞

∥f∥Lp(Ω) ≥ ∥f∥L∞(Ω) − ε.

By arbitrarity of ε, we conclude that

lim inf
p→+∞

∥f∥Lp(Ω) ≥ ∥f∥L∞(Ω).

Now, we can prove that the limit exists and is equal to the desired quantity, because

∥f∥L∞(Ω) ≤ lim inf
p→+∞

∥f∥Lp(Ω) ≤ lim sup
p→+∞

∥f∥Lp(Ω) ≤ ∥f∥L∞(Ω).

(iv) Notice that |f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1. Therefore, we have that

∥f + g∥pLp(Ω) =

∫
Ω

|f + g|pdx ≤
∫
Ω

|f ||f + g|p−1dx+

∫
Ω

|g||f + g|p−1dx

⋆

≤ ∥f∥Lp(Ω)∥|f + g|p−1∥Lp′ (Ω) + ∥g∥Lp(Ω)∥|f + g|p−1∥Lp′ (Ω). (3.5)

The ⋆ inequality follows from an application of the Hölder inequality with exponents p
and p′ = p/(p− 1). Then, we have that

∥|f + g|p−1∥Lp′ (Ω) =

(∫
Ω

|f + g|(p−1)
p

p−1

)(p−1)/p

= ∥f + g∥p−1
Lp(Ω).

Dividing both members in (3.5) by ∥f + g∥p−1
Lp(Ω), we get the desired inequality.
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□

3.1. Completeness of Lp

We can prove that Lp spaces are complete with the following theorem.

Theorem 3.3. Let Ω ⊆ Rd be measurable, p ∈ [1,+∞]. Then, Lp(Ω) is complete. Namely, if
{fn}n∈N is a Cauchy sequence, then ∃f ∈ Lp(Ω) such that

lim
n→+∞

||fn − f ||Lp(Ω) = 0.

Moreover, there exists a subsequence {fmk
}k∈N s.t.

fmk
(x) → f(x) a.e. in Ω,

|fmk
(x)| ≤ g(x) for some g ∈ Lp(Ω).

Proof. [The case p = +∞ is contained in ex. 3 of Series 7.]
First of all, recall that {fn}n∈N is Cauchy means that

lim
m,n→∞

∥fn − fm∥Lp(Ω) = 0,

i.e.
∀ε > 0 ∃n0(ε) large enough s.t. ∥fn − fm∥Lp(Ω) ≤ ε ∀n,m ≥ n0(ε).

We begin the proof from the easier case p = +∞: for m,n ∈ N with n ̸= m, define

Am,n := {x ∈ Ω : |fn(x)− fm(x)| > ∥fn − fm∥L∞(Ω)},
Bn = {x ∈ Ω : |fn(x)| ≥ ∥fn∥L∞(Ω)}.

By definition of L∞ norm, these sets have measure 0. Therefore, their countable union

E =

(⋃
n ̸=m

Am,n

)
∪

(
∞⋃
n=1

Bn

)
has measure 0 as well.
We claim that, for x ∈ EC , {fn(x)}n∈N is a Cauchy sequence. Indeed, x ∈ EC means that

x ∈
⋂
m ̸=n

AC
m,n,

and therefore |fn(x)− fm(x)| ≤ ∥fn − fm∥L∞(Ω) ∀n,m ∈ N, hence it is a Cauchy sequence. We
can then define, for x ∈ EC , f(x) as the limit of the Cauchy sequence {fn(x)}n∈N, and for x ∈ E
we set f(x) to an arbitrary value.
We now prove that f ∈ L∞(Ω) and fn → f in L∞(Ω); since fn is a Cauchy sequence in L∞(Ω), for
any ε > 0 ∃N ∈ N such that

∥fn − fm∥L∞(Ω) ≤ ε ∀n,m ≥ N.

Thus, ∀x ∈ EC and if n,m ≥ N , |fn(x)− fm(x)| ≤ ∥fn − fm∥L∞(Ω) ≤ ε. Letting n→ +∞,

|f(x)− fm(x)| = lim
n→+∞

|fn(x)− fm(x)| ≤ ε ∀m ≥ N.

Thus, |f − fm| ≤ ε a.e., which implies

|f | ≤ |f − fm|+ |fm| ≤ |fm|+ ε a.e.

As a consequence, we get f ∈ L∞(Ω). Moreover, since |f − fm| ≤ ε a.e. ∀m ≥ N , we conclude that

∥f − fm∥L∞(Ω) ≤ ε ∀m ≥ N,

which finishes the proof for this case.
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We now prove the result for p < +∞: we want to prove that {fm}m∈N is Cauchy in Lp implies
that, up to a subsequence, {fm}m∈N converges to a certain f both in Lp and almost everywhere.
Indeed, since {fn}n∈N is Cauchy

lim
k→∞

∥fnk
− f∥Lp(Ω) = 0 ⇐⇒ lim

n→∞
∥fn − f∥Lp(Ω) = 0.

To find the candidate limit f , we look for a speedy converging subsequence.
We know from the hypothesis that there exists a subsequence {nk}k∈N such that

∥fnk
− fnk+1

∥Lp(Ω) ≤ 2−k ∀k ∈ N.

The existence of this sequence {nk}k∈N is guaranteed: for example, take ε = 2−k and nk =
max(n0(2

−k), nk−1 + 1) (with n0 = 0). Now, define

f(x) := fn1(x) +
∞∑
k=1

fnk+1
(x)− fnk

(x). (3.6)

This series is absolutely convergent for almost every x: consider the partial sum of the absolute
values up to h ∈ N:

gh(x) := |fn1(x)|+
h∑

k=1

|fnk+1
(x)− fnk

(x)|.

Thanks to Minkowski’s inequality, we have that

∥gh∥Lp(Ω) ≤ ∥fn1∥Lp(Ω) +
h∑

k=1

∥fnk+1
− fnk

∥Lp(Ω)︸ ︷︷ ︸
≤2−k

≤ ∥fn1∥Lp(Ω) + 1.

Let g(x) := limh→∞ gh(x); this limit exists, because the sequence of {gh}h∈N is increasing. By
monotone convergence theorem, we have that

0 ≤
∫
Ω

gp = lim
h→+∞

∫
Ω

gph ≤ (∥fn1∥Lp(Ω) + 1)p < +∞.

Then, g is finite a.e., hence also f in (3.6) is well defined for a.e. x. For a.e. x,

f(x) = lim
h→∞

fn1(x) +
h∑

k=1

fnk+1
(x)− fnk

(x) = lim
h→∞

fnh+1
(x),

because of the telescopic sum. This means that the speedy subsequence converges pointwise and it
is dominated by g ∈ Lp(Ω).

To prove Lp convergence, we can use the dominated convergence theorem, because fn − f → 0
a.e. and |fn − f |p ≤ [|fn|+ |f |]p ≤ 2pgp ∈ L1(Ω). Hence, we obtain

∥fn − f∥pLp(Ω) =

∫
Ω

|fn − f |p → 0 as n→ +∞

□

Remark 3.6. Let h ∈ Lp0 ∩ Lp1 , with p0 < p1. Prove that, if m(Ω) < +∞, we have that
h ∈ Lp ∀p ∈ [p0, p1]. Indeed, if p1 = ∞, then

∫
Ω
|h|p ≤

∫
Ω
|h|p0∥h∥p−p0

L∞(Ω).
In general, ∀p ∈ [p0, p1], we can write p = θp0 + (1− θ)p1 for θ ∈ [0, 1]. Therefore,∫

Ω

|h|p =
∫
Ω

|h|θp0|h|(1−θ)p1
⋆

≤
(∫

Ω

|h|θp0
1
θ

)θ (∫
Ω

|h|(1−θ)p1
1

1−θ

)(1−θ)
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where ⋆ follows from Hölder inequality with p = 1/θ, p′ = 1/(1− θ). Hence,

||h||pLp(Ω) ≤ ||h||θp0Lp0 (Ω)||h||
(1−θ)p1
Lp1 (Ω) < +∞.

Remark 3.7. fn → f in L1(Ω), m(Ω) < +∞. Then,
√

1 + f 2
n →

√
1 + f 2 in L1(Ω). Indeed,

suppose by contradiction that ∥∥∥√1 + f 2
nk

−
√

1 + f 2

∥∥∥
L1(Ω)

> ε (3.7)

for some ε > 0 and a subsequence {nk}k∈N. Since fn → f in L1(Ω), we can take another subsequence
nkh such that fnkh

→ f a.e. and the convergence is dominated by g ∈ L1(Ω). Then,√
1 + f 2

nkh
−
√
1 + f 2 → 0 a.e.

and the convergence is dominated, because∣∣∣√1 + f 2
nkh

−
√
1 + f 2

∣∣∣ ≤√1 + f 2
nkh

+
√

1 + f 2 ≤ 2
√

1 + g2 ≤ 2(1 + g) ∈ L1(Ω).

Hence, by the dominated convergence theorem,
∫
Ω

∣∣∣∣√1 + f 2
nkh

−
√

1 + f 2

∣∣∣∣→ 0 as h→ ∞, but this

contradicts (3.7).

3.2. Approximation of Lp functions with C∞
c (Ω) functions

Let us now consider the problem of approximating functions in Lp spaces with C∞ functions.
We will consider this task for the case p < +∞, because we can see with a trivial counterexample
that problems arise in L∞. Indeed, let us consider the function f(x) = 1[1,2](x) ∈ L∞([0, 2]):
since the uniform limit of continuous functions is continuous, there is no chance to approximate
uniformly (even up to throwing away a set of measure 0) this discontinuous function with functions
in C∞([0, 2]).

x

y

f(x) =

{
0, x ∈ [0, 1)

1, x ∈ [1, 2]

Figure 1. f(x) = 1[1,2](x).

For the case p < +∞, instead, we have the possibility to look for approximations in the space
of C∞ functions with compact support, which are defined in the following way:

Definition (Compactly supported functions). If f : Ω → R∗, then:
(i) supp(f) := {x : f(x) ̸= 0};
(ii) C0

c (Ω) := {f ∈ C0(Ω) : supp(f) ⋐ Ω}, where ⋐ stands for “compactly contained"1};
(iii) Ck

c (Ω) := C0
c (Ω) ∩ Ck(Ω).

1A ⋐ B, B open ⇒ A ⊂ B and A is compact.
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Theorem 3.4. Let Ω ⊆ Rd be an open set, 1 ≤ p <∞, f ∈ Lp(Ω). Then, ∃{gk}k∈N ⊂ C∞
c (Ω)

such that
lim

k→+∞
∥gk − f∥Lp(Ω) = 0.

The proof of this result is articulated in 3 parts:
(I) we prove the statement for Ω = Rd and approximating functions in C0

c (Rd);
(II) we prove the statement for Ω ⊂ Rd and approximating functions in C0

c (Ω);
(III) we prove the statement of Theorem 3.4.

Proof - part I. We prove the result for Ω = Rd, and we first work with gk ∈ C0
c (Rd).

We will prove the statement in 5 steps:
(i) We prove the statement for f(x) = IB(x), being B a box.

For the case n = 1, we have that B = [a, b]. Define

gε(x) =


1 x ∈ [a, b)
x
ε
+ 1− a

ε
x ∈ [a− ε, a)

−x
ε
+ 1 + b

ε
x ∈ [b, b+ ε)

0 else

(3.8)

x

y

a b

ε ε

Figure 2. g̃ε(x).

We have that gε → f a.e., and, by the dominated convergence theorem, ∥gε−f∥Lp(Ω) →
0.
For n > 1, define g̃ε(x1, ..., xd) =

∏d
i=1 gε(xi), where gε are defined like (3.8). Again, g̃ε → f

a.e., and, by the dominated convergence theorem, ∥g̃ε − f∥Lp(Ω) → 0.
(ii) We prove the statement for f(x) = 1E(x), being E measurable and E compact2.

Let ε > 0 and let {Bi}i∈N be a cover made by boxes of E, such that:

m(E) ≤
∞∑
i=1

m(Bi) ≤ m(E) + ε, (3.9)

2Note that, since we are set in Rd, this hypothesis could be replaced by m(E) < +∞.
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which means that∫
Ω

∣∣∣∣∣1E −
∞∑
i=1

1Bi

∣∣∣∣∣ =
∫
Ω

∞∑
i=1

1Bi
− 1E =

∞∑
i=1

∫
Ω

1Bi
− 1E =

∞∑
i=1

m(Bi)−m(E) ≤ ε, (3.10)

where integral and series have been swapped with the monotone convergence theorem (see
Corollary 2.9). Let N ∈ N be such that

∞∑
i=N+1

m(Bi) < ε. (3.11)

By (i), we have that ∃hi ∈ C0
c (Rd) such that:

∥hi − 1Bi
∥Lp(Rd) <

ε

N
. (3.12)

Now take h =
∑N

i=1 h
i ∈ C0

c (Rd). For p = 1, we have

∥1E − h∥L1(Rd) = ∥1E −
N∑
i=1

1Bi
+

N∑
i=1

1Bi
−

N∑
i=1

hi∥L1(Rd)

≤ ∥1E −
N∑
i=1

1Bi
∥L1(Rd) +

N∑
i=1

∥1Bi
− hi∥L1(Rd)

(3.12)
< ∥1E −

∞∑
i=1

1Bi
∥L1(Rd) + ∥

∞∑
i=N+1

1Bi
∥L1(Rd) +N

ε

N

(3.10),(3.11)
< 2ε+ ε = 3ε.

with an application of Minkowski’s inequality in the first inequality.
If p > 1, define h̃ = (h∧1)∨0 (where ∧ denotes the minimum and ∨ denotes the maximum
between the two quantities):

∥1E − h̃∥pLp(Ω) ≤
∫
Ω

|1E − h̃|p︸ ︷︷ ︸
∈[0,1]

≤
∫
Ω

|1E − h̃| ≤
∫
Ω

|1E − h| ≤ 3ε,

using the result for p = 1 in the last inequality.
(iii) We prove the statement for f simple function.

If f is a simple function, then f(x) =
∑N

i=1 ai1Ei
(x), where Ei are disjoint measurable

sets and Ei is compact. By (ii), we know that

∀i ∃gik ∈ C0
c (Rd) s.t. gik → 1Ei

in Lp.

Define

gk :=
N∑
i=1

aig
i
k ∈ C0

c (Rd);

we have that gk → f in Lp because

∥gk − f∥Lp(Rd) = ∥
N∑
i=1

ai(1Ei
− gik)∥Lp(Rd) ≤

N∑
i=1

|ai|∥1Ei
− gik∥Lp(Rd) → 0 as k → ∞.
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(iv) We prove the statement for f ∈ Lp(Rd) non-negative. Let {ϕk}k∈N be the sequence of
simple functions approximating f given by Lemma 2.3. As mentioned in Remark 2.1, we
can choose compactly supported simple functions:

{1Bk
ϕk}k∈N s.t. 1Bk

ϕk ↑ f

By step (iii),

∀k ∈ N ∃gk ∈ C0
k(Rd) s.t. ∥gk − 1Bk

ϕk∥Lp(Rd) ≤
1

k
.

Now we claim that gk → f in Lp:

∥gk − f∥Lp(Rd) ≤ ∥gk − 1Bk
ϕk∥Lp(Rd) + ∥1Bk

ϕk − f∥Lp(Rd)

≤ 1

k
+

(∫
|1Bk

ϕk − f |p
)1/p

and the last term in the RHS converges to 0 thanks to the dominated convergence theorem.
(v) We prove the statement for a general f ∈ Lp(Rd).

If f = f+ − f−, by (iv) ∃g+k , g
−
k ∈ C0

c (Rd) such that

∥g+k − f+∥Lp(Rd) → 0, ∥g−k − f−∥Lp(Rd) → 0.

We claim that g+k − g−k → f in Lp (notice that g+k − g−k ∈ C0
c (Rd):

∥g+k − g−k − f+ + f−∥Lp(Rd) ≤ ∥g+k − f+∥Lp(Rd) + ∥g−k − f−∥Lp(Rd) → 0 as k → ∞,

thanks to Minkowski’s inequality.
□

Proof - part II. We now need to consider a general open domain Ω ⊂ Rd, and we prove that
C0

c (Ω) is dense in Lp(Ω).
To do so, consider f ∈ Lp(Ω), and extend it to f ∈ Lp(Rd) by setting f = f1Ω. By the previous

part of the proof, we can find

{fn}n∈N ⊂ C0
c (Rd) s.t. fn → f.

Set gn(x) := ϕ(n d(x,ΩC)), where

ϕ(y) :=


1, y ≥ 1

0, y ≤ 1/2

2y − 1, y ∈ (1/2, 1).

We have that {fngn}n∈N ⊂ C0
c (Ω) and

∥fngn − f∥Lp(Ω) ≤ ∥f(gn − 1)∥Lp(Ω) + ∥(fn − f)gn∥Lp(Rd)

≤ ∥f(gn − 1)∥Lp(Ω) + ∥fn − f∥Lp(Rd) ∥gn∥L∞(Rd)︸ ︷︷ ︸
≤1

,

where both terms in the RHS go to 0 (the first by dominated convergence theorem with dominant
2f ∈ L1(Ω), the second by the first part of the proof). □
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3.2.1. Approximation in Lp of C0
c functions with C∞

c functions. To approximate func-
tions in C0

c (Rd) with functions in C∞
c (Rd), we use convolutions.

Let us introduce ϕ ∈ C∞
c (Rd) such that ϕ ≥ 0, ϕ = 0 outside B1,

∫
Rd ϕ = 1; for instance, we

could take ϕ(x) = ce
1

|x|2−1 for |x| < 1 and 0 elsewhere (Figure 3).

x

y

Figure 3. ϕ(x) = ce
1

|x|2−1 for |x| < 1 and 0 elsewhere.

Definition (Standard convolution kernel). The standard mollifier is

ϕε(x) = ε−dϕ
(x
ε

)
∀ε > 0.

Remark 3.8. Note that by Proposition 2.23∫
Rd

ϕε(x)dx =

∫
Rd

ε−dϕ(ε−1x1, ..., ε
−1xd)dx =

yi=ε−1xi

∫
Rd

ϕ(y)dy = 1

and that ϕε is supported in Bε.

Definition (Convolution). Now, let f ∈ C0
c (Rd), g ∈ C0

c (Rd) and define the convolution of f
and g as

(f ∗ g)(x) :=
∫
Rd

f(x− y)g(y)dy.

We will call fε := f ∗ ϕε.

Lemma 3.5. Let f ∈ C0
c (Rd); then, ∀ε < 1 we have that

(i) supp(fε) ⊂ supp(f) +Bε(0);
(ii) fε ∈ C∞

c (Rd);
(iii) ∥fε∥L1(Rd) ≤ ∥f∥L1(Rd);
(iv) fε → f uniformly.

Proof. (i) fε(x) =
∫
Rd f(x− y)︸ ︷︷ ︸

=0 ∀y∈Bε

if d(x,supp(f))>ε

ϕε(y)︸ ︷︷ ︸
=0 ∀|y|>ε

dy = 0

(ii) We can conclude that

lim
h→0

1

h
(fε(x+ hv)− fε(x)) =

∫
Rd

f(z)∂ϕε(x− z)dz

by applying Theorem 2.17 on each partial derivative.
As an alternative that does not rely on that statement, observe that, with a change of
variables and an application of Fubini-Tonelli, we have

fε(x)
xi−yi=zi=

∫
Rd

f(z)ϕε(x− z)dy
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Now, we can compute:
1

h
(fε(x+ hv)− fε(x)) =

∫
Rd

f(z)
ϕε(x+ hv − z)− ϕε(x− z)

h
dz.

With the dominated convergence theorem, we can swap the limit for h → 0 with the
integral, and recalling that

ϕε(x+ hv − z)− ϕε(x− z)

h
→ ∇ϕε(x− z) · v pointwise,

we obtain

lim
h→0

1

h
(fε(x+ hv)− fε(x)) =

∫
Rd

f(z)∂ϕε(x− z)dz.

Since we can compute each partial derivative in this way, we get:

∇(fε) = ∇(f ∗ ϕε) = f ∗ ∇ϕε. (3.13)

(iii) By definition, we have that:

∥fε∥L1(Rd) =

∫
Rd

|fε(x)|dx ≤
∫
Rd

∫
Rd

|f(y)|ϕε(x− y)dydx

=

∫
Rd

|f(y)|
∫
Rd

ϕε(x− y)dx︸ ︷︷ ︸
=1

dy = ∥f∥L1(Rd)

using Tonelli’s theorem.
(iv) Note that f is uniformly continuous, therefore

∀ε′ > 0 ∃δ > 0 such that |x− y| < δ =⇒ |f(x)− f(y)| < ε′.

Hence, ∀ε′ > 0,

|f(x)− fε(x)| =
∣∣∣∣f(x)− ∫

Rd

f(x− y)ϕε(y)dy

∣∣∣∣
♦
=

∣∣∣∣∫
Rd

(f(x)− f(x− y))ϕε(y)dy

∣∣∣∣
≤
∫
Bε(0)

|f(x)− f(x− y)|ϕε(y)dy
♣
≤ ε′

∫
Rd

ϕε(y)dy = ε′

where ♦ follows from the fact that
∫
Rd ϕε(y)dy = 1, and ♣ holds if ε ≤ δ.

□

We now have all the tools to complete the proof of Theorem 3.4.

Proof - part III. By part II of the proof, we have that ∃{gk}k∈N ∈ C0
c (Ω) such that

lim
k→∞

∥gk − f∥Lp(Ω) = 0.

In particular, ∃K ∈ N such that

∥gk − f∥Lp(Ω) < ε/2 ∀k > K.

Now, for any gk, by (iv) of Lemma 3.5, we have that ∃hk ∈ C∞
c (Ω) such that

lim
n→∞

∥gk − hk∥C∞(Ω) < ε/2.
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Given the compact support, It is then possible to conclude that ∃K ∈ N such that

∥f − hk∥Lp(Ω) ≤ ∥f − gk∥Lp(Ω) + ∥gk − hk∥Lp(Ω) < ε ∀k > K.

□

Remark 3.9. Note that (iv) implies that ∥fε − f∥Lp(Rd) → 0 as ε→ 0 for every p, because

∥fε − f∥Lp(Rd) ≤ m(supp(f) +B1)
1/p∥fε − f∥L∞(Rd).

Remark 3.10. The space L2 has a special Hilbert structure.
Define for f, g ∈ L2(Ω;R) or L2(Ω;C) the scalar product

⟨f, g⟩ =
∫
Ω

f(x)g(x)dx ∈ C (3.14)

This quantity is well defined, because by Hölder’s inequality we have that:∫
Ω

|fg| ≤
(∫

Ω

|f |2
)1/2(∫

Ω

|g|2
)1/2

.

The scalar product with the definition in (3.14) has the following properties:
• ⟨f, f⟩ =

∫
Ω
|f |2 = ∥f∥2L2(Ω)

• Hermitian property : ⟨f, g⟩ = ⟨g, f⟩
• It is linear in its first component and anti-linear in the second one: given c ∈ C, we have:

⟨f + g, h⟩ = ⟨f, h⟩+ ⟨g, h⟩

⟨f, g + h⟩ = ⟨f, g⟩+ ⟨f, h⟩

⟨cf, h⟩ = c⟨f, h⟩

⟨f, ch⟩ = c⟨f, h⟩
• Pythagoras theorem: if ⟨f, g⟩ = 0, then

∥f + g∥2L2(Ω) = ∥f∥2L2(Ω) + ∥g∥2L2(Ω),

in analogy with vectors in R2. Indeed,

∥f + g∥2L2(Ω) = ⟨f, f + g⟩+ ⟨g, f + g⟩ = ⟨f, f⟩+ ⟨g, g⟩+ ⟨f, g⟩+ ⟨g, f⟩.

3.3. Complementary results in measure theory

Littlewood principles. Speaking of the theory of functions of a real variable, J. E. Littlewood
stated in 1944 three principles on the Lebesgue measure, roughly expressible as:

• Every measurable set with finite measure is nearly a finite union of boxes.
• Every pointwise converging sequence of functions is nearly uniformly convergent.
• Every measurable function is nearly continuous.

The adverb nearly should be intended in the sense of measure theory, and therefore stands for
up to a set of small measure.

Theorem 3.6 (Egorov theorem). Let Ω ⊂ Rd measurable, m(Ω) < +∞, {fk}k∈N measurable,
fk, f : Ω → R, such that fk → f a.e. Then we have that, given ε > 0, ∃Cε ⊆ Ω closed such that

m(Ω \ Cε) ≤ ε and fk → f uniformly in Cε.
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Proof. Without loss of generality, we can consider that fk(x) → f(x) ∀x ∈ Ω (at least, up
to discarding a set of measure 0). ∀n, k ∈ N define

Ωn
k =

{
x ∈ Ω : |fj(x)− f(x)| ≤ 1

n
∀j > k

}
.

For fixed n, we have that
Ωn

k ⊂ Ωn
k+1 and Ωn

k ↑ Ω as k → ∞.

Then,

m(Ω \ Ωn
k) =

∫
Ω

1Ω\Ωn
k
→ 0 as k → ∞,

thanks to the dominated convergence theorem using as dominant 1Ω. This means that ∀n we can
fix kn such that m(Ω \ Ωn

kn
) ≤ 2−n.

Fix ε > 0 as in the statement, then there exists N ∈ N such that
∞∑

n=N

2−n ≤ ε

2
.

Define

Cε =
∞⋂

n=N

Ωn
kn .

We have that

m (Ω \ Cε) = m

(
∞⋃

n=N

Ω \ Ωn
kn

)
≤

∞∑
n=N

m(Ω \ Ωn
kn) ≤

∞∑
n=N

2−n < ε.

Moreover, in Cε, fj → f uniformly; indeed, ∀δ > 0 choose n to be such that 1
n
< δ.

Therefore,

|fj(x)− f(x)| ≤ 1

n
< δ ∀j > kn, x ∈ Cε ⊆ Ωn

kn ,

which concludes the proof provided that the set Cε is closed. Even if this is not the case, we can
find a closed subset of Cε up to losing an ε of measure via Proposition 3.7. □

Proposition 3.7. Let E ⊂ Rd be a measurable set. For any ε > 0, there exists an open set U and
a closed set C such that C ⊂ E ⊂ U , m(U\E) ≤ ε and m(E\C) ≤ ε.

Proof. We start by proving outer regularity, i.e. ∃U open such that E ⊂ U and m(U\E) ≤ ε.
First, suppose m(E) < +∞. By definition of Lebesgue measure, we can find countably many open
boxes (Bn)n∈N such that

E ⊂
⋃
n∈N

Bn and
∑
n∈N

m(Bn) ≤ m(E) + ε.

Using subadditivity we deduce

m

(⋃
n∈N

Bn

)
≤ m(E) + ε.

Since E is measurable and of finite measure we get

m

(⋃
n∈N

Bn\E

)
≤ ε.

Notice that we used the inclusion E ⊂
⋃

n∈NBn to get this last inequality.
To treat the general case with m(E) = +∞, write E as a countable union (En)n∈N of measurable
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sets of finite measure (for example En is the intersection of E with the ball centered at 0 of radius
n) and consider for every n ∈ N and open set Un such that

En ⊂ Un and m(Un\En) ≤ 2−nε.

Write U =
⋃

n∈N Un. Using the inclusion U\E ⊂
⋃

n∈N(Un\En) and subadditivity, we get

m(U\E) ≤
∑
n∈N

m(Un\En) ≤ ε.

Applying this result to EC , we can find an open set U containing EC such that m(U\EC) ≤ ε and
setting C = UC which is closed, we get

m(E\C) = m(U\EC) ≤ ε.

□

Remark 3.11. In general, we cannot approximate measurable set from the inside by open sets.
For example, take E = R \Q. Then, int(E) = ∅ but m(E) = +∞.

Corollary 3.8. Lebesgue measurable sets are Borel sets up to a set of measure zero. Indeed, let
E ⊂ Rd be a measurable set then there exists A,B two Borel sets such that A ⊂ E ⊂ B and
m(B\A) = 0.

Proof. Using the previous proposition, for every n ∈ N we can find an open set Un and a
closed set Cn such that Cn ⊂ E ⊂ Un and

m(Un\E) ≤ 2−n and m(E\Cn) ≤ 2−n.

Set A =
⋃

n∈NCn and B =
⋂

n∈N Un. These two sets are Borel sets satisfying

A ⊂ E ⊂ B and m(B\A) ≤ m(Un\Cn) ≤ 2−n+1, ∀n ∈ N.

Letting n→ ∞, we get the desired result. □

Remark 3.12. Even if fn → f in L1((0, 1)), not necessarily we have that fn → f uniformly.
Indeed, we can consider fn(x) = 1[0,1/n](x) and f(x) = 0; they are such that fn → f in L1, because∫ 1

0
|fn| = 1/n, but the convergence is not uniform, because

|fn(x)− f(x)| = 1 on [0, 1/n].

Hence, we can conclude that the L1 convergence is weaker than the L∞ convergence.

Theorem 3.9 (Lusin’s theorem). Let Ω be a measurable set with m(Ω) < +∞ and f : Ω → R
measurable.
Then ∀ε > 0 ∃Fε ⊆ Ω closed s.t. m(Ω \ Fε) ≤ ε and the restriction of f to Fε, denoted as f |Fε, is
continuous.

Remark 3.13. Note that the thesis of the theorem is that f is continuous when viewed as function
defined on the set Fε, not that f is continuous at the points of Fε.
Example 3.3. Consider the following examples:

(i) 1[0,+∞) is continuous when restricted to [0,+∞), but x = 0 is not a point where 1[0,+∞) is
continuous.

(ii) 1Q∩[0,1] is continuous when restricted to Q ∩ [0, 1] (because it is identically equal to 1), but
seen as a function in R it is discontinuous everywhere.

Remark 3.14. Fε cannot be chosen to be open: take as example the function 1Q∩[0,1].
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Proof of Lusin’s theorem. We choose M s.t. m({|f | > M}) < ε/2. Using the approxima-
tion of L1 functions with smooth functions of Theorem 3.4,

∃fn → f1{|f |≤M} ∈ L∞(Ω) ⊂ L1(Ω).

Up to a subsequence, by Theorem 3.3 this convergence holds also almost everywhere.
Now we can apply Egorov’s Theorem to make the convergence uniform: let Cε ⊆ Ω from Egorov’s
Theorem, with m(Cε) ≥ m(Ω)− ε/2.
Consider C̃ε := Cε \ {|f | > M}: we have that

m(C̃ε) ≥ m(Cε)− ε/2 ≥ m(Ω)− ε.

We have that fn|C̃ε
is continuous and fn → f uniformly in C̃ε. Therefore, f is continuous on C̃ε.

To make the set closed, take ˜̃Cε ⊂ C̃ε closed, with m(C̃ε \ ˜̃Cε) < ε. □

Remark 3.15. The uniform limit of continuous functions is continuous, but the L1 limit of
continuous functions is not necessarily continuous.

3.4. Comparison between notions of convergence

In Table 1 we summarize the implications among the various types of convergences in a domain
with finite measure. Let us consider Ω ⊂ Rd measurable with m(Ω) = 1 (to discard constants in
the inequalities, but the results hold in general for the case of Ω with finite measure). Note that we
can reduce ourselves to study the convergence to 0, by setting gn := fn − f and considering

fn → f ⇐⇒ gn → 0 as n→ +∞.

⇐= L∞ convergence L2 convergence L1 convergence a.e. convergence

L∞ convergence YES
∥gn∥L2 ≤ ∥gn∥L∞

YES
∥gn∥L1 ≤ ∥gn∥L∞

YES
∀ε > 0 ∃n0 : ∀n > n0|gn| < ε

up to a set of measure 0

L2 convergence NO∗

take 1[0,1/n]

YES
∥gn∥L1 ≤ ∥gn∥L2

NO, in general
YES, up to a subsequence

L1 convergence NO∗

take 1[0,1/n]

NO
take

√
n1[0,1/n]

NO, in general
YES, up to a subsequence

a.e. convergence NO NO
take n1[0,1/n]

NO
take n1[0,1/n]

Table 1. Convergence implications for the case m(Ω) < +∞.

∗ : recall that Egorov’s theorem states that L1 and L2 convergence imply L∞ convergence up
to a set of small measure and up to a subsequence.

In Table 2, we summarize the results for the case m(Ω) = +∞.
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⇐= L∞ convergence L2 convergence L1 convergence a.e. convergence

L∞ convergence NO
take 1[0,n]1/

√
n

NO
take 1[0,n]1/n

YES
∀ε > 0 ∃n0 : ∀n > n0|gn| < ε

up to a set of measure 0

L2 convergence NO
take 1[0,1/n]

NO
take 1[0,n]1/n

NO, in general
YES, up to a subsequence

L1 convergence NO
take 1[0,1/n]

NO
take

√
n1[0,1/n]

NO, in general
YES, up to a subsequence

a.e. convergence NO NO
take n1[0,1/n]

NO
take n1[0,1/n]

Table 2. Convergence implications for the case m(Ω) = +∞.

Note that in this case Egorov’s Theorem does not hold, because it requires m(Ω) < +∞, nor
can we apply Hölder’s inequality to conclude bounds for norms, because each time we integrate∫
Ω
1 we have +∞.

Remark 3.16. Uniform convergence implies L∞ convergence, because
ess sup |gn| ≤ sup |gn|.

However, the converse is not true, take for example gn(x) = (−1)n1{x=0}(x). Note that this
implication is false only for a set of measure 0.
Remark 3.17. Pointwise convergence implies convergence almost everywhere, while the converse
is not true in general.

3.5. Application: lp spaces

In this section, we introduce the lp spaces of sequence and show how we can use the theory
developed so far to study some of their properties.

Definition (lp norm). Let (ξn)n∈N be a real sequence and p ∈ [1,∞). We define

∥ξ∥lp =

(
∞∑
n=1

|ξn|p
) 1

p

.

Definition (lp space). Let (ξn)n∈N be a real sequence and p ∈ [1,∞). We define

(lp, ∥·∥lp) =
(
{(ξn)n∈N ∈ RN : ∥ξ∥lp < +∞}, ∥·∥lp

)
.

Definition (l∞ norm). Let (ξn)n∈N be a real sequence. We define
∥ξ∥l∞ = sup

n∈N
|ξn|.

Definition (l∞ space). Let (ξn)n∈N be a real sequence. We define

(l∞, ∥·∥) =
(
{(ξn)n∈N ∈ RN : ∥ξ∥l∞ < +∞}, ∥·∥l∞

)
.

It is a simple matter to show that lp spaces are vector spaces for all p ∈ [1,+∞]. We treat the
case p ∈ [1,+∞), take ξ, η ∈ lp, then

∞∑
n=1

|ξn + ηn|p ⩽ 2p−1

(
∞∑
n=1

|ξn|p +
∞∑
n=1

|ηn|p
)
< +∞.

We will show that lp are actually complete normed vector spaces (Banach spaces). One can do this
directly, but we will embed these spaces into Lp(1,∞) and study this embedding to deduce some
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properties.
To do this, for every sequence (ξn)n∈N, consider the function fξ : (1,+∞) → R defined by fξ(x) = ξn
if n < x ≤ n+ 1 for every n ∈ N.

Proposition 3.10. The application ξ 7→ fξ is linear and for every p ∈ [1,+∞], and we have the
following properties

(i) ξ ∈ lp if and only if fξ ∈ Lp(1,+∞), in which case ∥ξ∥lp = ∥fξ∥Lp(1,+∞),
(ii) The space {fξ : ξ ∈ lp} is a closed subspace of Lp(1,+∞), hence lp is a Banach space,
(iii) (Hölder) if ξ ∈ lp and η ∈ lp

′, then
∞∑
n=1

|ξnηn| ⩽ ∥ξ∥lp∥η∥lp′ ,

(iv) (Minkowski) if ξ, η ∈ lp then

∥ξ + η∥lp ≤ ∥ξ∥lp + ∥η∥lp .

Proof. We first prove that ξ 7→ fξ is a linear map.
Take ξ, η two real sequences and α ∈ R then for every n ∈ N and n < x ≤ n+ 1, we have

fαξ+η(x) = (αξ + η)n = αξn + ηn = αfξ(x) + fη(x).

(i) For p ∈ [1,+∞) and ξ a real sequence, we have∫ ∞

1

|fξ(x)|pdx =
∞∑
n=1

∫ n+1

n

|fξ(x)|pdx =
∞∑
n=1

|ξn|p,

from which we deduce ∥ξ∥lp = ∥f∥Lp(1,+∞) and ξ ∈ lp if and only if f ∈ Lp(1,+∞).
For p = +∞, for every ε > 0 and n ∈ N, we have m({x ∈ R : |fξ(x)| > |ξn| − ϵ}) ≥ 1 > 0
from which we get ∥fξ∥L∞(1,+∞) ≥ ∥ξ∥l∞ . Conversely, for every ε > 0 and every x ∈ R we
have |fξ(x)| ≤ ∥ξ∥l∞ + ε from which we get ∥fξ∥L∞(1,+∞) ≤ ∥ξ∥l∞ .
This proves that the map ξ 7→ fξ is a linear isometry from lp to Lp(1,+∞).

(ii) Take (fξn)n∈N a sequence in Lp(1,+∞) converging in Lp(1,+∞) to f . We need to prove
that there exists ξ ∈ lp such that f = fξ. Since limn→∞ fξn = f in Lp(1,+∞), we can
find a subsequence that converges pointwise almost everywhere to f . For every k ∈ N
and every n ∈ N, fξn is constant on (k, k + 1]. This implies that for every k ∈ N, we
can find a constant ξk ∈ R such that f(x) = ξk for almost every x ∈ (k, k + 1]. Indeed,
if this were not the case, we could find k ∈ N and α, β ∈ R such that α < β and
m({x ∈ (k, k+1) : f(x) < α}), m({x ∈ (k, k+1) : f(x) > β}) > 0 which would contradict
the convergence pointwise almost everywhere. So we have that f = fξ almost everywhere
on (1,+∞), in particular f = fξ in Lp(1,+∞) and {fξ : ξ ∈ lp} is a closed subspace of
Lp(1,+∞). From (i), we deduce that ξ ∈ lp and that lp is a Banach space.

(iii) (Hölder)
∞∑
n=1

|ξnηn| =
∫ ∞

1

|fξf(η)| ≤ ∥fξ∥Lp(1,+∞)∥fη∥Lp′ (1,+∞) = ∥ξ∥lp∥η∥lp′ .

(iv) (Minkowski)

∥ξ + η∥lp = ∥fξ + fη∥Lp(1,+∞) ≤ ∥fξ∥Lp(1,+∞) + ∥fη∥Lp(1,+∞) = ∥ξ∥lp + ∥η∥lp .

□
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We conclude this section by saying that while this identification of lp as a subspace of Lp(1,+∞)
is useful, it does not allow us to deduce all properties of lp spaces. To state an example, we know
that when Ω ⊂ Rd is of infinite measure, we do not have inclusions Lp(Ω) ⊂ q(Ω) for p, q ∈ [1,+∞]
in general. However the following holds

Proposition 3.11. For 1 ≤ p ≤ q ≤ +∞ and ξ a real sequence, we have

∥ξ∥lq ≤ ∥ξ∥lp ,
and so we have the inclusions lp ⊂ lq.

Proof. The case q = ∞ is easy and we do not prove it, so assume q <∞.
We may assume ξ ∈ lp and ξ ̸= 0. Notice that the inequality is homogeneous and we may suppose
without loss of generality that ∥ξ∥lp = 1. In particular, for every n ∈ N, we have |ξn| ≤ 1. Since
p ≤ q, we have |ξn|q ≤ |ξn|p for every n ∈ N, which gives

∞∑
n=1

|ξn|q ⩽
∞∑
n=1

|ξn|p = 1.

□





CHAPTER 4

Fourier Analysis

This chapter is inspired by [Dac, Chapter 17], [SS03, Chapter 1, 2, 3], [Tao16, Chapter 5].

The development of Fourier Analysis dates back to the XVIII century, and it was encouraged
by the investigation on physical phenomena regulated by partial differential equations, such as
vibrating strings and heat flows.

The laws describing the above experimental settings are, respectively, the wave and the heat
equation; their solutions were sought using linear combinations of sinusoidal terms - that is, the
underlying concept of Fourier series.

In 1807, J.Fourier was the first to study systematically the properties of infinite sums of
harmonics, but preliminary investigations were carried out for example even by D.Bernoulli, who in
1753 wrote to Euler to propose the solution to certain partial differential equations given by the
Fourier series. However, Euler was not entirely convinced of its full generality, because the result
could hold only if the function could be expanded in Fourier series. Such doubts, shared also with
other mathematicians, were then solved by Fourier in 1807 in his study of the heat equation, which
eventually led others to a complete proof that a general function could be represented as a Fourier
series.

4.1. Derivation of the heat equation and solution of the Laplace problem in a disk

To see the emergence of Fourier series from physical problems, we will now derive the heat
equation, a partial differential equation that formalizes Newton’s law of cooling, according to which
the heat flows from higher to lower temperatures, at a rate proportional to the difference of the
temperatures in the regions.

Let us consider a metal plate Ω ⊂ R2, characterized by a certain specific heat σ > 0, quantity
describing the heat capacity of the material, and conductivity κ > 0; our aim is to study the
evolution of the temperature u(x, y, t), starting from a given initial distribution at time t = 0.

(x0, y0)

Ω

S

h
n

(x0 +
h
2 , y0)

y

x

Figure 1. Sketch of the square S.

Consider a small square centered in (x0, y0) inside the plate S ⊂ Ω, with edges of length h≪ 1
parallel to the axes (see Figure 1), and define the following quantities:

77
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• the amount of heat in S at time t: H(t) := σ
∫ ∫

S
u(x, y, t);

• the heat flow into S: ∂H
∂t
(t) := ∂

∂t
σ
∫ ∫

S
u(x, y, t) = σ

∫ ∫
S
∂tu(x, y, t) ≃ σh2∂tu(x0, y0, t);

this approximation can be made because we can assume the integrand function to be
constant on the small square S, and the area of the square is h2.

• the incoming heat flow through the boundary ∂S, considered to be positive in the direction
given by the vector n:

κ[h∂xu(x0 +
h
2
, y0, t)− h∂xu(x0 − h

2
, y0, t) + h∂yu(x0, y0 +

h
2
, t)− h∂yu(x0, y0 − h

2
, t)]

≃ κ[h2∂xxu(x0, y0, t) + h2∂yyu(x0, y0, t)].

Newton’s law of cooling relates the rate of the heat flow to the difference of the temperatures,
to be interpreted as a gradient:

σh2∂tu(x0, y0, t) = κh2(∂xxu(x0, y0, t) + ∂yyu(x0, y0, t)). (4.1)

From Equation 4.1, by simplifying h2, we finally obtain the heat equation:

∂tu(x, y, t) =
κ

σ
(∂xxu(x, y, t) + ∂yyu(x, y, t)). (4.2)

After sufficiently long time, the heat exchange will be over and thermal equilibrium will be
reached. Therefore, ∂tu ∼ 0, and the phenomenon will be described by the steady state version of
Equation 4.2, known as Laplace equation:

∆u(x, y) := ∂xxu(x, y) + ∂yyu(x, y) = 0. (4.3)

Functions satisfying Equation 4.3, and therefore having null Laplacian ∆, are called harmonic
functions.

Let us now consider the Dirichlet problem for the Laplace equation in the unit disk

D =
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
.

x

y

O

u(r = 1, θ) = f(θ)

∆u = 0

r
θ

Figure 2. Laplace problem in the unit disk in R2.

Passing to polar coordinates with the usual change of variables x = r cos(θ), y = r sin(θ), we
can reformulate the domain expression as

D =
{
(r, θ) ∈ R2 : 0 ≤ r ≤ 1, θ ∈ [0, 2π)

}
.

We then fix Dirichlet boundary conditions in polar coordinates:

u(r = 1, θ) = f(θ),



4.1. DERIVATION OF THE HEAT EQUATION AND SOLUTION OF THE LAPLACE PROBLEM IN A DISK 79

being f a given function that imposes the value of u on the disk boundary, that, in the physical
setting described before, corresponds to the temperature distribution at the edge.

We will now rewrite Equation 4.3 in polar coordinates, recalling that the expression of the
Laplacian for a function in polar coordinates reads as:

∆u(x, y) = ∆u(r cos(θ), r sin(θ)) = ∂rrω(r, θ) +
1

r
∂rω(r, θ) +

1

r2
∂θθω(r, θ). (4.4)

where ω(r, θ) = u(r cos(θ), r sin(θ)).

Proof of (4.4). Let us define ω(r, θ) := u(r cos(θ), r sin(θ)), and let us relate its partial
derivatives with the ones of u, by using the chain rule:

∂rω(r, θ) = ∂xu(r cos(θ), r sin(θ)) cos(θ) + ∂yu(r cos(θ), r sin(θ)) sin(θ)

∂θω(r, θ) = −∂xu(r cos(θ), r sin(θ))r sin(θ) + ∂yu(r cos(θ), r sin(θ))r cos(θ)

∂rrω(r, θ) = [∂xxu(r cos(θ), r sin(θ)) cos(θ) + ∂xyu(r cos(θ), r sin(θ)) sin(θ)] cos(θ)+

+ [∂xyu(r cos(θ), r sin(θ)) cos(θ) + ∂yyu(r cos(θ), r sin(θ)) sin(θ)] sin(θ)

∂θθω(r, θ) = [∂xxu(r cos(θ), r sin(θ))r sin(θ)− ∂xyu(r cos(θ), r sin(θ))r cos(θ)]r sin(θ)+

− ∂xu(r cos(θ), r sin(θ))r cos(θ)+

+ [−∂xyu(r cos(θ), r sin(θ))r sin(θ) + ∂yyu(r cos(θ), r sin(θ))r cos(θ)]r cos(θ)+

− ∂yu(r cos(θ), r sin(θ))r sin(θ)

After these computations, one can verify that
1

r2
[r2∂rrω(r, θ) + r∂rω(r, θ)+∂θθω(r, θ)]

= [∂xxu(r cos(θ), r sin(θ)) + ∂yyu(r cos(θ), r sin(θ))](cos
2(θ) + sin2(θ))

= ∂xxu(r cos(θ), r sin(θ)) + ∂yyu(r cos(θ), r sin(θ))

□

By inserting Equation 4.4 into Equation 4.3, we finally obtain the Laplace problem with Dirichlet
boundary conditions in polar coordinates:{

r2∂rrω(r, θ) + r∂rω(r, θ) = −∂θθω(r, θ)
ω(1, θ) = f(θ).

(4.5)

We will look for solutions using the method of separation of variables; namely, we ask for
solutions of the form:

ω(r, θ) = F (r)G(θ),

where G must be periodic with period 2π, as its variable θ represents the angle on the circle.
Plugging such solutions inside the first equation of the system in (4.5), we get

r2F ′′(r)G(θ) + rF ′(r)G(θ) = F (r)G′′(θ),

then, by dividing both members for F (r)G(θ), we obtain

r2F ′′(r) + rF ′(r)

F (r)
= −G

′′(θ)

G(θ)
,
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where the LHS depends only on r and the RHS only on θ. Since the two sides depend on independent
variables, both the terms have to be equal to some constant λ ∈ R, and we get the system{

G′′(θ) + λG(θ) = 0

r2F ′′(r) + rF ′(r)− λF (r) = 0.
(4.6)

Remark 4.1. For an equation of the form

u′′(t) + au′(t) + bu(t) = 0, t ∈ I ⊆ R, (4.7)

where a, b ∈ R are constant coefficients (do not depend on t), the solutions can be found as follows:
we look for exponential solutions z(t) = eλt. Substituting into the equation gives

λ2eλt + aλeλt + beλt = 0,

which leads to solving the characteristic equation:

λ2 + aλ+ b = 0.

We distinguish three cases based on the sign of the discriminant ∆ := a2 − 4b.
• Case ∆ > 0: two distinct real roots:

λ1 = −a
2
+

√
a2 − 4b

2
, λ2 = −a

2
−

√
a2 − 4b

2
.

Then z1(t) = eλ1t and z2(t) = eλ2t are linearly independent solutions. The general
solution of the homogeneous equation is:

u(t) = C1e
λ1t + C2e

λ2t, (4.8)
with arbitrary constants C1, C2 ∈ R.

• Case ∆ < 0: two complex conjugate roots:

λ1 = −a
2
+ iµ, λ2 = −a

2
− iµ, with µ =

√
4b− a2

2
.

This leads to complex-valued functions eλ1t, eλ2t. Define real-valued solutions:

z1(t) =
eλ1t + eλ2t

2
= e−

a
2
t cos(µt),

z2(t) =
eλ1t − eλ2t

2i
= e−

a
2
t sin(µt).

These are linearly independent. Therefore, the general solution is:

u(t) = e−
a
2
t(C1 cos(µt) + C2 sin(µt)). (4.9)

• Case ∆ = 0: a single real root λ = −a
2
.

Then z1(t) = e−
a
2
t is a solution. We seek a second linearly independent solution of the

form z2(t) = C(t)z1(t), and we find z2(t) = te−
a
2
t. Therefore, the general solution is:

u(t) = (C1 + C2t)e
−a

2
t. (4.10)

Note that if (4.7) is set in I = (0, L) and it comes with a boundary condition such as
u(0) = u(L) = 0, we can find solutions only in the case ∆ < 0. Indeed, with solutions from the
family (4.8), we would need to impose u(0) = C1 + C2 = 0 and u(L) = C1e

λ1L + C2e
λ2L = 0,

which cannot be satisfied, and with the family (4.10) we would need to impose u(0) = C1 = 0,
u(L) = (C1 + C2L)e

−aL/2 = 0 which again does not lead to any non-zero solution.
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By Remark 4.1, the solutions to the ODE in θ are:
• e±i

√
λθ (that is, cos(

√
λθ), sin(

√
λθ)) if λ ≥ 0;

• e
√
−λθ if λ < 0.

However, the second category of solutions is not periodic, so we want to discard them. Therefore,
the periodicity constraint implies that λ = m2, for some m ∈ N, and

G(θ) = Ã cos(mθ) + B̃ sin(mθ)
1
= Aeimθ +Be−imθ

for some constants A,B ∈ R.
On the other hand, the solutions to F (r) are of the form

F (r) =

{
rm

r−m
if m > 0, F (r) =

{
1

log r
if m = 0.

But we can reject r−m and log(r) as they are unbounded and they blow up in the origin. Hence,
the solutions obtained via separation of variables are ωm = r|m|eimθ with m ∈ Z.
Note that ωm can assume complex values due to the presence of eimθ, and the fact that it is a
solution implies that its real and imaginary part Re(ωm) = r|m| cos(mθ) and Im(ωm) = r|m| sin(mθ)
are solutions as well.
Remark 4.2. Since Equation 4.3 is a linear partial differential equation, the superposition principle
holds: if u1, u2 are solutions to the equation, then a linear combination a1u1 + a2u2 is solution, too,
∀a1, a2 ∈ C.

Proof.

∂xx(a1u1 + a2u2) + ∂yy(a1u1 + a2u2) = a1∂xxu1 + a2∂xxu2 + a1∂yyu1 + a2∂yyu2 =

= a1(∂xxu1 + ∂yyu1) + a2(∂xxu2 + ∂yyu2) =

= 0

□

Thanks to the remark, we can conclude that a finite sum ω(r, θ) =
∑N

m=−N amr
|m|eimθ (where

N ∈ N) is a solution.
Let us now consider the Dirichlet boundary condition: on the disk edge, corresponding to r = 1,

we have that the boundary value of the solution must match with the boundary datum f :

ω(1, θ) =
N∑

m=−N

ame
imθ = f(θ).

The previous discussion proves the following theorem:

Theorem 4.1. If f(θ) can be written as

f(θ) =
N∑

m=−N

ame
imθ =

N∑
m=−N

am(cos(mθ) + i sin(mθ))

for some coefficients {am}m∈N ⊆ C, then the solution of the Laplace equation in the unit disk D is
given by

ω(r, θ) =
N∑

m=−N

amr
|m|eimθ. (4.11)

1Recall Euler’s identity eix = cos(x) + i sin(x).
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Remark 4.3. The solution of Equation 4.5 in the disk with boundary condition

f(θ) =
N∑

m=−N

am cos(mθ) + bm sin(mθ)

is a polynomial in (x, y). This can be proved by expanding cos(mθ) and sin(mθ) into combinations
of sin(θ) and cos(θ), and switching back to cartesian coordinates (recall that eiθ = cos(θ)+ i sin(θ)).
Taking N = 0 in (4.11), we get

ω(r, θ) = a0.

For N = 1, we get:

ω(r, θ) = a0 + a1re
iθ + a−1re

−iθ = a0 + a1(r cos(θ) + ir sin(θ)) + a−1(r cos(θ)− i sin(θ))

= a0 + (a1 + a−1)x+ i(a1 − a−1)y

For N = 2, we get:

ω(r, θ) = a0 + a1re
iθ + a−1re

−iθ + a2re
i2θ + a−2re

−i2θ

= a0 + a1(r cos(θ) + ir sin(θ)) + a−1(r cos(θ)− i sin(θ))

+ a2(r
2 cos(2θ) + ir2 sin(2θ)) + a−2(r

2 cos(2θ)− ir2 sin(2θ))

= a0 + (a1 + a−1)x+ i(a1 − a−1)y

+ a2(r(cos(θ) + sin(θ))r(cos(θ)− sin(θ)) + 2ir2 sin(θ) cos(θ))

+ a−2(r(cos(θ) + sin(θ))r(cos(θ)− sin(θ))− 2ir2 sin(θ) cos(θ))

= a0 + (a1 + a−1)x+ i(a1 − a−1)y + a2((x+ y)(x− y) + 2ixy) + a−2((x+ y)(x− y)− 2ixy).

We can give evidence for the statement with the following example.
Example 4.1. Consider f(θ) = 1 + sin(2θ) = 1 + 1

2i
e2iθ − 1

2i
e−2iθ; we know that its solution is

ω(r, θ) = 1r0ei0θ +
1

2i
r2ei2θ − 1

2i
r2e−i2θ = 1 + r2 sin(2θ).

Expressing 1 + r2 sin(2θ) in cartesian coordinates, we get that

1 + r2 sin(2θ) = 1 + 2r2 sin(θ) cos(θ) = 1 + 2(r sin(θ))(r cos(θ)) = 1 + 2xy,

which solves the Laplace equation in cartesian coordinates: ∆(1+2xy) = ∂xx(1+2xy)+∂yy(1+2xy) =
0.

The superposition principle can be then extended to the case of an infinite sum: therefore, if
f(θ) =

∑
m∈Z ame

imθ for some complex coefficients {am}m ⊂ C, then a solution of the heat equation
is

ω(r, θ) =
∑
m∈Z

amr
|m|eimθ. (4.12)

This heuristic motivates the leading question of Fourier analysis, that is:

Given f : [0, 2π] → R such that f(0) = f(2π), when can we find coefficients am to write it as
f(θ) =

∑
m∈Z ame

imθ?

The path to answer this question starts from the investigation of periodic functions.



4.3. TRIGONOMETRIC POLYNOMIALS 83

4.2. Periodic Functions

Definition (Periodic function). Let L > 0, f : R → C is L-periodic if f(x+L) = f(x) ∀x ∈ R.

Example 4.2. f(x) = sin(x) is 2π−periodic, g(x) = sin(2πx) and the square wave (see Figure 3)
are 1−periodic (also called Z−periodic). The constant function h(x) = 1 is L−periodic ∀L > 0.

x

y

f(x) =

{
1, x ∈ [n, n+ 1/2)

0, x ∈ [n+ 1/2, n+ 1)
n ∈ N

Figure 3. A 1−periodic function: the square wave.

Remark 4.4. For f, g 1-periodic, we have that ∥f − g∥Lp =
(∫ 1

0
|f − g|p

) 1
p
. For p = 2, we can

define the scalar product to be the quantity ⟨f, g⟩ =
∫ 1

0
fgdx.

Definition. The space of continuous 1-periodic functions is denoted by C0(R/Z;C).

Lemma 4.2. The following basic properties for periodic functions hold:
(i) If f ∈ C0(R/Z;C), then f is bounded:

∃M > 0 s.t. |f(x)| < M ∀x ∈ R.

(ii) C0(R/Z;C) is a vector space and an algebra:

f, g ∈ C0(R/Z;C), c ∈ C ⇒ f + g, cf, fg ∈ C0(R/Z;C).

(iii) The space is is closed under uniform limits:

{fn}n∈N ⊂ C0(R/Z;C), fn → f uniformly ⇒ f ∈ C0(R/Z;C).

(iv) The space C0(R/Z;C) is dense in L2((0, 1);C).

Remark 4.5. C0(R/Z;C) is a complete normed vector space (Banach space) with the norm

∥f∥L∞ = sup
x∈[0,1]

|f(x)|.

4.3. Trigonometric polynomials

Polynomials are combinations of monomials xn; analogously, we can define trigonometric
polynomials as combinations of the functions e2πinx, called characters.

Definition (Character). ∀n ∈ Z, the character with frequency n is defined as

en(x) := e2πinx = cos(2πnx) + i sin(2πnx).

Remark 4.6. ∀n ∈ Z, en ∈ C0(R/Z;C).
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Definition (Trigonometric polynomial). A function f ∈ C0(R/Z,C) is a trigonometric poly-
nomial if we can write

f(x) =
N∑

n=−N

cne
2πinx

for some N ≥ 0.

Example 4.3. ∀n ∈ N, the function f(x) = cos(2πnx) and g(x) = sin(2πnx) are trigonometric
polynomials, because:

cos(2πnx) =
e2πinx + e−2πinx

2
=

1

2
e−n +

1

2
en,

sin(2πnx) =
e2πinx − e−2πinx

2i
= − 1

2i
e−n +

1

2i
en.

Remark 4.7. f is a trigonometric polynomial ⇐⇒ f is a finite linear combination of terms
cos(2πnx), sin(2πnx), for some n ∈ N.

Lemma 4.3. The family of {en}n∈Z is an orthonormal system, i.e.

⟨en, em⟩
2
= δnm and ∥en∥ = 1 ∀n,m ∈ Z.

Proof. This proof is proposed in Exercise 1 of Series 8. Using that e2πimx = e−2πimx, we have

⟨en, em⟩ =
∫ 1

0

e2πinxe2πimx dx =

∫ 1

0

e2πi(n−m)x dx =

{∫ 1

0
dx = 1 if n = m,∫ 1

0
e2πi(n−m)x dx = 0 if n ̸= m.

□

Corollary 4.4. Let f =
∑N

n=−N cnen be a trigonometric polynomial. Then,

⟨f, en⟩ =

{
cn ∀ −N ≤ n ≤ N

0 ∀n < −N or n > N.

Moreover, a version of Pythagoras Theorem holds:

∥f∥2L2 =
N∑

n=−N

|cn|2.

Proof.

⟨f, em⟩ = ⟨
N∑

n=−N

cnen, em⟩ =
N∑

n=−N

cn⟨en, em⟩ =
N∑

n=−N

cnδnm = cm

Proceeding in the same way, we can also prove that

∥f∥2L2 = ⟨f, f⟩ = ⟨
N∑

n=−N

cnen,

N∑
j=−N

cjej⟩ =
N∑

n=−N

N∑
j=−N

cncj⟨en, ej⟩ =
N∑

n=−N

cncn =
N∑

n=−N

|cn|2.

□

2We recall the definition of the Dirac Delta: δij =

{
1 i = j

0 i ̸= j
.
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Definition (Fourier Coefficients). Let f ∈ L2(R/Z;C), n ∈ N. The n-th Fourier coefficient is

f̂(n) := ⟨f, en⟩ =
∫ 1

0

f(x)e−2πinxdx.

The function f̂ : Z → C is called Fourier transform of f .

Thanks to Corollary 4.4, we can state the following properties for trigonometric polynomials:

Corollary 4.5. Let f be a trigonometric polynomial, then we have the Fourier inversion formula:

f(x) =
N∑

n=−N

⟨f, en⟩en =
∞∑

n=−∞

⟨f, en⟩en =
∞∑

n=−∞

f̂(n)en =
∞∑

n=−∞

f̂(n)e2πinx,

and the Plancherel formula (also known as Parseval formula):

∥f∥2L2 =
N∑

n=−N

|⟨f, en⟩|2 =
∞∑

n=−∞

|⟨f, en⟩|2 =
∞∑

n=−∞

|f̂(n)|2.

For the moment, the result holds only for trigonometric polynomials; we will then extend
this result to an arbitrary function f ∈ C0(R/Z;C) and even to the class of 1-periodic, L2((0, 1))
functions.

4.4. T-periodic functions and their (complex and real) Fourier coefficients

Let f ∈ L2(0, T ) be a T -periodic function. The complex Fourier coefficients of f are given by

cn :=
1

T

∫ T

0

f(x)e
−i2πnx

T dx.

The trigonometric Fourier coefficients of f are given by

an :=
2

T

∫ T

0

f(x) cos

(
2πnx

T

)
dx, bn :=

2

T

∫ T

0

f(x) sin

(
2πnx

T

)
dx.

We remark that

an =

∫ 1

0

(
e

i2πnx
T + e

−i2πnx
T

)
f(x) dx = cn + c−n

bn = 2

∫ 1

0

1

2i

(
e

i2πnx
T + e

−i2πnx
T

)
f(x) dx = −ic−n + icn.

That is, c0 = a0/2 and for n ≥ 1

c−n =
an + ibn

2
,

cn =
an − ibn

2
.

The partial Fourier sums of f are

FNf(x) :=
N∑

n=−N

cne
i2πnx

T =
a0
2

+
N∑

n=1

an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

)
.

Indeed, we note that
N∑

n=−N

cne
i2πnx =

a0
2

+
N∑

n=1

(
an − ibn

2

)
ei2πnx +

N∑
n=1

(
an + ibn

2

)
e−i2πnx.
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Remark 4.8. For T = 1, cn = f̂(n). For a general period T , cn is the Fourier coefficient of
f(Tx) =: g(x): ∫ 1

0

f(Tx)e−i2πnx dx =
1

T

∫ T

0

f(y)e−
i2πny

T dy.

We also note that

FNf(x) = FNg(T
−1x). (4.13)

In the next sections, we will prove that FNg → g in various senses (with g being 1-periodic).
Owing to (4.13), these results imply the same type of convergence FNf(x) → f(x) for a T -periodic
function f .

4.5. Uniform approximation of continuous, periodic functions with trigonometric
polynomials

We will now present the following result for the approximation of arbitrary functions in
C0(R/Z;C).

Theorem 4.6 (Weierstrass approximation theorem). Let f ∈ C0(R/Z;C), and let ε > 0. Then
there exists a trigonometric polynomial P such that ∥f − P∥∞ ≤ ε.

To prove it, we first need to introduce several tools:

Definition. Let f, g ∈ C0(R/Z,C). The periodic convolution of f and g is the function
f ∗ g : R → C defined by

f ∗ g (x) =

∫ 1

0

f(y)g(x− y)dy.

Remark 4.9. This notion of convolution is different from the one introduced in L1 because we
integrate on [0, 1]; it is in fact the same notion adapted to periodic functions. There is a conflict of
notation but in fact it is applied to a completely different class of objects, because remember that
L1(R) ∩ C0(R/Z,C) = {0}.

Lemma 4.7 (Basic properties of periodic convolution.). Let f, g, h ∈ C0(R/Z,C) and c ∈ C, then
(i) (closure) f ∗ g ∈ C0(R/Z,C),
(ii) (commutativity) f ∗ g = g ∗ f ,
(iii) (bilinearity) (f+g)∗h = f ∗h+g∗h, f ∗(g+h) = f ∗g+f ∗h, (cf)∗g = c(f ∗g) = f ∗(cg).

Proof. (i) For every x ∈ R, we have

f ∗ g (x+ 1) =

∫ 1

0

f(y)g(x+ 1− y)dy =

∫ 1

0

f(y)g(x− y)dy = f ∗ g (x),

we used the fact that g is 1-periodic.
To prove continuity, notice that [0, 1] is of finite measure and |f(y)g(x−y)| ⩽ ∥f∥∞∥g∥∞ <
+∞ for every y ∈ [0, 1] and every x ∈ R. Now, using the continuity of g and the dominated
convergence, we get

lim
z→x

f ∗ g (z) = lim
z→x

∫ 1

0

f(y)g(z − y)dy =

∫ 1

0

f(y)g(x− y)dy = f ∗ g (x).

(ii) To prove commutativity, remark that y 7→ f(y)g(x− y) is 1-periodic for every x ∈ R, so

f ∗ g (x) =

∫ 1

0

f(y)g(x− y)dy =

∫ x

x−1

f(x− z)g(z)dz =

∫ 1

0

f(x− z)g(z)dy = g ∗ f (x).



4.5. UNIFORM APPROXIMATION OF CONTINUOUS, PERIODIC FUNCTIONS WITH TRIGONOMETRIC POLYNOMIALS87

The second equality is justified by the change of variable z = x− y. For the third equality,
we used the fact that the integral of a 1-periodic function over any interval of length 1 is
equal to its integral over [0, 1].

(iii) Note that

(cf + g) ∗ h (x) =

∫ 1

0

(cf(y) + g(y))h(x− y)dy

= c

∫ 1

0

f(y)h(x− y)dy +

∫ 1

0

g(y)h(x− y)dy

= c(f ∗ h)(x) + g ∗ h (x).

Thus we have (cf + g) ∗ h = c(f ∗ h) + g ∗ h.
Setting c = 1, we get (f + g) ∗ h = f ∗ h+ g ∗ h.
Setting g = 0, we get (cf) ∗ h = c(f ∗ h).
Using commutativity, we get f ∗ (g + h) = (g + h) ∗ f = g ∗ f + h ∗ f = f ∗ g + f ∗ h.
Similarly, we get f ∗ (cg) = (cg) ∗ f = c(g ∗ f) = c(f ∗ g) = (cf) ∗ g.

□

Moreover, we will need the following result on the approximation of the identity via trigonometric
polynomials:

Definition (Periodic approximation to the identity). Let ε > 0 and 0 < δ < 1/2. A function
f ∈ C0(R/Z;C) is said to be a periodic (ε, δ) approximation to the identity if the following
properties are true:

(1) f(x) ≥ 0 for all x ∈ R, and
∫
[0,1]

f = 1.
(2) We have f(x) < ε for all δ ≤ |x| ≤ 1− δ.

Lemma 4.8. For every ε > 0 and 0 < δ < 1/2, there exists a trigonometric polynomial P which is
an (ε, δ) approximation to the identity.

Proof. Let N ≥ 1 be an integer. We define the Fejér kernel FN to be the function

FN =
N∑

n=−N

(
1− |n|

N

)
en.

Clearly FN is a trigonometric polynomial. We observe the identity

FN =
1

N

∣∣∣∣∣
N−1∑
n=0

en

∣∣∣∣∣
2

.

But from the geometric series formula, we have

N−1∑
n=0

en(x) =
eN − e0
e1 − e0

=
eπi(N−1)x sin(πNx)

sin(πx)

when x is not an integer, and hence we have the formula

FN(x) =
sin(πNx)2

N sin(πx)2
.

When x is an integer, the geometric series formula does not apply, but one has FN(x) = N in
that case, as one can see by direct computation. In either case we see that FN(x) ≥ 0 for any x.
Also, we have
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∫
[0,1]

FN(x)dx =
N∑

n=−N

(
1− |n|

N

)∫
[0,1]

en =

(
1− |0|

N

)
1 = 1.

Finally, since | sin(πNx)| ≤ 1, we have

FN(x) ≤
1

N sin(πx)2
≤ 1

N sin(πδ)2

whenever δ < |x| < 1− δ (this is because sin is increasing on [0, π/2] and decreasing on [π/2, π]).
Thus by choosing N large enough, we can make FN(x) ≤ ε for all δ < |x| < 1− δ. □

Proof of Weierstrass Theorem. Let f be any element of C0(R/Z;C); we know that f
is bounded, so that we have some M > 0 such that |f(x)| ≤M for all x ∈ R.

Let ε > 0 be arbitrary. Since f is uniformly continuous, there exists a δ > 0 such that
|f(x)− f(y)| ≤ ε whenever |x− y| ≤ δ. Now use Lemma 4.8 to find a trigonometric polynomial
P which is a (ε, δ) approximation to the identity. Then f ∗ P is also a trigonometric polynomial,
because P is a trigonometric polynomial, so we can write

P =
N∑

n=−N

anen

for some a−N , . . . , aN ∈ C and some N ∈ N.
Using the linearity property of periodic convolution, we have

f ∗ P =
N∑

n=−N

an(f ∗ en).

But for every n ∈ Z, we have

f ∗ en(x) =
∫ 1

0

f(y)e2πin(x−y)dy =

∫ 1

0

f(y)e−2πinydye2πinx = f̂(n)en(x).

Combining this with our previous observation we get

f ∗ P =
N∑

n=−N

anf̂(n)en.

We now estimate ∥f − f ∗ P∥∞. Let x be any real number. We have

|f(x)− f ∗ P (x)| = |f(x)− P ∗ f(x)|

=

∣∣∣∣f(x)− ∫
[0,1]

f(x− y)P (y)dy

∣∣∣∣
=

∣∣∣∣∫
[0,1]

f(x)P (y)dy −
∫
[0,1]

f(x− y)P (y)dy

∣∣∣∣
=

∣∣∣∣∫
[0,1]

(f(x)− f(x− y))P (y)dy

∣∣∣∣
≤
∫
[0,1]

|f(x)− f(x− y)|P (y)dy.

The right-hand side can be split as
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∫
[0,δ]

|f(x)− f(x− y)|P (y)dy +
∫
[δ,1−δ]

|f(x)− f(x− y)|P (y)dy

+

∫
[1−δ,1]

|f(x)− f(x− y)|P (y)dy

which we can bound from above by

≤
∫
[0,δ]

εP (y)dy +

∫
[δ,1−δ]

2Mεdy

+

∫
[1−δ,1]

|f(x− 1)− f(x− y)|P (y)dy

≤
∫
[0,δ]

εP (y)dy +

∫
[δ,1−δ]

2Mεdy +

∫
[1−δ,1]

εP (y)dy

≤ε+ 2Mε+ ε

=(2M + 2)ε.

Thus we have ∥f − f ∗P∥∞ ≤ (2M +2)ε. Since M is fixed and ε is arbitrary, we can thus make
f ∗ P arbitrarily close to f in sup norm, which proves the Weierstrass approximation theorem.

□

4.6. L2−convergence of Fourier Series

Theorem 4.9 (Fourier Theorem). For any f ∈ L2(R/Z;C), the series
∑∞

n=−∞ f̂(n)en converges
in L2 to f . In other words, we have

lim
N→∞

∥∥∥∥∥f −
N∑

n=−N

f̂(n)en

∥∥∥∥∥
L2

= 0.

Proof. Step 1: proof for f ∈ C0(R/Z;C).

Let ε > 0. We have to show that there exists an N0 such that
∥∥∥f −

∑N
n=−N f̂(n)en

∥∥∥
L2

≤ ε for
all N ≥ N0.

By the Weierstrass approximation theorem (Theorem 4.6), we can find a trigonometric poly-
nomial P =

∑N0

n=−N0
cnen such that ∥f − P∥∞ ≤ ε, for some N0 > 0. In particular we have

∥f − P∥2 ≤ ε.
Now let N > N0, and let FN :=

∑N
n=−N f̂(n)en. We claim that ∥f − FN∥L2 ≤ ε. First observe

that for any |m| ≤ N , we have

⟨f − FN , em⟩ = ⟨f, em⟩ −
N∑

n=−N

f̂(n) ⟨en, em⟩ = f̂(m)− f̂(m) = 0.

In particular we have

⟨f − FN , FN − P ⟩ = 0

since we can write FN −P as a linear combination of the em for which |m| ≤ N . By Pythagoras’
theorem we therefore have

∥f − P∥22 = ∥f − FN∥2L2 + ∥FN − P∥2L2
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and in particular

∥f − FN∥L2 ≤ ∥f − P∥2 ≤ ε (4.14)
as desired.

Step 2: proof for f ∈ L2(R/Z;C).

Let f ∈ L2(R/Z;C), set ε > 0. By density, ∃g ∈ C0(R/Z;C) such that

∥f − g∥L2 ≤ ε.

For N large, ∥g − FNg∥L2 ≤ ε by the previous step. Finally, by the best approximation of f with
FNf (as observed for (4.14)), we have

∥f − FNf∥L2 ≤ ∥f − FNg∥L2 ≤ ∥f − g∥L2 + ∥g − FNg∥L2 ≤ 2ε. (4.15)

□

As a corollary of the Fourier theorem, we obtain

Theorem 4.10 (Plancherel (Parseval’s identity)). For any f ∈ L2(R/Z;C), the series
∑∞

n=−∞ |f̂(n)|2
is absolutely convergent, and

∥f∥22 =
∞∑

n=−∞

|f̂(n)|2.

Proof. Let ε > 0. By the Fourier theorem we know that∥∥∥∥∥f −
N∑

n=−N

f̂(n)en

∥∥∥∥∥
L2

≤ ε

if N is large enough (depending on ε). In particular, by the triangle inequality this implies that

∥f∥2 − ε ≤

∥∥∥∥∥
N∑

n=−N

f̂(n)en

∥∥∥∥∥
L2

≤ ∥f∥2 + ε.

On the other hand, by Corollary 4.5 we have∥∥∥∥∥
N∑

n=−N

f̂(n)en

∥∥∥∥∥
L2

=

(
N∑

n=−N

|f̂(n)|2
)1/2

and hence

(∥f∥2 − ε)2 ≤
N∑

n=−N

|f̂(n)|2 ≤ (∥f∥2 + ε)2 .

Taking lim sup, we obtain

(∥f∥2 − ε)2 ≤ lim sup
N→∞

N∑
n=−N

|f̂(n)|2 ≤ (∥f∥2 + ε)2

Since ε is arbitrary, we thus obtain by the squeeze test that
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lim sup
N→∞

N∑
n=−N

|f̂(n)|2 = ∥f∥22

and the claim follows. □

Remark 4.10. If f is, instead, T -periodic and f ∈ L2(0, T ), then

FNf =
a0
2

+
N∑

n=1

an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

)
→ f in L2

and
2

T

∫ T

0

|f |2 dx =
a20
2

+
+∞∑
n=1

a2n + b2n.

Indeed, we can apply Plancherel’s theorem to the 1-periodic function f(Tx) =: g(x), recalling
Remark 4.8 and compute

∥g∥2L2(0,1) =
1

T

∫ T

0

|f |2 dx =
∑
n∈Z

|ĝ(n)|2 =
∑
n∈Z

c2n

=
(a0
2

)2
+
∑
n∈N

∣∣∣∣an + ibn
2

∣∣∣∣2 + ∣∣∣∣an − ibn
2

∣∣∣∣2
=
a20
4

+
1

2

∑
n∈N

|an|2 + |bn|2.

Remark 4.11. Non rigorously, we can compute the derivative of f(x) =
∑∞

n=−∞ f̂(n)ei2πnx as

f ′(x) =
∞∑

n=−∞

f̂(n)i2πnei2πnx.

In fact, it is true that f̂ ′(n) = i2πnf̂(n), because rigourously we can prove it with an integration
by parts:

f̂ ′(n) =

∫ 1

0

f ′(x)e−i2πnxdx = |ei2πnxf(x)|10︸ ︷︷ ︸
=0

−
∫ 1

0

f(x)(−i2πn)e−i2πnxdx = i2πnf̂(n) (4.16)

where the term evaluated at the extrema of the integral vanishes due to the fact that f(0) = f(1)

by periodicity. Moreover, from (4.16), it is clear that if we have a function f ∈ C1 (for which f̂ ′(n)
are finite), then its Fourier coefficients decay like n−1.

Iterating the procedure, we can apply the same result and consideration on the decay of the
coefficients to functions in Ck, k > 1.

4.7. Pointwise convergence of Fourier Series

We now prove a result on pointwise convergence of Fourier Series. To give pointwise meaning,
we need functions that are more regular than L2, and at least continuous. Therefore, let us define
the following space:
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Definition. Let Ω ⊆ R be a bounded set and α ∈ (0, 1]). We define:

C0,α :=

{
f ∈ C0(Ω) : sup

x,y∈Ω

|f(x)− f(y)|
|x− y|α

< +∞
}

The norm that we define on this space is:

∥f∥C0,α := sup
x∈Ω

|f(x)|+ sup
x,y∈Ω

|f(x)− f(y)|
|x− y|α

. (4.17)

Remark 4.12. Note that C0,α(Ω) ⊃ C0,1(Ω) = Lip(Ω). However also non-Lipschitz functions can
be Cα, for instance |x|1/2 ∈ C1/2([0, 1]).

Theorem 4.11 (Dirichlet). (i) If f is 1−periodic, piecewise C1, then ∀x we have that
FNf(x) → (f(x−) + f(x+))/2.

(ii) Let α ∈ (0, 1]. If f ∈ C0,α([0, 1]), 1−periodic (then, f ∈ C0,α(R) as well), then ∀x we have
that FNf(x) → f(x).

(iii) If f ∈ L1(R/Z) and for a ∈ R we have that ∃α ∈ (0, 1],M :=M(a) > 0 and δ := δ(a) > 0
such that

|f(a+ t)− f(a+)|+ |f(a− t)− f(a−)| ≤Mtα, ∀0 < t ≤ δ

then
lim

N→∞
FNf(a) =

1

2
[f(a+) + f(a−)],

where f(a+) := limt→a+ f(t) and f(a−) := limt→a− f(t).

Remark 4.13. Note that the hypothesis in (iii) corresponds to the fact that f behaves like a C0,α

function at one single point. It is therefore more general than being piecewise C0,α.
Remark 4.14. (iii) is more technical, but we can easily see that (iii) ⇒ (ii). Indeed, in this case
f(a) = f(a+) = f(a−) and

|f(a+ t)− f(a)|
|t|α

≤ ∥f∥C0,α =:M.

We can also prove that (iii) ⇒ (i). If f is (left and right) differentiable (even if it may have a jump
discontinuity in a),

f(a+ t) = f(a+) + f ′(a+)t+ o(t) ∀t > 0

f(a+ t) = f(a−) + f ′(a−)t+ o(t) ∀t < 0

⇒ f(a+ t)− f(a+) ≤ (|f ′(a+)|+ 1)︸ ︷︷ ︸
M(a),α=1

|t| ∀|t| sufficiently small,

f(a− t)− f(a) ≤ (|f ′(a−)|+ 1)︸ ︷︷ ︸
M(a),α=1

|t| ∀|t| sufficiently small.

Remark 4.15. (i) The theorem is false if f is only continuous.
(ii) One can weaken the continuity assumption in the sense of Hölder and replace it with Dini’s

criterion, namely: if there exists δ ∈]0, π], a ∈ R such that∫ δ

0

|f(a− y) + f(a+ y)− 2f(a)|
|y|

dy < +∞

then limN→∞ FNf(a) = f(a). A Hölder continuous function obviously satisfies this.
Indeed

|f(a− y)− f(a)|+ |f(a+ y)− f(a)| ≤M |y|α
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and thus∫ π

0

|f(a− y) + f(a+ y)− 2f(a)|
|y|

dy ≤M

∫ π

0

|y|α−1dy =M
|π|α

α
<∞.

Remark 4.16. If f ∈ L1(−π, π) is 2π-periodic, then it’s possible for the Fourier series to diverge
everywhere (cf. an example due to Kolmogorov). However, if f ∈ Lp(−π, π), with p > 1, the
Fourier series will converge to the function almost everywhere (if p = 2 it’s the famous result of
Carleson, which has been generalized to the case p > 1 by Hunt).

To prove Theorem 4.11, we first need an auxiliary lemma:

Lemma 4.12 (Riemann-Lebesgue). Let f ∈ L1(R) (the same can be repeated in general dimension
Rd). Define

f̂(ξ) :=

∫
R
f(x)e−i2πξ·xdx.

Then, lim|ξ|→∞ f̂(ξ) = 0.

Proof. This exercise is proposed in Exercise 2 of Series 8. We prove it in dimension d = 1.

f̂(ξ) =

∫
R
f(x− 1/(2ξ)) e−i2πξ(x−1/(2ξ))︸ ︷︷ ︸

1/ξ periodic

dx = −
∫
R
f(x− 1/2ξ)e−i2πξxdx

=
1

2

∫
R
[f(x)− f(x− 1/(2ξ))]e−i2πξxdx.

Now,
|f̂(ξ)| ≤ ∥f(·)− f(· − 1/(2ξ))∥L1 → 0 as |ξ| → ∞, (4.18)

by continuity of translations in the L1-norm (Exercise 3 of Series 6). □

Proof of Dirichlet’s Theorem. By Remark 4.14, we will just prove (iii) because (i) and
(ii) follow automatically. We are going to express FNf as a suitable sort of convolution and then
do typical estimates for convolutions.
Step 1: we define the Dirichlet kernel DN :

FNf(x) =
N∑

n=−N

f̂(n)ei2πnx =
N∑

n=−N

∫ 1

0

f(y)ei2πn(x−y)dy =

∫ 1

0

f(y)
N∑

n=−N

ei2πn(x−y)

︸ ︷︷ ︸
:=DN (x−y)

dy = f ∗DN ,

(4.19)
where

DN(y) =
N∑

n=−N

(ei2πy)n =︸︷︷︸
n′=n+N

2N∑
n′=0

(ei2πy)n
′

= e−i2πNy e
i2πy(2N+1) − 1

ei2πy − 1

=
ei2πy(N+1/2) − e−i2πy(N+1/2)

ei2πy − 1
eiπy

=
ei2πy(N+1/2) − e−i2πy(N+1/2)

eiπy(eiπy − e−iπy)
eiπy

=
sin(2πy(N + 1/2))

sin(πy)
.
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Note that ∫ 1

0

DN(x)dx =
N∑

n=−N

∫ 1

0

ei2πnydy =

∫ 1

0

1dx = 1.

The Dirichlet kernel has similar properties to the Fejer kernel, but it is not positive.
For the sake of simplicity, let us suppose that f(a+) = f(a−) = f(a). Now, consider

FNf(a)− f(a) =

∫ 1/2

−1/2

sin(2πy(N + 1/2))

sin(πy)
(f(a+ y)− f(a))dy. (4.20)

Now, define:

φa(y) =
f(a+ y)− f(a)

sin(πy)
.

The assumptions in (iii) enable us to show that φa ∈ L1(−1/2, 1/2). Indeed,

|φx(y)| ≤
M |y|α

|sin(πy)|
, y ∈ (−δ, δ)

and the right-hand side is integrable. Indeed (we see below the importance of the fact that
α > 0):

∫ 1/2

−1/2

|φa(y)|dy ≤
∫ 1/2

−1/2

M |y|α

|sin(πy)|
dy ≤

∫ 1/2

−1/2

M

2
yα−1dy < +∞,

because sin(πy) ≥ 2y on [0, 1/2].
By Lemma 4.12 applied to φx|[−1/2,1/2] extended to 0 outside [−1/2, 1/2] and with ξ = N + 1/2,

we have that ∫ 1

0

sin(2πy(N + 1/2))φx(y)dy → 0 as N → ∞. (4.21)

Step 2: without the simplifying assumption, the proof works similarily:

FNf(a)−
1

2
(f(a+) + f(a−)) =

∫ 1/2

−1/2

sin(2πy(N + 1/2))

sin(πy)︸ ︷︷ ︸
=:g

(
f(a+ y)− 1

2
(f(a+) + f(a−))

)
︸ ︷︷ ︸

=:F

dy.

Since for g even:∫ 1/2

−1/2

g(y)F (·+y)dy =

∫ 1/2

0

g(y)F (·+y)dy+
∫ 1/2

0

g(y)F (·−y)dy =

∫ 1/2

0

g(y)(F (·+y)+F (·−y))dy.

Now,

FNf(x) =

∫ 1/2

0

f(a− y) + f(a+ y)− f(a−)− f(a+)

sin(πy)︸ ︷︷ ︸
=:φa(y)

sin(2π(N + 1/2)y)dy.

By Lemma 4.12 (again with ξ = 2π(N + 1/2) and with φa extended to 0 outside [−1/2, 1/2]), we
have that

∫ 1/2

0
φa(y) sin(2π(N + 1/2)y)dy → 0 as N → ∞ if φa ∈ L1(0, 1/2). This holds, because:∫ δ

0

|φa(y)|dy ≤
∫ δ

0

|f(a− y)− f(a−)|
2|y|

+
|f(a+ y)− f(a+)|

2|y|
dy

≤
∫ δ

0

M |y|α

2|y|
+
M |y|α

2|y|
dy < +∞,
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because sin(πy) ≥ 2|y| for y ∈ (0, 1/2), and∫ 1/2

δ

|φa(y)|dy ≤
∫ 1/2

δ

|f(a+ y)|+ |f(a− y)|
sin(πδ)

dy +
|f(a−)|+ |f(a+)|

sin(πδ)
< +∞,

because f ∈ L1(R/Z).
□

4.8. Uniform convergence of Fourier Series

Note that with Fourier’s Theorem we have only obtained convergence of the Fourier series∑∞
n=−∞ f̂(n)en to f in the L2 metric. One may ask whether one has convergence in the uniform or

pointwise sense as well, but it turns out (perhaps somewhat surprisingly) that the answer is no
to both of those questions. However, if one assumes that the function f is not only continuous,
but is also continuously differentiable, then one can recover pointwise convergence; if one assumes
continuously twice differentiable, then one gets uniform convergence as well. These results are
beyond the scope of this text and will not be proven here. However, we will prove one theorem
about when one can improve the L2 convergence to uniform convergence:

Theorem 4.13 (Uniform convergence of Fourier Series). Let f ∈ C1(R) and 1-periodic, then
∞∑

n=−∞

|f̂(n)| < +∞ (4.22)

and
FNf → f uniformly on [0, 1]. (4.23)

Proof. We prove the two statements of the theorem:
(i) f ∈ C1 ⇒

∑∞
n=−∞ |f̂(n)| < +∞.

Thanks to Remark 4.11, we have that

f̂ ′(n) = i2πnf̂(n).

Applying Plancherel’s formula, we then have that

+∞ > ∥f ′∥2L2(0,1) =
∞∑

n=−∞

|f̂ ′(n)|2 =
∞∑

n=−∞

(2π)2n2|f̂(n)|2.

Hence,(
∞∑

n=−∞

|f̂(n)|

)2

=

(
∞∑

n=−∞

∣∣∣∣ 1nnf̂(n)
∣∣∣∣
)2

≤
∞∑

n=−∞

1

n2︸ ︷︷ ︸
<+∞

∞∑
n=−∞

n2|f̂(n)|2 < +∞.

(ii)
∑∞

n=−∞ |f̂(n)| < +∞ ⇒ Fnf → f uniformly on [0, 1].
By the assumption, we have that FNf is a Cauchy sequence in L∞:

∥FNf − FMf∥C0 = sup
x∈[0,1]

M∑
n=N+1

|f̂(n)ei2πnx| ≤
∑

|n|≥N+1

|f̂(n)|.

Hence, the sequence has a limit point: FNf → F in C0, and therefore also in L2. Since
FNf → f in L2, we have that F = f .

□
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Remark 4.17. If the function is regular enough, the Fourier coefficients decay in n. Indeed,

f ∈ C2 ⇒ f̂ ′′(n) = (i2πn)f̂ ′(n) = −(2πn)2f̂(n).

Since |f̂ ′′(n)| =
∣∣∣∫ 1

0
f ′′(x)e−i2πnxdx

∣∣∣ ≤ ∫ 1

0
|f ′′(x)|dx =: C, we have that

|f̂(n)| ≤ C

(2πn)2
.

Theorem 4.14 (Bernstein’s Theorem). Let f ∈ C0,α, with α > 1/2. Then,
∞∑

n=−∞

|f̂(n)| < +∞

and
Fnf → f uniformly on [0, 1].

Remark 4.18. We cannot conclude the same for α = 1/2. Indeed, there exists an example (due
to Hardy-Littlehood) of a function f ∈ C0,1/2 such that

∑∞
n=−∞ |f̂(n)| = +∞, that is

f(x) =
∞∑
n=1

ein logn

n
einx.

4.9. Fourier Series only in sines or cosines

We now observe that some special properties of functions (real-values, symmetries...) reflect on
properties of the Fourier coefficients.
Remark 4.19. f : R/Z → R ⇒ an, bn ∈ R. What about f̂(n) and f̂(−n) = f̂(n)?

Remark 4.20. Given f ∈ L2(R), 2π−periodic and odd (that means, f(−x) = −f(x)), writing the
Fourier series of f as

f(x) =
a0
2

+
∞∑
n=1

an cos(nx) +
∞∑
n=1

bn sin(nx),

we have that an = 0 ∀n ∈ N.
If instead f ∈ L2(R), 2π−periodic is even (that means, f(−x) = f(x)), we have bn = 0 ∀n ∈ N.

Proof of Remark 4.20. We consider in the proof only the case f odd; the case with f even
can be proved analogously.

an =
1

π

∫ π

−π

f(x) cos(nx)dx =
1

π

[∫ 0

−π

f(x) cos(nx)dx+

∫ π

0

f(x) cos(nx)dx

]
⋆
=

1

π

[
−
∫ π

0

f(y) cos(ny)dy +

∫ π

0

f(x) cos(nx)dx

]
= 0,

where ⋆ follows from the change of variables y = −x and from the fact that f(y) = −f(x) being f
odd. □

We now prove that we can write the Fourier series of a general function only with sines.
Given l ≥ 0 and f : [0, l] → R, we perform the following steps:
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(i) we extend f oddly on [−l, l], by defining

f̃(x) =

{
f(x) in [0, l]

−f(−x) in [−l, 0]

(ii) we extend f̃ to a 2l−periodic function;
(iii) we write the Fourier series of f̃ :

F∞f̃(x) =
a0
2

+
∞∑
n=1

an cos
(πnx

l

)
︸ ︷︷ ︸

=0, being f̃ odd

+
∞∑
n=1

bn sin
(πnx

l

)
.

The Fourier coefficients bn can be expressed only in terms of f :

bn =
1

l

∫ l

−l

f̃(y) sin
(πny

l

)
dy

=
1

l

∫ 0

−l

f̃(y) sin
(πny

l

)
dy +

1

l

∫ l

0

f̃(y) sin
(πny

l

)
dy

=
2

l

∫ l

0

f(y) sin
(πny

l

)
dy.

Definition. The Fourier series in sines of f is defined as

F s
∞f :=

∞∑
n=1

bn sin
(π
l
nx
)
.

Corollary 4.15. Let f ∈ L2(0, l); then,
(i) F s

Nf → f in L2(0, l),
(ii) if f ∈ C0,α([0, l]) for some α > 0, then

F s
Nf → f pointwise in (0, l).

Proof. (i) We can apply Fourier Theorem (Theorem 4.9) to f̃ , retriving that

FN f̃ → f̃ in L2(−l, l),
which leads to the thesis because in (0, l) we have that FN f̃ = F s

Nf and f̃ = f ;
(ii) The pointwise convergence follows by applying Dirichlet’s theorem to f̃ .

□

Remark 4.21. Note that F s
Nf(0) → 0, therefore the second thesis of Corollary 4.15 does not hold

at x = 0.
Proceeding analogously, we can write the Fourier series of a function only with cosines.

Definition. The Fourier series in cosines of f is defined as

F c
∞f :=

a0
2

+
∞∑
n=1

an cos
(π
l
nx
)
,

where

an :=
2

l

∫ l

0

f(y) cos
(π
l
ny
)
dy.

Remark 4.22. As in the case of sines, the Fourier series in cosines corresponds to the Fourier
series F f̄ , where f̄ is the even extension of f .
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Corollary 4.16. Let f ∈ L2(0, l), then
(i) F c

Nf → f in L2(0, l);
(ii) if f ∈ C0,α([0, l]) for some α > 0, then F c

Nf → f pointwise in [0, l];
(iii) if f ∈ C1 or f ∈ C0,α([0, l]) with α > 1/2, then F c

Nf → f uniformly.

Remark 4.23. Point (iii) of Corollary 4.16 follows from Bernstein’s Theorem, and it cannot be
true for the expansion in sines.

For the sines, you can recover the same result in (iii) only if you assume f(0) = f(l) = 0. This is
due to the fact that the even extension of a C1 function is not necessarily C1, because we can create
angles: take for example f(x) = x ∈ C1(0, l), whose even expansion is f(x) = |x| /∈ C1(−l, l).
However, we have that the even extension of f is C1 if f ′(0) = f ′(l) = 0.

Proof of Corollary 4.16. For (i) and (ii), we proceed as for Corollary 4.15. For (ii),
observe that the even extension of a C0,α function is C0,α. □

Remark 4.24 (Parseval’s Identity for f expressed as a Fourier serie only of sines or cosines). Let
f ∈ L2 be a 2l−periodic function. By expanding it in Fourier series, we get

f =
a0
2

+
∞∑
n=1

an cos
(nπ
l
x
)
+ bn sin

(nπ
l
x
)
.

Then,
1

l

∫ 2l

0

|f(x)|2dx =
a20
2

+
∞∑
n=1

a2n + b2n.

Indeed, f(2lx) is 1−periodic, and

f(2lx) =
a0
2

+
∞∑
n=1

an cos(2πnx) + bn sin(2πnx)

⋆
=
a0
2
eiπ0 +

∞∑
n=1

an − ibn
2

ei2πnx +
an + ibn

2
e−i2πnx,

where ⋆ follows from the fact that

cos(2πnx) =
ei2πnx + e−i2πnx

2
and sin(2πnx) =

ei2πnx − e−i2πnx

2i
.

By Parseval’s identity, we have that

∥f(2lx)∥2L2(0,1) =
a20
4

+
∞∑
n=1

∣∣∣∣an − ibn
2

∣∣∣∣2 + ∣∣∣∣an + ibn
2

∣∣∣∣2 = a20
4

+
+∞∑
n=1

a2n
2

+
b2n
2

and since

∥f(2lx)∥2L2(0,1) =

∫ 1

0

f(2lx)2dx =
1

2l

∫ 2l

0

f(x′)2dx′,

we retrieve
1

l

∫ 2l

0

f(x′)2dx′ =
a20
2

+
+∞∑
n=1

a2n + b2n.

We will now analyze how the decay of the coefficients of the Fourier Series only in sines bn is
affected by the regularity of f . For simplicity, let us suppose l = π.



4.9. FOURIER SERIES ONLY IN SINES OR COSINES 99

Proposition 4.17. Let f ∈ C2k([0, π]) with f (2j)(0) = f (2j)(π) = 0 for all j = 0, . . . , k − 1. Then,

bn = o(n−2k) as n→ ∞.

Let g ∈ C2k−1([0, π]) with g(2j)(0) = g(2j)(π) = 0 for all j = 0, . . . , k − 1. Then,

bn = o(n−2k+1) as n→ ∞.

Proof. Using integration by parts we have
π

2
bn = − 1

n
f(x) cos(nx)

∣∣∣∣π
0

+
1

n

∫ π

0

f ′(x) cos(nx)dx

=
1

n2
f ′(x) sin(nx)

∣∣∣∣π
0

− 1

n2

∫ π

0

f ′′(x) sin(nx)dx

= . . .

=
cos(kπ)

n2k

∫ π

0

f 2k(x) sin(nx)dx.

The Riemann-Lebesgue lemma tells us that

lim
n→∞

∫ π

0

f 2k(x) sin(nx)dx = 0

which gives the first result.
The second result is proved in the same way. □

The proposition could be stated more concisely as f ∈ Ck([0, π]) then bn = o(n−k) as n→ ∞.
Notice that the result is no longer true without the assumptions f (2j)(0) = f (2j)(π) = 0 for
j = 0, . . . , k − 1 as can be seen by considering the constant function 1 for which the coefficients are
given by

bn =
2

π

∫ π

0

sin(nx)dx =
2

nπ
(1− cos(nπ)) =

1− (−1)n

nπ

which is not o(n−1).
Also, it is important to talk about the regularity of f and not of f̃ as the odd extension of a
function does not inherit a priori its regularity property. More precisely, it is possible to find a C∞

function on [0, π] whose odd extension is not even continuous: consider for example a constant non
zero function. Even if the odd extension turns out to be differentiable, it need not be C2 as can be
seen by considering f(x) = x2 which odd extension is f̃(x) = x|x| which derivative is f̃ ′(x) = 2|x|
(not C1).
Similar results can be stated for the case of even extensions but one would need conditions on the
derivatives of odd orders to get the decay result.





CHAPTER 5

Fourier Transform

This chapter is inspired by [SS03, Chapter 5] and [Dac, Chapter 18].

The theory of Fourier series applies to periodic functions on R. In this chapter, we develop an
analogous theory for functions on the entire real line which are non-periodic. The functions we
consider will be suitably “small” at infinity. There are several ways of defining an appropriate notion
of “smallness”, but it will nevertheless be vital to assume some sort of vanishing at infinity. On the
one hand, recall that the Fourier series of a periodic function associates a sequence of numbers,
namely the Fourier coefficients, to that function; on the other hand, given a suitable function f on
R, the analogous object associated to f will in fact be another function f̂ on R which is called the
Fourier transform of f . Since the Fourier transform of a function on R is again a function on R,
one can observe a symmetry between a function and its Fourier transform, whose analogue is not
as apparent in the setting of Fourier series.

This tool will also enable us to transform problems involving PDEs, such as the Heat Equation,
into ODEs, that are easier to deal with. The workflow is the following: once the explicit solution of
the ODE is found in the space of Fourier Transforms, with the Inverse Transform we will be able
to recover the solution of the original hard problem.

Definition. [Fourier Transform] Let f ∈ L1(R). The Fourier Transform of f is defined as

Ff(ξ) = f̂(ξ) :=

∫ ∞

−∞
f(y)e−2πiξydy

Remark 5.1. Sometimes, the Fourier transform is defined without a 2π in the exponential and
with a multiplicative factor 1/

√
2π in front.

Example 5.1. Consider f(x) = I[−1,1](x). We can compute

f̂(ξ) =

∫ 1

−1

e−2πiξydy =

[
e−2πiξy

−2πiξ

]1
−1

=
1

πξ

e2πiξ − e−2πiξ

2i
=

sin(2πξ)

πξ
.

Remark 5.2. |f̂(0)| =
∣∣∫

R f(x)dx
∣∣ ≤ ||f ||L1(R).

Lemma 5.1 (Basic properties of the Fourier Transform). Let f, g ∈ L1(R), a, b ∈ R. Then
(i) f̂ is a continuous function, limα→∞ |f̂(α)| = 0 and ∥f̂∥L∞ ≤ ∥f∥L1

(ii) F(af + bg) = aFf + bFg
(iii) If f is k times differentiable and f (l) is in L1(R) for all l = 1, . . . , k, then

f̂ (k)(ξ) = (2πiξ)kf̂(ξ);

(iv) If If hl(x) = xlf(x) ∈ L1(R) for some l ∈ N then f̂ is l-times differentiable and

dk

(dξ)k
f̂(ξ) = (−2πi)ĥk(ξ) ∀k = 1, . . . , l

(v) If h(x) = f(x+ a), then ĥ(ξ) = e2πiξaf̂(ξ)

(vi) If h(x) = f(ax), then ĥ(ξ) = 1
a
f̂( ξ

a
)

101
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(vii) The multiplication formula holds:∫ ∞

−∞
f̂(x)g(x)dx =

∫ ∞

−∞
f(x)ĝ(x)dx.

Proof. Let us now prove all the properties:
(i) continuity follows from the fact that

|f̂(ξ + h)− f̂(ξ)| ≤
∫ ∞

−∞
f(y)|e−2πiξh − 1|e−2πiξydy.

and since |e−2πiξh − 1| → 0 as h→ 0, we can apply the dominated convergence theorem.
Then, notice that limα→∞ |f̂(α)| = 0 is granted again by dominated convergence and
∥f̂∥L∞ = ∥f̂∥C0 ≤ ∥f∥L1 because |e−2πiξy| ≤ 1.

(ii) Linearity follows from the linearity of the integral. Indeed,

F(af + bg)(ξ) =

∫
R
(af(x) + bg(x))e−2πiξx dx = a

∫
R
f(x)e−2πiξx dx+ b

∫
R
g(x)e−2πiξx dx

= aF(f)(ξ) + bF(g)(ξ) .

(iii) Since f is absolutely integrable, lim infx→±∞ |f(x)| = 0. In particular, consider two
subsequences {xn}n∈N, {yn}n∈N, xn → +∞, yn → −∞ such that f(xn) → 0, f(yn) → 0.
Integrating by parts, we obtain:∫ xn

yn

f ′(x)e−2πiξx dx = (f(x)e−2πiξx)|xn
yn +

∫ xn

yn

2πiξf(x)e−2πiξx dx .

By the choice of {xn}n∈N, {yn}n∈N we can make the first term of the right-hand-side vanish,
and we can pass to the limit for n → +∞ in the second one and in the left-hand-side
thanks to the dominated convergence theorem, because f, f ′ ∈ L1(R). Therefore, we obtain∣∣∣∣∫

R
f ′(x)e−2πiξx dx− 2πiξ

∫
R
f(x)e−2πiξx dx

∣∣∣∣ = 0, (5.1)

and we conclude F(f ′)(ξ) = 2πiξF(f)(ξ).

Now, we prove the general result by induction. Assume it holds for some n and prove it
for n + 1. Let f ∈ Cn+1(R) and f (k) ∈ L1(R) for all k = 1, . . . , n + 1. Then, since the
result holds for n,

F(f (n+1))(ξ) = (2πiξ)nF(f ′)(ξ) = (2πiξ)n+1F(f)(ξ),

where the last equality follows from the case n = 1 which we already proved.
(iv) We will prove that for every ξ ∈ R we have

lim
ε→0

f̂(ξ + ε)− f̂(ξ)

ε
+ 2πiĥ(ξ) = 0.

This proves both the differentiability of f̂ and the claimed formula for its derivative. Let
ε > 0 be arbitrary. We have

f̂(ξ + ε)− f̂(ξ)

ε
+ 2πiĥ(ξ) =

∫
R
f(x)e−2πiξx

[
e−2πiεx − 1

ε
+ 2πix

]
dx.

Notice that ∣∣∣∣e−2πiεx − 1

ε

∣∣∣∣ ≤ 2π|x|
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and

lim
ε→0

[
e−2πiεx − 1

ε
− 2πix

]
= 0

pointwise. In order to be able to apply the dominated convergence theorem, notice that
by assumption∣∣∣∣f(x)e−2πiξx

[
e−2πiεx − 1

ε
+ 2πix

]∣∣∣∣ ≤ 4π|xf(x)| = 4π|h(x)| ∈ L1(R) .

By the dominated convergence theorem, we get,

lim
ε→0

∫
R
f(x)e−2πiξx

[
e−2πiεx − 1

ε
+ 2πix

]
dx = 0,

which proves the result.
Now, in order to prove the formula for higher order derivatives, we use an induction
argument. Assume by induction that the formula holds for some l and prove it for l + 1.
We assume that hl+1 ∈ L1(R). In order to apply the formula for l, we need to make sure
that hl ∈ L1(R). Indeed,∫

R
|xlf(x)| dx =

∫
|x|≤1

|x|l|f(x)| dx+
∫
|x|>1

|x|l|f(x)| dx

≤
∫
|x|≤1

|f(x)| dx+
∫
|x|>1

|x|l+1|f(x)| dx <∞

Thus, using the induction hypothesis and the case l = 1 that we already proved, we have

F(f)(l+1)(ξ) =
d

dξ
[F(f)(l)(ξ)] =

d

dξ
[(−2πi)lF(hl)(ξ)] = (−2πi)l

d

dξ
[F(hl)(ξ)]

= (−2πi)(l+1)F(hl+1)(ξ).

(v) Using Proposition 2.23, we obtain

F(h)(ξ) =

∫
R
f(x+ a)e−2πiξx dx

??
=

∫
R
f(x)e−2πiξ(x−a) dx = e2πiξaF(f)(ξ) .

(vi) Using Proposition 2.23, we obtain

F(h)(ξ) =

∫
R
f(ax)e−2πiξx dx

??
=

1

a

∫
R
f(x)e−2πiξx/a dx =

1

a
F(f)(ξ/a) .

(vii) First of all, notice that both integrals are finite and well-defined because f, g ∈ L1 and
f̂ , ĝ ∈ L∞. More precisely, we have∫

R
f̂(x)g(x) dx =

∫
R

(∫
R
f(y)e−2πixy dy

)
g(x) dx

and ∫
R
f(y)ĝ(y) dy =

∫
R
f(y)

(∫
R
g(x)e−2πixy dx

)
dy.

In order to prove the result we will use Fubini’s theorem. However, we first need to show
that the function

(x, y) 7→ f(y)g(x)e−2πixy
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is integrable on R2. Indeed, by Tonelli’s theorem∫
R2

|f(y)g(x)e−2πixy| d(x, y) =
∫
R2

|f(y)||g(x)| d(x, y) =
(∫

R
|f(y)| dy

)(∫
R
|f(y)||g(x)| dx

)
= ∥f∥L1(R)∥g∥L1(R) <∞.

Thus, using Fubini’s theorem, we obtain∫ +∞

−∞
f̂(x)g(x) dx =

∫
R

(∫
R
f(y)e−2πixy dy

)
g(x) dx

=

∫
R2

f(y)e−2πixyg(x) d(x, y)

=

∫
R
f(y)

(∫
R
g(x)e−2πixy dx

)
dy

=

∫
R
f(y)ĝ(y) dy.

□

Proposition 5.2 (Gaussians are good kernels). Let f(x) = e−πx2. Then, we have f̂ = f .

Proof. Note that f ′(x) = −2πxf(x), thus

F(f ′)(ξ) = −2πF(xf(x))(ξ)

Now, we can apply (iii) of Theorem 5.1, and obtain

2πiξF(f)(ξ) = −i d
dξ

F(f)(ξ).

Therefore f̂ = F(f) satisfies the same ODE as f , that is f̂ ′ = −2πξf̂ and since

f̂(0) =

∫
R
f(y)dy

⋆
= 1,

we can conclude that f̂ = f .
The step in ⋆ is due to the fact that(∫ ∞

−∞
e−πx2

dx

)2

=

∫ ∞

−∞

∫ ∞

−∞
e−π(x2+y2)dxdy =

∫ 2π

0

∫ ∞

0

e−πr2rdrdθ

= (2π)

∫ ∞

0

e−πr2rdr = (2π)[e−πr2 ]∞0 = 1.

□

Corollary 5.3. If δ > 0, let Kδ(x) = δ−1/2e−πx2/δ.
Then

K̂δ(ξ) = e−πδξ2 .

and Kδ enjoys the following properties:
(i) Kδ ≥ 0;
(ii)

∫∞
−∞Kδ(x)dx =

∫∞
−∞K1(x)dx = 1;

(iii) ∀η > 0,
∫
|x|>η

Kδ(x)dx→ 0 as δ → 0.
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Proof. Note that Kδ(x) = δ−1/2K1(x/
√
δ); we can apply (vi) of Theorem 5.1 to conclude that

K̂δ(ξ) = e−πδξ2 .

Let us now prove the three properties:
(i) Kδ ≥ 0 follows immediately from the definition of Kδ and the non-negativity of the

exponential function;
(ii) with the change of variables y = x/

√
δ, we have∫ ∞

−∞
Kδ(x)dx = δ−1/2

∫ ∞

−∞
e−πx2/δdx =

∫ ∞

−∞
e−πy2dy = 1;

(iii)
∫
|x|>η

Kδ(x) =
∫
|y|>η/

√
δ
e−πy2dy → 0 as δ → 0 because η/

√
δ → ∞.

□

Remark 5.3. The statement (iii) of Theorem 5.3 implies that, as δ → 0, Kδ concentrates at 0 and
K̂δ gets flatter. This is an example of Heisenberg’s uncertainty principle: f and f̂ cannot be both
essentially localized.

5.1. Fourier Inversion Formula

Theorem 5.4 (Fourier Inversion Formula). Let f ∈ L1(R) s.t. |f̂ | ∈ L1(R), then for a.e. x ∈ R

f(x) =

∫
R
f̂(ξ)e2πiξydξ (5.2)

Remark 5.4. Note that it is natural to suppose |f̂ | ∈ L1 to define the right-hand-side of (5.2); under
this assumption, the right-hand-side is continuous , therefore f coincides a.e. with a continuous
function.
If f ∈ C0(R), the inversion formula holds ∀x ∈ R.

Now, it is natural to ask when the condition |f̂ | ∈ L1 is satisfied.
We define the Schwartz space S(R) ⊂ C∞(R) as the set of all functions f ∈ C∞(R) such that

their derivatives are rapidly decreasing, namely

sup
x

|x|k|f (l)(x)| <∞ ∀k, l ∈ N.

The Schwartz space S(R) contains all smooth compactly supported functions, and Gaussians (whose
derivatives are of the form P (x)e−cx2 with P polynomial).
Moreover, if f ∈ S(R), then f̂ ∈ S(R). We can now prove the following corollary:

Corollary 5.5. The Fourier Transform in the Schwartz space F : S(R) → S(R) is bijective.

Proof. Let F∗f =
∫∞
−∞ f(y)e2πiξydy. Then,

F∗ ◦ F = Id on S(R)

Furthermore, since F∗f = F(f(−x)), therefore we also have that

F ◦ F∗ = Id.

□

Let us now prove the Fourier Inversion Formula.
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Proof of Theorem 5.4. We will first prove the result in a simpler case, for f ∈ C0 ∩ L∞:
here, we will prove the Fourier Inversion Formula for all x.
For x = 0, we want to show that

f(0) =

∫ ∞

−∞
f̂(ξ)dξ

We apply (vii) of Theorem 5.1 to f and Gδ = e−πx2δ; note that Ĝδ = Kδ, that is a good kernel.
Hence, we have that: ∫ ∞

−∞
f(x)Kδ(x)dx =

∫ ∞

−∞
f̂(ξ)Gδ(ξ)dξ.

We first want to show that ∫ ∞

−∞
f̂(ξ)Gδ(ξ)dξ →

∫ ∞

−∞
f̂(ξ)dξ as δ → 0;

note that f̂ ∈ L1, Gδ → 1 pointwise, and Gδ ≤ 1, therefore the claim follows by applying dominated
convergence on |f̂ |.

Let us now focus on the other side of the equality to prove; take ε > 0 and consider∣∣∣∣f(0)− ∫ ∞

−∞
f(x)Kδ(x)dx

∣∣∣∣ ≤ ∫ ∞

−∞
|f(0)− f(x)|Kδ(x)dx

≤
∫
|x|<η

|f(0)− f(x)|Kδ(x)+ ≤
∫
|x|>η

|f(0)− f(x)|Kδ(x)

≤
∫
|x|<η

|f(0)− f(x)|Kδ(x) + 2||f ||L∞o(1).

If we fix η such that |f(0)− f(x)| < ε ∀|x| < η, we can conclude that∣∣∣∣f(0)− ∫ ∞

−∞
f(x)Kδ(x)dx

∣∣∣∣ ≤ ε

∫ ∞

−∞
Kδ(x)dx︸ ︷︷ ︸
=1

+2∥f∥L∞o(1),

and the proof is concluded, because o(1) goes to 0 in δ at any fixed η.
For general x, instead, recall that for F (y) = f(x+ y), then

f(x) = F (0) =

∫ ∞

−∞
F̂ (ξ)dξ =

∫ ∞

−∞
f̂(ξ)e2πiξxdξ,

by (v) of Theorem 5.1. We can now deal with the general case.
Now, we consider f, f̂ ∈ L1(R): for any x, we write the multiplication formula applied to

F (y) = f(x+ y) and Kδ; we get∫ ∞

−∞
F (y)Kδ(y)dy =

∫ ∞

−∞
F̂ (ξ)Gδ(ξ)dξ =

∫ ∞

−∞
f̂(ξ)ei2πξxGδ(ξ)dξ.

Now we let δ → 0; then the right-hand-side converges pointwise in x:∫ ∞

−∞
f̂(ξ)ei2πξxGδ(ξ)dξ →

∫ ∞

−∞
f̂(ξ)ei2πξxdξ.

Furthermore, we claim that the left-hand-side converges to f(x) for almost every x ∈ R:

fδ(x) =

∫ ∞

−∞
f(x+ y)Kδ(y)dy → f(x).
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The claim can be proved by noting that

|fδ(x)− f(x)| ≤
∣∣∣∣∫ ∞

−∞
(f(x+ y)− f(x))Kδ(y)

∣∣∣∣ dy.
Thus, ∫ ∞

−∞
|fδ(x)− f(x)|dx ≤

∫ ∞

−∞

∫ ∞

−∞
|f(x+ y)− f(x)|Kδ(y)dydx

⋆
=

∫ ∞

−∞
∥f(·+ y)− f∥L1Kδ(y)dy

♢
=

∫ ∞

−∞
∥f(·+

√
δz)− f∥L1e−πz2dz,

where ⋆ follows from the Fubini-Tonelli theorem and ♢ from the change of variables y =
√
δz.

Now, recall that ∀f ∈ Lp(R), the translations are continuous in the Lp norm:

∥f(·+ y)− f∥Lp → 0 as y → 0.

Thus, the quantity above is dominated and the integral goes to 0.
□

Proposition 5.6. If f, g ∈ S(R) then f ∗ g ∈ S(R).

Proof. To prove that f ∗ g is rapidly decreasing, observe first that for any ℓ ≥ 0 we have
supx∈R |x|ℓ|g(x− y)| ≤ Aℓ(1+ |y|)ℓ, because g is rapidly decreasing (to check this assertion, consider
separately the two cases |x| ≤ 2|y| and |x| ≥ 2|y|). From this, we see that

sup
x

∣∣xℓ(f ∗ g)(x)
∣∣ ≤ Aℓ

∫ ∞

−∞
|f(y)|(1 + |y|)ℓdy

so that xℓ(f ∗ g)(x) is a bounded function for every ℓ ≥ 0. These estimates carry over to the
derivatives of f ∗ g, thereby proving that f ∗ g ∈ S(R) because, as observed for (3.13),(

d

dx

)k

(f ∗ g)(x) =

(
f ∗
(
d

dx

)k

g

)
(x) for k = 1, 2, . . .

This identity is proved first for k = 1 by differentiating under the integral defining f ∗ g. The
interchange of differentiation and integration is justified in this case by the rapid decrease of dg/dx,
that enables to apply Theorem 2.17. The identity then follows for every k by iteration. □

5.2. Plancherel Identity

Theorem 5.7 (Plancherel). Let f ∈ L1 ∩ L2(R), then f̂ ∈ L2(R) and

∥f∥L2 = ∥f̂∥L2 . (5.3)

Before proving the theorem, let us first prove a preliminary result

Proposition 5.8. Let f, g ∈ L1(R) and consider their convolution

f ∗ g =
∫ ∞

−∞
f(x− y)g(y)dy.

Then
(i) f ∗ g is well defined for a.e. and ∥f ∗ g∥L1 ≤ ∥f∥L1∥g∥L1

(ii) f ∗ g = g ∗ f
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(iii) f̂ ∗ g = f̂ ĝ

Proof. For (i), we just prove the inequality, without showing measurability:∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
f(x− y)g(y)dy

∣∣∣∣ dx ≤
∫ ∞

−∞

∫ ∞

−∞
|f(x− y)g(y)|dydx

=

∫ ∞

−∞
∥f∥L1|g(y)|dy

≤ ∥f∥L1∥g∥L1 .

For (ii), observe that ∫ ∞

−∞
f(x− y)g(y)dy =

∫ ∞

−∞
g(x− z)f(z)dz

with the change of variables z = x− y. For (iii), with the change of variables z = x− y, we have:

F(f ∗ g)(ξ) =
∫ ∞

−∞

∫ ∞

−∞
f(x− y)g(y)dye−2πiξxdx

=

∫ ∞

−∞

∫ ∞

−∞
f(z)g(y)e−2πiξze−2πiξydzdy

=

∫ ∞

−∞
f(z)e−2πiξzdz

∫ ∞

−∞
g(y)e−2πiξydy

= f̂(ξ)ĝ(ξ).

□

Remark 5.5. For f, g ∈ S(R), we can prove that f̂ g = f̂ ∗ ĝ.

Proof of Theorem 5.7. we divide the proof in two steps.

Step 1: we prove that f ∈ L1(R) ∩ L2(R) and f̂ ∈ L2(R) imply (5.3).
Let g(x) = f(−x), so that ĝ(x) =

∫ +∞
−∞ f(−y)e−i2πξydy = f̂(ξ) (note indeed that the sign does not

change, because we have one negative sign from the differential and one negative sign from the
inversion of extrema of the interval).

Let h = f ∗ g, then ĥ = f̂ ĝ = f̂ f̂ = |f̂ |2, exploiting Theorem 5.8 and the above observation.

Note that we have

h(0) =

∫ ∞

−∞
f(y)g(0− y)dy

=

∫ ∞

−∞
|f |2(y)dy.

Now, we want to compute h(0) via the Fourier Inverse Formula:

h(0) =

∫ ∞

−∞
ĥ(ξ)dξ = ∥f̂∥2L2 .
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However, note that in principle the Fourier Inverse Formula cannot be applied at x = 0, as we only
have equality almost everywhere. But actually h is continuous, because

|h(x+ ϵ)− h(x)| =
∣∣∣∣∫ ∞

−∞
f(y)(g(x+ ϵ− y)− g(x− y))dy

∣∣∣∣
≤
∫ ∞

−∞
|f(y)||g(x+ ε− y)− g(x− y)|dy

≤ ∥f∥L2∥g(x+ ε− ·)− g(x− ·)∥L2

≤ ∥f∥L2∥g(ε− ·)− g(·)∥L2 → 0

as ε→ 0, thanks to the continuity of translations in L2.
Step 2: we prove that f ∈ L1 ∩ L2 ⇒ f̂ ∈ L2 and ∥f̂∥L2 ≤ ∥f∥L2 .

We define fδ := f ∗Kδ and we want to apply the result in Step 1 to fδ and then let δ → 0.
We know that f̂δ = f̂ K̂δ; now, we need to verify that fδ satisfies the right assumptions. We know
that fδ ∈ L1 from Theorem 5.8. Furthermore, f̂δ = f̂ K̂δ, and since f̂ ∈ L∞(R) and e−πδx2 ∈ L2(R)
(because Gaussians belong to Lp for all p > 0), by the Hölder inequality f̂δ is in L2(R).

Now, we first bound fδ pointwise: we fix x ∈ R, and study

f 2
δ (x) =

[∫ ∞

−∞
f(y)Kδ(x− y)dy

]2
≤
∫ ∞

−∞
f 2(y)Kδ(x− y)dy

∫ ∞

−∞
Kδ(x− y)dy︸ ︷︷ ︸

=1

=

∫ ∞

−∞
f 2(y)Kδ(x− y)dy

by Hölder inequality with factors f(y)
√
Kδ(x− y) and

√
Kδ(x− y) and exponents p = q = 2). We

now integrate with respect to x, thus, applying Fubini’s Theorem,∫ ∞

−∞
f 2
δ (x)dx ≤

∫ ∞

−∞

∫ ∞

−∞
f(y)2Kδ(x− y)dydx

=

∫ ∞

−∞
f(y)2

∫ ∞

−∞
Kδ(x− y)dx︸ ︷︷ ︸

=1

dy

=

∫ ∞

−∞
f(y)2dy.

Now, we have that

∥f∥L2 ≥ ∥fδ∥L2 = ∥f̂δ∥L2 = ∥f̂ e−πδξ2∥L2 =

(∫ ∞

−∞
|f̂(ξ)|2e−2πδξ2dξ

)1/2

Notice that e−2πδξ2 → 1 pointwise as δ → 0, and that we can apply monotone convergence to
conclude that (∫ ∞

−∞
|f̂ |2e−2πδξ2

)1/2

→ ∥f̂∥L2 .

Therefore, ∥f∥L2 ≥ ∥f̂∥L2 , and this concludes the proof.
□





CHAPTER 6

Fourier Transforms and PDEs

This chapter is inspired by [Dac, Chapter 19], [SS03, Chapter 5].

Definition (Partial Differential Equation). A Partial Differential Equation (PDE) is an
equation whose solution u is such that

F (x, u(x),∇u(x), . . . ,∇ku(x)) = 0

where x ∈ Ω ⊂ Rd, u : Ω → RN , F : Ω× RN × Rd×N × · · · × Rd×···×d×N → Rm.

Example 6.1. Examples of well-known PDEs are:
(i) Given u : R → R, ∂xxu = 0, whose solutions are u = ax2 a ∈ R;
(ii) The Laplace Equation in R2 for u : R2 → R:

∂xxu+ ∂yyu = 0

(iii) The Laplace Equation in Rd for u : Rd → R:

∆u =
d∑

i=1

∂xixi
u = 0

(iv) The Poisson Equation, non-homogeneous version of the Laplace Equation with a given
datum f :

∆u = f

(v) The Heat Equation
∂tu−∆u = 0

for which the function u has a d+ 1-dimensional domain, as x ∈ Rd and t ∈ R;
(vi) The Wave Equation

∂ttu−∆u = 0

(vii) The PDE
∇u = f

(viii) The Burgers Equation
∂tu− ∂x(u

2) = 0

Remark 6.1. The Laplace, Heat and Wave Equations are linear PDEs, namely, F (x, ·, ·, . . . , ·) is
a linear function. In the equations, when there is no given right-hand side, if u, v are solutions,
then αu+ βv is a solution ∀α, β ∈ R. On the other hand, the Burgers Equation is nonlinear.

Typically, PDEs are associated to given conditions describing the behavior at the boundary of
the domain or the initial condition. For example, for the Heat and Wave Equations that describe
an evolution in time, we prescribe the starting condition by setting

u(x, 0) = ϕ(x) for some given function ϕ

On the other hand, for the Laplace Equation we prescribe conditions on the function or its
derivatives at the domain’s edge: we can set Dirichlet boundary conditions

u(x) = u0(x) on ∂Ω
111
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or Neumann boundary conditions

∂νu(x) = v0(x) on ∂Ω

We will now focus instead on few of the main PDEs recurrent in the applications and on particular
methods to solve them, that are:

• Separation of Variables
• Fourier Transform the equation and solve the ODEs that appear there
• Solution via Fourier Series.

6.1. The heat equation on R

The heat equation has the general form{
∂tu− ∂xxu = 0

u(x, 0) = f(x),
(6.1)

where f(x) : R → R is given, while u : [0,∞)× R → R is to be found.
We formally derive a solution using the following strategy: first of all, we compute the Fourier

Transform in x {
∂tû(ξ, t) + 4π2ξ2û(ξ, t) = 0

û(ξ, 0) = f̂(ξ).

Now notice that, for a fixed ξ, this is an ODE in time for the function û.
Therefore, we can compute its solution:

∂t[ln û] = −4π2ξ2

ln û(ξ, t)− ln û(ξ, 0) = −4π2ξ2t

Taking the exponential, we find

û(ξ, t) = û(ξ, 0)e−4π2ξ2tf̂(ξ)e−4π2ξ2t,

and finally, by inverting the Fourier Transform and applying Corollary 5.3 on the Fourier Transform
of the exponential, we retrieve

u(x, t) = f ∗ F−1(e−4π2tξ2) = f ∗ 1

(4πt)1/2
e−x2/4t.

Theorem 6.1 (Solution to heat equation). Let f ∈ S(R), and define the Heat Kernel as

Ht(x) :=
1

(4πt)1/2
e−x2/4t

Let u = f ∗Ht for t > 0; then, u satisfies the following:
(i) u ∈ C2(R) for x ∈ R, t > 0 and solves the heat equation ∂tu− ∂xxu = 0
(ii) u(x, t) → f(x) uniformly in x as t→ 0
(iii) u(·, t) → f in the L2 norm as t→ 0, namely

∫
R |u(x, t)− f(x)|2dx→ 0 as t→ 0.

Remark 6.2. Observe that Ht is a Gaussian for every t fixed and
∫
RHt(x)dx = 1 ∀t > 0.

Moreover, as t→ 0, Ht → 0 a.e.; in particular, Htdx converges to the Dirac Delta centered at the
origin δ0, which is rigorously expressed as

∀ε > 0

∫
[−ε,ε]

Ht → 1 as t→ 0. (6.2)

Remark 6.3. If f ∈ C0
c is non zero and f ≥ 0, then supp(u(·, t)) = R and

∫
R f(x)dx =

∫
R u(x, t)dx.
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Proof of Theorem 6.1. Let us prove the points of the theorem:
(i) Take the Fourier transform of u. Notice that this can be done, since f ∈ S(R) ⊂ L1(R)

and Ht ∈ L1(R), so f ∗Ht ∈ L1(R) (see Proposition 5.8 (i)). Then, by Proposition 5.8
(iii), we have:

û = f̂ Ĥt = f̂(ξ)e−4π2ξ2t

Then, the Fourier Inversion Formula, whose application is justified by u, û ∈ L1(R)
(Theorem 5.4), gives

u(x, t) =

∫ ∞

−∞
f̂(ξ)e−4π2ξ2t+2πiξxdξ.

If u is differentiable in x, then differentiating under the integral (see Theorem 2.17) gives
the meaningful formula

∂xu(x, t) =

∫ ∞

−∞
f̂(ξ)e−4π2ξ2t+2πiξx(2πiξ)dξ.

Another way to differentiate under the integral in a rigorous way consists in computing
u(x+ h, t)− u(x, t)

h
=

∫ ∞

−∞
f̂(ξ)e−4π2ξ2te2πiξx

(
e2πiξh − 1

h

)
dξ.

Letting h→ 0, we have that
e2πiξh − 1

h
→ 2πiξ

and we can retrieve the same formula by dominated convergence (Theorem 2.14). Indeed,
we can take as dominant ∥f̂∥L∞(2πξ)e−4π2ξ2t ∈ L1(R) ∀t > 0, because f̂(ξ) is bounded
in ξ and |2πiξ| ≤ 2π|ξ|.

The same justification holds for ∂xxu and ∂tu:

∂xxu(x, t) =

∫ ∞

−∞
f̂(ξ)e−4π2ξ2te2πixξ(2πiξ)2dξ,

∂tu(x, t) =

∫ ∞

−∞
f̂(ξ)e−4π2ξ2te2πixξ(−4π2ξ2)dξ.

Therefore, ∂tu = ∂xxu ∀t > 0, x ∈ R.
(ii) Then, we want to prove that u(t, x)− f(x) → 0 as t→ 0.

Let ε > 0. We have that

u(x, t)− f(x) =

∫ ∞

−∞
Ht(y)(f(x− y)− f(x))dy.

We claim that for t sufficiently small, the modulus of the integrand is smaller than ε: to
do so, fix R > 0 such that |f | ≤ ε/4 outside [−R,R].
Since f is uniformly continuous in [−R− 1, R + 1], there exists δ such that

|f(x)− f(x− y)| ≤ ε

2
∀|y| < δ.

Then,∣∣∣∣∫ ∞

−∞
Ht(y)(f(x− y)− f(x))dy

∣∣∣∣ ≤ ∫
|y|<δ

Ht(y)|f(x− y)− f(x)|dy +
∫
|y|>δ

Ht(y)|f(x− y)− f(x)|dy

≤ sup
x∈R,|y|<δ

|f(x)− f(x− y)|
∫
|y|<δ

Ht(y)dy + 2 sup
x∈R

|f(x)|
∫
|y|>δ

Ht(y)dy.
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Now, we make the following observations:
• supx∈R,|y|<δ |f(x) − f(x − y)| ≤ ε/2 because on [−R − 1, R + 1] we have uniform

continuity, while on [−R− 1, R + 1]C we have |f | ≤ ε/4 by the choice of R;
•
∫
|y|<δ

Ht(y)dy ≤ 1 because
∫
RHt(x)dx = 1 ∀t > 0;

•
∫
|y|>δ

Ht(y)dy → 0 as t→ 0 by the properties of good kernels (Corollary 5.3 (iii)).
Therefore, we can conclude that, for t small enough,∣∣∣∣∫ ∞

−∞
Ht(y)(f(x− y)− f(x))dy

∣∣∣∣ ≤ ε

2
+ 2 sup

x∈R
|f(x)|

∫
|y|>δ

Ht(y)dy ≤ ε

(iii) To prove the third point, use Plancherel (Theorem 5.7) to conclude that∫ ∞

−∞
|u(x, t)− f(x)|2dx =

∫ ∞

−∞
|û(ξ, t)− f̂(ξ)|2dξ

=

∫ ∞

−∞
|f̂(ξ)||e−4π2ξ2t − 1|dξ → 0

as t→ 0 by dominated convergence with dominant 2|f̂ |2.
□

Remark 6.4. If we try to solve Equation 6.1 backwards (with t < 0), the formal computations are
the same, but the formula we get for u has problems and there is no analogue for Theorem 6.1.
Remark 6.5. u(·, t) ∈ S(R) uniformly in t, namely:

sup
x∈R,0<t<T

|x|k
∣∣∣∣ ∂l∂xlu(x, t)

∣∣∣∣ < +∞ ∀k, l ≥ 0

We can prove it for k = l = 0:

|u(t, x)| ≤
∫
|y|≤|x|/2

|f(x− y)||Ht(y)|dy +
∫
|y|≥|x|/2

|f(x− y)||Ht(y)|dy.

For the first term in the integrand, note that f ∈ S(R) implies that ∀N ∈ N we have

|f(x− y)| ≤ CN

1 + xN
for some CN > 0 and ∀|y| ≤ |x|/2.

On the other hand, for the second term in the integrand, we have that f is bounded on R and
Ht(y) ≤ (4πt)−1/2e−|x|2/16t ∀|y| ≥ |x|/2. Therefore,

|u(x, t)| ≤ CN

1 + |x|N
+

C√
t
e−cx2/t.

Remark 6.6 (What about uniqueness?). Notice that it is sufficient to prove that for f ≡ 0,
the solution is uniquely equal to 0. Indeed, if f were an initial datum associated to two distinct
solutions u and v, then u− v would be a non null solution with null initial datum.

We will only sketch the proof of the following theorem:

Theorem 6.2. If u : R× [0,∞) → R is
(i) a solution of the heat equation and u(x, 0) = 0;
(ii) u ∈ C0(R× [0,∞)) ∩ C2(R× (0,∞));
(iii) u(·, t) ∈ S(R) uniformly in t;

then, u ≡ 0.
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Sketch of the proof. Introduce the energy

E(t) =

∫ ∞

−∞
|u|2(x, t)dx ≥ 0

Note that this quantity is decreasing, because
dE

dt
(t) =

∫ ∞

−∞
2∂tu(x, t)u(x, t)dx = 2

∫ ∞

−∞
∂xxu(x, t)u(x, t)dx = −2

∫ ∞

−∞
|∂xu(x, t)|2dx ≤ 0

where the integration by parts can be justified by considering intervals of the form [−N,N ] and
then let N → ∞.

Since u(·, 0) = 0, E(0) = 0. Therefore, E(t) = 0 ∀t > 0 and u ≡ 0. □

Remark 6.7. u(x, t) = x/tHt(x) solves Equation 6.1 for t > 0 and

lim
t→0

u(x, t) = 0 ∀x ∈ R

but u is not continuous at 0.

6.2. The heat equation on an interval

Let L, c > 0, f ∈ C0,α([0, L]) such that f(0) = f(L) = 0. Consider the solution u to the PDE
∂tu = c2∂xxu x ∈ (0, L), t > 0

u(x, 0) = f(x)

u(0, t) = u(L, t) = 0

(6.3)

First, notice that we may reduce to the case c = L = 1; indeed, if u solves the heat equation in
this special case, then, v(x, t) = u(Lx, L2t/c2) solves the problem

∂tv = ∂xxv x ∈ (0, 1), t > 0

v(x, 0) = f(Lx)

v(0, t) = v(1, t) = 0,

because ∂tv = L2/c2∂tu = L2∂xxu = ∂xxv. Once we found v, u can be retrieved as

u(x, t) = v

(
x

L
,
c2

L2
t

)
.

Let us start constructing the solution via separation of variables: we can look for solutions of
the form v(x, t) = Z(x)W (t), for which the heat equation rewrites as{

Z(x)W ′(t) = Z ′′(x)W (t)

Z(0)W (t) = Z(1)W (t) = 0.

Dividing both sides by V (x)W (t) gives{
W ′(t)
W (t)

= Z′′(x)
Z(x)

= λ

Z(0)W (t) = Z(1)W (t) = 0.

This can be separated in two ODEs which we can easily solve:
W ′(t) = λW (t)

Z ′′(x) = λZ(x)

Z(0) = Z(1) = 0.
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By Remark 4.1, for λ = −(nπ)2, the solutions to{
Z ′′(x) = λZ(x)

Z(0) = Z(1) = 0

are given by zn(x) = sin(nπx). Notice that from the theory of ODEs we are restricting to the case
λ < 0, because the solutions for λ > 0 are exponential and for λ = 0 are lines. On the other hand,
the ODE

W ′(t) = λW (t)

has solutions Wn(t) = e−(nπ)2t. Overall, ∀n ∈ N, we have that

vn(x, t) = An sin(πnx)e
−(nπ)2t

is a solution, for a given constant An ∈ R.

Now, recall that the heat equation is linear: therefore, if u, v are solutions, ∀α, β ∈ R also
αu+ βv is a solution. Therefore, if we take

v(x, t) =
∞∑
n=1

an sin(πnx)e
−(nπ)2t; (6.4)

this is formally a solution to Equation 6.3. Notice also that u(0, t) = u(1, t) = 0; we want to
prescribe that

v(x, 0) =
∞∑
n=1

an sin(πnx) = f(x).

Let an be the coefficients of the Fourier series in sines only of f , namely

an := 2

∫ 1

0

f(x) sin(nπx)dx.

We now state the theorem which validates the construction of solutions:

Theorem 6.3. Let f ∈ C2, and let v be the one defined in (6.4). Then,
(i) v ∈ C2((0, 1)× (0,∞)) and ∂tv = ∂xxv;
(ii) limx→0 v(x, t) = limx→1 v(x, t) = 0;
(iii) f(x) = limt→0 v(x, t) (pointwise or uniformly).

Proof. Under our hypothesis, f ∈ L1. Therefore, supn∈N |an| < +∞.
(i) Let

vN(x, t) =
N∑

n=1

an sin(πnx)e
−(πn)2t ∈ C∞((0, 1)× (0,∞))

Then, by linearity

∂tvN(x, t) =
N∑

n=1

an[−(πn)2] sin(nπx)e−(πn)2t ∈ C∞((0, 1)× (0,∞))

As N → +∞, the series converges locally uniformly to ∂tv, becuase it is Cauchy:∣∣∣∣∣
N∑

n=1

an[−(πn)2] sin(nπx)e−(πn)2t −
M∑
n=1

an[−(πn)2] sin(nπx)e−(πn)2t

∣∣∣∣∣ ≤
N∑

n=M+1

Cn2e−(πn)2t,

and n2e−(πn)2t ≤ n−2 for n large enough.
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Similarily, we can prove that ∂xvN ∈ C∞((0, 1) × (0,∞)) and it converges locally
uniformly to

∞∑
n=1

an(πn) cos(nπx)e
−(πn)2t

We can use the following Proposition 6.4 below, so we get that v ∈ C1. We can now go on
with higher order derivatives, obtaining v ∈ C∞((0, 1)× (0,+∞)) and for m even

∂lt∂
m
x v(t, x) = ±

∞∑
n=1

an(nπ)
m sin(nπx)e−(nπ)2t(−n2π2)l

and for m odd

∂lt∂
m
x v(t, x) = ±

∞∑
n=1

an(nπ)
m cos(nπx)e−(nπ)2t(−n2π2)l.

Finally, note that v solves ∂tv = ∂xxv, because we compute both sides and use the fact
that each piece solves the heat equation.

(ii) Note that v(·, t) ∈ C1((0, 1)) with bounded derivative (possibly depending on t), therefore
v(·, t) is continuous and v(0, t) = 0 = v(1, t).

(iii) Since f ∈ C2([0, 1]), we know that
∑∞

n=1 |an| <∞ and f(x) =
∑∞

n=1 an sin(nπx) for every
x ∈ [0, 1]. Let ε > 0 and take N ∈ N so large that

∑
n>N |an| < ε. Using the bound

|1− e−s| ⩽ s for s ⩾ 0, we get

|f(x)− v(x, t)| ⩽
∑
n>N

|an sin(nπx)|+
N∑

n=1

|an sin(nπx)(1− e−(nπ)2t)|+
∑
n>N

|an sin(nπx)e−(nπ)2t|

⩽ 2ε+ t
N∑

n=1

(nπ)2|an|.

From this we get lim supt→0
t>0

supx∈[0,1] |f(x) − v(x, t)| ⩽ 2ε for every ε > 0 which gives
uniform convergence.

□

Proposition 6.4. Let Ω ⊆ Rd open, {un} ⊂ C1(Ω;R) such that, locally uniformly,

un → u

∇un → v

Then, u ∈ C1(Ω,R) and ∇u = v.

Proof.

un(x+ hei)− un(x) = h

∫ 1

0

∂eiun(x+ shei)ds

= h

∫ 1

0

∇un(x+ shei) · eids

= h

∫ 1

0

v(x+ shei) · eids

Dividing by h and passing to the limit h→ 0,

∂eiu(x) = v(x) · ei
□
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6.3. The Laplace equation in a box

Given L,M > 0, we can consider the Laplace equation in the box (0, L)× (0,M):
∆u = 0 in (0, L)× (0,M)

u(x, 0) = α(x) and u(x,M) = β(x)

u(0, y) = γ(y) and u(L, y) = δ(y).

(6.5)

Ignoring temporarily the boundary conditions and focussing on the equation, we can look for a
solution with the method of separation of variables:

u(x, y) = ϕ(x)ψ(y)

which gives

ϕ′′(x)ψ(y) = −ϕ(x)ψ′′(y)

ϕ′′(x)

ϕ(x)
= −ψ

′′(y)

ψ(y)

Following Remark 4.1 and proceeding as in section 4.1, we have that the only possibility is that the
above functions of different variables as equal to a real constant λ ∈ R. We then get the two ODEs
ϕ′′(x) = λϕ(x) and ψ′′(y) = −λψ(y).

Now, if λ < 0 we get
ϕ(x) = α sin(

√
−λx) + β cos(

√
−λx);

if λ = 0, ϕ is an affine function; if λ > 0 we get

ϕ(x) = γe
√
λx + δe−

√
λx,

that we can write ϕ as

ϕ(x) = (γ + δ) cosh(
√
λx) + (γ − δ) sinh(

√
λx).

Overall, solutions will be of the form(
α sin(

√
−λx) + β cos(

√
−λx)

)(
γ cosh(

√
−λy) + δ sinh(

√
−λy)

)
, for λ < 0,

and (
α sinh(

√
λx) + β cosh(

√
λx)
)(

γ sin(
√
λy) + δ cos(

√
λy)
)
, for λ > 0.

We can now split this into two simpler problem, suppose we can solve
∆v = 0

v(x, 0) = α(x) and v(x,M) = β(x)

v(0, y) = 0 and v(L, y) = 0

as well as 
∆w = 0

w(x, 0) = 0 and w(x,M) = 0

v(0, y) = γ(y) and v(L, y) = ∆(y)

Then u, the solution of the original problem is u = v + w.
Let’s solve the first problem by separation of variables, writing u = ϕ(x)ψ(y), we get

ϕ′′(x)

ϕ(x)
= −ψ

′′(y)

ψ(y)
= λ
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and the initial condition implies ϕ(0) = ϕ(L) = 0, thus λ = −(nπ
L
)2, thus ϕ = αn sin(

nπ
L
x) and

ψn(x) = ξn cosh(
nπ
L
y) + ηn sinh(

nπ
L
y).

Thus, the general solution is∑
n

[
ξn cosh

(nπ
L
y
)
+ ηn sinh

(nπ
L
y
)]

sin
(nπ
L
x
)

Now we impose our boundary solutions α(x) = v(x, 0) =
∑
ξn sin

(
nπ
L
x
)

and so we compute the
fourier coefficients of α (in sines), which are given by

ξn =
2

L

∫ L

0

α(x) sin
(nπ
L
x
)
dx

Similarly, we find

ηn =
1

sinh
(
2π
L
M
) [ 2

L

∫ L

0

β(x) sin
(nπ
L
x
)
dx− ξn cosh

(nπ
L
M
)]

.

Proposition 6.5. Let α, β ∈ L1(0, L) and (an)n∈N, (bn)n∈N be their respective Fourier coefficients
in sine, namely

an =
2

L

∫ L

0

sin
(nπ
L
y
)
α(y)dy, bn =

2

L

∫ L

0

sin
(nπ
L
y
)
β(y)dy.

Let w : (0, L)× (0,M) → R be defined by

w(x, y) =
+∞∑
n=1

(
an

sinh(nπ
L
(M − y))

sinh(nπ
L
M)

+ bn
sinh(nπ

L
y)

sinh(nπ
L
M)

)
sin
(nπ
L
x
)

then w ∈ C∞((0, L)× (0,M)) and satisfies the Laplace equation, i.e. ∆w = 0 in (0, L)× (0,M).
Also if α, β ∈ C3([0, L]) then limy→0w(x, y) = α(x) and limy→M w(x, y) = β(x) uniformly in
x ∈ [0, L].

Proof. Without loss of generality (up to a rescaling), we consider L = 1. We start with the
following observation for y ∈ (0,M) and n ∈ N

0 ⩽
sinh(nπ(M − y))

sinh(nπM)
=
enπ(M−y) − e−nπ(M−y)

enπM − e−nπM
= e−nπy

(
1− e−2nπ(M−y)

1− e−2nπM

)
≤ Ce−nπy,

where C = 2
1−e−2πM .

Similarly, for y ∈ (0,M) and n ∈ N we have∣∣∣∣ sinh(nπy)sinh(nπM)

∣∣∣∣ ≤ Ce−nπ(M−y),∣∣∣∣cosh(nπ(M − y))

sinh(nπM)

∣∣∣∣ ≤ Ce−nπy,∣∣∣∣ cosh(nπy)sinh(nπM)

∣∣∣∣ ≤ Ce−nπ(M−y).

Since α, β ∈ L1(0, 1), we have the following trivial bound for their Fourier coefficients

sup
n∈N

|an|, sup
n∈N

|bn| ≤ 2(∥α∥L1(0,1) + ∥β∥L1(0,1)) =: D.

Using these estimates, we are able to prove that w ∈ C∞((0, 1)× (0,M)). We prove that w is C1

and the higher regularity is proved similarly.
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To this end, let (Sn)n∈N be the partial sums of the series defining w, i.e.

Sn(x, y) =
n∑

k=1

(
ak

sinh(kπ(M − y))

sinh (kπ)M
+ bk

sinh (kπy)

sinh(kπM)

)
sin (kπx) .

Notice that Sn is C1 for every n with partial derivatives given by

∂Sn

∂x
(x, y) =

n∑
k=1

kπ

(
ak

sinh(kπ(M − y))

sinh(kπ)M
+ bk

sinh(kπy)

sinh(kπM)

)
cos (kπx)

∂Sn

∂y
(x, y) =

n∑
k=1

kπ

(
−ak

cosh(kπ(M − y))

sinh(kπM)
+ bk

cosh(kπy)

sinh(kπM)

)
sin (kπx)

For any compact K ⊂ (0, L)× (0,M) we have
n∑

k=1

sup
(x,y)∈K

∣∣∣∣kπ(ak sinh(kπ(M − y))

sinh(kπ)M
+ bk

sinh(kπy)

sinh(kπM)

)
cos (kπx)

∣∣∣∣ ≤ ∞∑
k=1

2Dπke−kπd < +∞,

where d = inf(x,y)∈K max{y,M − y}.
We get a similar inequality for ∂Sn

∂y
and for the sequence Sn as well. We can thus use the Weierstrass

M-test to conclude that Sn converges locally uniformly to w (which is in particular well defined)
and the partial derivatives also converge locally uniformly to their respective series (see the partial
sums above) and so w ∈ C1((0, 1)× (0,M)), with partial derivatives given by

∂w

∂x
(x, y) =

∞∑
n=1

nπ

(
an

sinh(nπ(M − y))

sinh(nπM)
+ bn

sinh(nπy)

sinh(nπM)

)
cos (nπx) ,

∂w

∂y
(x, y) =

∞∑
n=1

nπ

(
−an

cosh(nπ(M − y))

sinh(nπM)
+ bn

cosh(nπy)

sinh(nπM)

)
sin (nπx) .

Formulas for higher derivatives can be derived without much difficulty, in particular, we have the
following

∂2w

∂x2
(x, y) =

∞∑
n=1

−n2π2

(
an

sinh(nπ(M − y))

sinh(nπM)
+ bn

sinh(nπy)

sinh(nπM)

)
sin (nπx) ,

∂2w

∂y2
(x, y) =

∞∑
n=1

n2π2

(
an

sinh(nπ(M − y))

sinh(nπM)
+ bn

sinh(nπy)

sinh(nπM)

)
sin (nπx) .

From this we are able to see that w is harmonic in (0, L)× (0,M).
Now assume further that α, β ∈ C3([0, L]) with α(0) = α(L) = β(0) = β(L) = 0, we first prove
that limy→0

y>0
w(x, y) = α(x) uniformly in x ∈ [0, L]. Since α ∈ C3([0, L]) with α(0) = α(L) = 0, the

Fourier series in sine of α converges uniformly to α and its Fourier coefficients satisfy |an| ⩽ A
n3 for

some A > 0.
Let ε > 0 and take N ∈ N so large that

∑
n>N |an| ⩽ ε, then for (x, y) ∈ (0, L)× (0,M), we have∣∣∣∣∣

∞∑
n=1

an

(
sinh(nπ(M − y))

sinh(nπM)
− 1

)
sin (nπx)

∣∣∣∣∣ ⩽
N∑

n=1

∣∣∣∣an(sinh(nπ(M − y))

sinh(nπM)
− 1

)∣∣∣∣+ ε.

This bound implies that

lim
y→0
y>0

∞∑
n=1

an
sinh(nπ(M − y))

sinh(nπM)
sin (nπx) = α(x)
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uniformly in x ∈ [0, 1].
To conclude it suffices to prove that

lim
y→0
y>0

∞∑
n=1

bn
sinh(nπy)

sinh(nπM)
sin (nπx) = 0

uniformly in x ∈ [0, L].
To see this, let ε > 0 and take N ∈ N so large that

∑
n>N |bn| ⩽ ε (this is possible since

β ∈ C3([0, L])), then we have

∞∑
n=1

∣∣∣∣bn sinh(nπy)

sinh(nπM)
sin (nπx)

∣∣∣∣ ⩽ ε+
N∑

n=1

∣∣∣∣bn sinh(nπy)

sinh(nπM)

∣∣∣∣ .
The other condition, namely limy→M

y<M
w(x, y) = β(x) uniformly in x ∈ [0, 1] is proved in the same

way. □

6.4. The Laplace equation in a disc

We complete in this section, with Fourier analysis at hand, the analysis of the Laplace equation
in a disc (4.5), whose formal solution was found in Section 4.1 and more precisely in (4.12)

Proposition 6.6. Let f ∈ L1(0, 2π) and consider the Laplace equation on the unit disc (written in
polar coordinates) with Dirichlet boundary conditions, i.e.{

r2∂rrv + r∂rv + ∂θθv = 0, (r, θ) ∈ (0, 1)× (0, 2π)

v(1, θ) = f(θ), θ ∈ [0, 2π]

Let (an)n∈N, (bn)n∈N be the real Fourier coefficients of f , namely

an =
1

π

∫ 2π

0

f(x) cos(nx)dx, bn =
1

π

∫ 2π

0

f(x) sin(nx)dx.

Recall the formal solution in polar coordinates given by

v(r, θ) =
a0
2

+
∞∑
n=1

rn(an cos(nθ) + bn sin(nθ))

then v ∈ C∞((0, 1)× (0, 2π)).
Also if f ∈ C2([0, 2π]) (with f(0) = f(2π)) then limr→1

r<1
v(r, θ) = f(θ) uniformly in θ ∈ [0, 2π].

Proof. Since (an)n∈N and (bn)n∈N are bounded sequences, the Weierstrass M-test gives local
uniform convergence in (0, 1)× (0, 2π) and so v is well defined and continuous on (0, 1)× (0, 2π).
For any k ∈ N, the series

∑∞
n=1 n

krn converges locally uniformly for r ∈ (0, 1). Since for any
k, j ∈ N we have

∞∑
n=1

∣∣∣∣ ∂k+j

∂rk∂θj
rn(an cos(nθ) + bn sin(nθ))

∣∣∣∣ ⩽ Ck,j

∞∑
n=1

nk+jrn,

for some constant Ck,j depending only in k and j. From this we deduce that the series of the
derivatives converge locally uniformly on (0, 1)× (0, 2π) and by Proposition 6.4 we prove inductively
that v ∈ C∞((0, 1)× (0, 2π)) and the derivatives of v are computed by differentiating every term in
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the sum.
In particular, we get the following

r2∂rrv(r, θ) =
∞∑
n=1

n(n− 1)rn(an cos(nθ) + bn sin(nθ)),

r∂rv(r, θ) =
∞∑
n=1

nrn(an cos(nθ) + bn sin(nθ)),

∂θθv(r, θ) =
∞∑
n=1

−n2rn(an cos(nθ) + bn sin(nθ)),

which proves that v satisfies the Laplace equation on the unit disc.
Now assume that f ∈ C2([0, 2π]) with f(0) = f(2π), then f is equal to its real Fourier series by
Dirichlet’s theorem and its Fourier coefficients satisfy |an|, |bn| ⩽ A

n2 for some A > 0 thanks to
Remark 4.17.
Let ε > 0 and take N ∈ N so large that

∑
n>N |an|+ |bn| < ε. Then for r ∈ (0, 1) and θ ∈ [0, 2π],

we have

|v(r, θ)− f(θ)| ⩽
N∑

n=1

(1− rn)|an cos(nθ) + bn sin(nθ)|+ 2ε

⩽ 2ε+
N∑

n=1

(1− rn)(|an|+ |bn|)

which concludes the proof. □

6.5. The wave equation

We will now derive the wave equation, that can describe for example the behavior of a vibrating
rope, whose position in the vertical direction is denoted by y = u(x, t).

The rope can be modelled as N masses with x−coordinate xn = nL/N and y-coordinate yn
to be determined. Denote by h := L/N the distance between consecutive particles, and the mass
above xn as mn := ρhL/N , where ρ is the density of the rope.

Now, make the following assumptions:
• the mass above xn moves only vertically;
• the mass moves according to Newton’s law and the forces that act on it are generated by

the neighbors and proportional to (yn − yn−1)/h;
• each mass moves by Newton’s law;
• forces are generated by neighbors ∼ (yn − yn−1)/h.

We now will write the equation solved by yn and by letting N → +∞ (or equivalently h→ 0), find
a PDE solved by u.

By applying Newton’s law, we get that:

ρhy
′′

n =
1

h
[ yn+1 − yn︸ ︷︷ ︸
≥0 if yn+1>yn

− (yn − yn−1)︸ ︷︷ ︸
≥0 if yn>yn−1

]

Dividing by h, we get:

ρy
′′

n =
1

h2
[u(xn+1, t)− 2u(xn, t) + u(xn−1, t)]
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or, recalling that xn±1 = xn ± h,

ρ∂ttu(xn, t) =
1

h2
[u(xn + h, t)− 2u(xn, t) + u(xn − h, t)]

Now, fix x and let n→ +∞:
ρ∂ttu(xn, t) → ρ∂ttu(x, t)

and
1

h2
[u(xn + h, t)− 2u(xn, t) + u(xn − h, t)] → ∂xxu(x, t)

We then retrieve the wave equation

∂ttu(x, t) =
1

ρ
∂xxu(x, t)

Why is this called wave equation?
Let f ∈ C2

c (R). Then, f(x± ct) solves

∂ttu = c2∂xxu

Indeed, applying the chain rule for derivatives,

∂ttu = f ′′(x− ct)(−c2)
∂xxu = f ′′(x− ct).

Remark 6.8. One can easily prove that this holds in Rd as well, for c ∈ Rd.
Remark 6.9. Let us consider the following rescaling: let a, b > 0, and let U be such that

U(ax, bx) = u(x, t)

Then, U solves

∂ttU =
ca2

b2
∂xxU

In particular, choosing a = π/L and b =
√
cπ/L, we can reduce to c = 1 and L = π, because

U(x, t) = u(x/a, t/b) ⇒ ∂xxU = ∂xxu(x/a, t/b)a
−2, ∂ttU = ∂ttu(x/a, t/b)b

−2

Hence, b2∂ttU = ∂ttu = c∂xxu = ca2∂xxU .

6.5.1. The wave equation in a bounded interval. Let L, c > 0, f, g : [0, L] → R such that
f(0) = f(L) = 0, g(0) = g(L) = 0. Consider:

∂ttu = c2∂xxu x ∈ (0, L), t ∈ (0,+∞)

u(0, t) = u(L, t) = 0 ∀t ∈ (0,+∞)

u(x, 0) = f(x) ∀x ∈ (0, L)

∂tu(x, 0) = g(x) ∀x ∈ (0, L)

(6.6)

Now, we find all u : [0, L]× [0,+∞) → R such that u(x, t) = v(x)w(t) by separation of variables,
ignoring temporarily the initial condition, and we will write the formal solution to Equation 6.6.

By separation of variables,
v′(x)w′′(t) = v′′(x)w(t)

therefore
v′′(x)

v(x)
=
w′′(t)

w(t)
= −λ
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The wave equation is then equivalent to the ODEs{
v′′(x)
v(x)

= −λ
v(0) = v(L) = 0,

w′′(t)

c2w(t)
= −λ

By Remark 4.1, the general solution to the ODE for v(x) is

v(x) = α sin(
√
λx) + β cos(

√
λx)

from the boundary condition, to respect the periodicity, we retrieve

λ =
(nπ
L

)2
hence

vn(x) = sin
(nπ
L
x
)

Since w solves the same equation (but with −λc2), we can define

wn(t) = αn cos
(nπc
L
t
)
+ βn sin

(nπc
L
t
)
.

A formal solution is given by the (infinite) linear combination of the solutions:

u(x, t) =
∞∑
n=1

[
αn cos

(nπc
L
t
)
+ βn sin

(nπc
L
t
)]

sin
(nπ
L
x
)

Note that there is no guarantee that all solutions are of this form, but we can try to impose the
boundary condition and see if we are able to find one:

f(x) = u(x, 0) =
∞∑
n=1

αn sin
(nπ
L
x
)

This is the Fourier expansion only in sines obtained by reflecting f(x) oddly. The unique choice for
αn is therefore:

αn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx =: an

Similarily, by differentiating term by term, we obtain

g(x) = ∂tu(x, 0) =
+∞∑
n=1

nπc

L
βn sin

(nπ
L
x
)

hence

βn =
2

nπc

∫ L

0

g(x) sin
(nπ
L
x
)
dx =:

L

nπc
bn.

Proposition 6.7. Assume that f ∈ C4([0, L]) and g ∈ C3([0, L]) are L−periodic (note that for g
we need one derivative less, because it represents the time derivative of u), and such that f(0) =
f ′′(0) = f(L) = f ′′(L) = 0 and g(0) = g′′(0) = g(L) = g′′(L) = 0. Then, u ∈ C2((0, L)× [0,+∞))
and

f(x) = lim
t→0

u(x, t), g(x) = lim
t→0

∂tu(x, t) uniformly in x

Proof. By Proposition 4.17 the regularity of f and g implies that

|an| ≤
C

n4
, and |bn| ≤

C

n3
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Formally, we would have that

∂xu(x, t) =
∞∑
n=1

(nπ
L

)2 [
an cos

(nπc
L
t
)
+

L

nπc
bn sin

(nπc
L
t
)]

cos
(nπ
L
x
)

(6.7)

Note that the series converges absolutely:

|∂xu| ≤
∞∑
n=1

(nπ
L

)2(C
n4

+
L

nπc

C

n3

)
< +∞

To proceed rigorously, we can define

uN(x, t) =
N∑

n=1

[
an cos

(nπc
L
t
)
+ bn sin

(nπc
L
t
)]

sin
(nπ
L
x
)
,

so that

∂xuN(x, t) =
N∑

n=1

(nπ
L

)2 [
an cos

(nπc
L
t
)
+

L

nπc
bn sin

(nπc
L
t
)]

cos
(nπ
L
x
)
.

Then, we show that both sequences are Cauchy in C0; let M < N , and consider

|∂xuN(x, t)− ∂xuM(x, t)| ≤

∣∣∣∣∣
N∑

n=M+1

(nπ
L

)2 [
an cos

(nπc
L
t
)
+

L

nπc
bn sin

(nπc
L
t
)]

cos
(nπ
L
x
)∣∣∣∣∣

≤
∞∑

n=M+1

(nπ
L

)2(C
n4

+
L

nπc

C

n3

)
which goes to 0 as M → ∞, because the series converges. Hence ∂xuN → v and similarily uN → u
uniformly. We apply Proposition 6.4 to claim that v = ∂xu and justify (6.7). Now, observe that
the formal partial derivative in t of u is given by

∂tu(x, t) =
∞∑
n=1

[
bn cos

(nπc
L
t
)
− nπc

L
an sin

(nπc
L
t
)]

sin
(nπ
L
x
)
.

This series converges uniformly, hence |∂tu(·, t)| ≤ C for all x ∈ (0, L). Therefore, u(·, t) is Lipschitz
and we get u(0, t) = limx→0 u(x, t) = 0, u(L, t) = limx→L u(x, t) = 0.

Now, we want to prove that f(x) = limt→0 u(x, t) uniformly. Recall that by Proposition 4.17,

f(x) =
∞∑
n=1

an sin
(nπ
L
x
)
, with |an| ≤

C

n4
.

Then

|u(x, t)− f(x)| ≤
∞∑
n=1

∣∣∣∣an (cos(nπL t
)
− 1
)
+

L

nπc
bn sin

(nπ
L
t
)∣∣∣∣ ∣∣∣sin(nπL x

)∣∣∣︸ ︷︷ ︸
≤1

(6.8)

≤
∞∑
n=1

[
C

n4

∣∣∣cos(nπ
L
t
)
− 1
∣∣∣+ LC

n4πc
sin
(nπ
L
t
)]

(6.9)

≤
∞∑
n=1

Cn2t2

n4
+
CLnt

n4πc
(6.10)

≤ t

∞∑
n=1

(
Ct

n2
+

CL

n3πc

)
, (6.11)
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which goes to 0 as t→ 0 because the series in (6.11) converges.
To prove g(x) = limt→0 ∂tu(x, t), we apply again Proposition 4.17 to g; its Fourier Series

converges uniformly to g on [0, L]. Then, we take ε > 0 and N ∈ N so large that∑
n>N

|bn|+
nπc

L
|an| < ε

which is possible since nan, bn = O(n−3) as n→ ∞.
From this, for any (x, t) ∈ [0, L]× (0,∞)∣∣∣∣∣

∞∑
n=1

(
bn cos

(nπc
L
t
)
sin
(nπ
L
x
))

− g(x)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=1

bn

(
cos
(nπc
L
t
)
− 1
)
sin
(nπ
L
x
)∣∣∣∣∣

≤
N∑

n=1

∣∣∣bn (cos(nπc
L
t
)
− 1
)∣∣∣+ 2

∑
n>N

|bn|.

We also have∣∣∣∣∣
∞∑
n=1

nπc

L
an sin

(nπc
L
t
)
sin
(nπ
L
x
)∣∣∣∣∣ ≤

N∑
n=1

nπc

L

∣∣∣an sin(nπc
L
t
)∣∣∣+∑

n>N

nπc

L
|an|.

From these two inequalities, we deduce that for (x, t) ∈ [0, L]× (0,∞), we have

|∂tu(x, t)− g(x)| ≤
N∑

n=1

∣∣∣bn (cos(nπc
L
t
)
− 1
)∣∣∣+ N∑

n=1

nπc

L

∣∣∣an sin(nπc
L
t
)∣∣∣+ 3ε

which in turn implies
lim sup
t→0+

sup
x∈[0,L]

|∂tu(x, t)− g(x)| ⩽ 3ε.

Since ε > 0 was arbitrary, we get the result.
□

Remark 6.10. A similar result to the one on ∂xu could be obtained even for the second derivative
with this method, but not for the third derivative. Another question that we can investigate is
whether u ∈ C∞((0, 1)× (0, L)). To fix ideas, take L = 5. In general, this is not true: for example,
take f ∈ C4 \ C5, g = ∂t|t=0f(x− ct) = −cf ′(x), c = 1, and L = 5. Then, we choose f such that
supp(f) ⊂ (2, 3), because, as we will argue in Section 6.6, we want to avoid issues at the boundaries
of the domain. Note that u(x, t) = f(x − t) is a solution to (6.6) for t < 2 and it has the same
regularity of f , hence it is not C∞.

6.6. D’Alembert’s approach to the wave equation

Lemma 6.8. Let F,G : R → R be two C2 functions then u : R2 → R defined by

u(x, t) = F (x+ t) +G(x− t)

is a solution to the wave equation, i.e. ∂ttu = ∂xxu.

Proof. ∂ttu(x, t) = F ′′(x+ t) +G′′(x− t) and ∂xxu(x, t) = F ′′(x+ t) +G′′(x− t). □

We are now interested in finding F and G compatible with some boundary conditions, more
precisely we have the following proposition.



6.6. D’ALEMBERT’S APPROACH TO THE WAVE EQUATION 127

Proposition 6.9 (D’Alembert’s formula). Let f ∈ C2([0, π]) and g ∈ C1([0, π]) satisfying
f(0) = f(π) = 0, f ′′(0) = f ′′(π) = 0 and g(0) = g(π) = 0, then the solution to following
boundary value problem 

∂ttu(x, t) = ∂xxu(x, t), (x, t) ∈ (0, π)× (0,∞)

u(x, 0) = f(x), x ∈ [0, π]

u(0, t) = u(π, t) = 0, t ⩾ 0

∂tu(x, 0) = g(x), x ∈ [0, π]

is given by

u(x, t) =
1

2
(f(x+ t)− f(x− t)) +

∫ x+t

x−t

g(s)ds.

Proof. By extending f and g oddly on [−π, π] and then 2π-periodically on R we may assume
that f ∈ C2(R) and g ∈ C1(R) are odd 2π-periodic functions.
In view of the Lemma 6.8, we are looking for the solution of the form u(t, x) = F (x+ t) +G(x− t)
where F and G are C2 functions. Our goal is thus to find F and G in terms of the boundary
conditions.
F and G need to satisfy the following system{

F (x) +G(x) = f(x), x ∈ [0, π]

F ′(x)−G′(x) = g(x), x ∈ [0, π]

From this we deduce F ′(x) +G′(x) = f ′(x) which gives
2F ′(x) = f ′(x) + g(x),

from which we get

F (x) =
1

2

(
f(x) +

∫ x

0

g(s)ds

)
+ c.

Since G(x) = f(x)− F (x), we get

G(x) =
1

2

(
f(x)−

∫ x

0

g(s)ds

)
− c.

Notice that these formulae give F ′(x)−G′(x) = g(x).
So the solution to the PDE is

u(x, t) =
1

2
(f(x+ t) + f(x− t)) +

1

2

∫ x+t

x−t

g(s)ds.

From this formula, we see that u ∈ C2((0, π) × (0,∞)) ∩ C0([0, π] × [0,∞)) satisfies the wave
equation on the interval [0, π], u(x, 0) = f(x) and ∂tu(x, 0) = g(x) for all x ∈ [0, π].
We also have

u(0, t) =
1

2
(f(t) + f(−t)) + 1

2

∫ t

−t

g(s)ds = 0

since f, g are odd.
To prove that u(t, π) = 0, notice that f(π + t) + f(π − t) = f(π + t) + f(−π − t) = 0 since f is
2π-periodic and odd. Similarly g(π − t) = g(−π − t) = −g(π + t), which gives∫ π+t

π−t

g(s)ds =

∫ t

−t

g(π + s)ds = 0

where the last equality follows from the fact that s 7→ g(π + s) is an odd function. □





APPENDIX A

Complements on measure theory

We follow the presentation of [Fol99; Sch15]. For a more in-depth introduction to the topic, we refer
to [Fol99, Chapter 1].

A.1. Introduction

The construction of the Lebesgue measure m on Rd can be seen as a particular instance of
Carathéodory’s construction of measures which in fact applies to a much more general setting of a
measurable space (Ω,A). It allows to characterise measures µ on (Ω,A) uniquely in terms of their
values on a suitable family of sets G generating the σ-algebra (meaning that σ(G) = A) and, on the
other hand, to construct measures only from their values on the particular family G (such a map
will be called a pre-measure). As G is potentially much smaller than the full σ-algebra A, this is a
useful tool to construct non-trivial measures, which, in general, is a quite difficult task.

In Appendix A.2 we present the constructive part (usually referred to as “Carathéodory’s
construction”), that is we show under which conditions on the pre-measure and the family G there
exists an extension to a full measure µ on (Ω,A) . In the subsequent Appendix A.3, we discuss the
uniqueness of such extension on the basis of Dynkin’s theorem. As an application of this technique,
we show in Appendix A.4 how Carathéodory’s construction can be used to build, from a given
cumulative distribution function F : Rd → [0, 1] (see Definition A.4 below), a unique probability
measure on (Rd,B(Rd)) which obeys

P

(
d∏

i=1

(−∞, xi]

)
= F (x1, . . . , xd) for all x = (x1, . . . , xd) ∈ Rd .

Notation. In these notes, we use the following notational conventions. We will denote
• (Ω,A) a measurable space, meaning that Ω is any set and A is a σ-algebra on Ω .
• the Lebesgue measure on Rd by m,
• the Borel-σ-algebra on Rd by B(Rd) ,
• the σ-algebra of all Lebesgue measurable sets by M(Rd) ,
• for a collection of sets G ⊆ P(Ω), we denote by σ(G) the smallest σ-algebra containing G ,

that is
σ(G) :=

⋂
Aσ-algebra :G⊆A

A .

Since any intersection of σ-algebras is a σ-algebra and since for any G, P(Ω) is a σ-algebra
containing G, it is straightforward to show that σ(G) is well-defined (we also refer to
[Aru21]). We also say that G generates σ(G) .

A.2. Existence

Definition (algebra). Let Ω a set. We call a collection of sets G ⊆ P(Ω) an algebra on Ω if
the following conditions hold:

(i) Ω ∈ G .
(ii) A ∈ G =⇒ Ac ∈ G .

129
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(iii) A,B ∈ G =⇒ A ∪B ∈ G .

Remark A.1 (Properties of an algebra). It follows that from the definition that an algebra is
stable under finite unions and also under finite intersections as A∩B = (Ac ∪Bc)c. Hence the only
difference between an algebra and a σ-algebra is that a σ-algebra is also stable under countable
unions.

Definition (measure). Let (Ω,A) be a measurable space. A map µ : A → [0,+∞] is a measure
on (Ω,A), if it satisfies the following conditions:

(i) µ(∅) = 0 .
(ii) µ(

⋃
n∈NAn) =

∑+∞
n=1 µ(An) for all countable families of pairwise disjoint sets {An}n∈N in

A .

The following theorem shows how to construct a full measure µ on a measurable space (Ω,A)
starting only from a pre-measure µ0 defined on an algebra G which generates A . We will see that
such pre-measures are easier to construct as an algebra G which generates a σ-algebra A can be
much smaller than A itself and hence, when compared to a measure, the axioms of a pre-measure
have to verified only on a smaller family of sets.

Theorem A.1 (Carathéodory’s extension Theorem). Let (Ω,A) a measurable space, let G an
algebra on Ω generating A (i.e. σ(G) = A) and let µ0 : G → [0,∞] be a map satisfying

(i) µ0(∅) = 0 ,
(ii) µ0

(⋃
n∈NAn

)
=
∑∞

n=1 µ0(An) for all countable families of pairwise disjoint sets {An}n∈N
in G such that also

⋃
n∈NAn ∈ A .

Such a map is called a pre-measure. Then µ0 extends to a measure on (Ω,A) in the sense that
there exists a measure µ on (Ω,A) with µ(G) = µ0(G) for all G ∈ G.

Remark A.2 (Properties of a pre-measure). Any pre-measure µ0 on an algebra G is monotone and
subadditive on G. These properties are deduced as in the case of a full measure from the axioms
(i)– (ii). Indeed,

• If A,B ∈ G with A ⊆ B , then B = A ⊔ (B ∩ Ac) and from (ii) (applied to the family
(A, (B ∩ Ac),∅,∅, . . . )) and (i), we deduce that µ0(B) = µ0(A) + µ0(B ∩ Ac) ≥ µ0(A) .

• If {An}n∈N is a countable family of not necessarily pairwise disjoint sets in G such that⋃
n∈NAn ∈ G (which might not be the case for an algebra, see Remark A.1), then

µ0

(⋃
n∈NAn

)
≤
∑∞

n=1 µ0(Aj). Indeed,
⋃

n∈NAn =
⋃

n∈NBn with Bn := An \
⋃n−1

k=1 Ak =

An ∩
⋂n−1

k=1 A
c
k and Bn ∈ G are pairwise disjoint. It follows from (ii) that

µ0

(⋃
n∈N

An

)
=

∞∑
n=1

µ0(Bn) ≤
∞∑
n=1

µ0(An) ,

where the last inequality is due to the subadditivity shown in the first bullet point.
Remark A.3 (Analogy with Lebesgue’s construction). In the context of the construction of the
Lebesgue measure we encountered similar objects:

• G is the algebra generated by all the (open) boxes B =
∏d

i=1(ai, bi) .

• µ0 is defined on the open boxes by µ0(B) = vol(B) =
∏d

i=1(bi−ai) and then on an arbitrary
set of G by noticing that any such set can be written as a finite combination of unions
and intersections of open boxes and that you can therefore apply the inclusion-exclusion
principle (which comes from disjoint additiviy).

Proof of Theorem A.1. We proceed in three steps.
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Step 1: We use µ0 to construct an outer measure µ∗, that is a map µ∗ : P(Ω) → [0,∞] sat-
isfying the following conditions:

(i) µ∗(∅) = 0 .
(ii) monotonicity: A ⊆ B =⇒ µ∗(A) ≤ µ∗(B) , for all A,B ∈ P(Ω) .
(iii) countable subadditivity: µ∗(

⋃
n∈NAn) ≤

∑
n∈N µ

∗(An) , for all countable families {An}n∈N
in P(Ω) .

We recall that the Lebesgue outer measure on P(Rd) was defined by

m∗(A) = inf

{
∞∑
n=1

vol(Bn) : {Bn}n∈N countable covering of A with open boxes

}
.

In our more general setting, we similarly set for A ∈ P(Ω)

µ∗(A) := inf

{
∞∑
n=1

µ0(An) : An ∈ G for all n ∈ N and A ⊆
⋃
n∈N

An

}
.

Observe that µ∗ is well-defined as Ω ∈ G and that µ∗ is non-negative. The properties (i) – (iii) are
verified exactly as in the Lebesgue case using the monotonicity and subadditivity properties of µ0

of Remark A.2 (cf. the results on outer measure and [Tao16, Lemma 7.2.5]).

Step 2: We show that µ∗ is an extension of µ0 in the sense that µ∗(A) = µ0(A) for every A ∈ G.
Let A ∈ G. The inequality µ∗(A) ≤ µ0(A) is a consequence of the countable subadditivity (iii) of µ∗,
established in Step 1, applied to the family {A,∅,∅, . . . } . We now show the reverse inequality. Let
{An}n∈N be a countable covering of A made of sets An ∈ G . It then holds that A =

⋃
n∈N(An ∩A).

Since An ∩ A ∈ G by Remark A.1, we deduce by monotonicity and subadditivity of µ0 on G (see
Remark A.2) that

µ0(A) ≤
∞∑
n=1

µ0(An ∩ A) ≤
∞∑
n=1

µ0(An) .

Since {An} was an arbitrary covering of A by sets contained in G, we deduce that µ0(A) ≤ µ∗(A) .

Step 3: We show that µ∗ is σ-additive when restricted to the σ-algebra of all measurable sets
Mµ∗ (as defined below) and also that A ⊆ Mµ∗. It thus follows from Step 1 that µ := µ∗|A is a
measure on A which is an extension of µ0 thanks to Step 2 .
We call a set A ∈ P(Ω) µ∗-measurable if

µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac) ∀B ∈ P(Ω) , (A.1)

and we define Mµ∗ := {A ∈ P(Ω) : A is µ∗-measurable} . We now show that
(a) Mµ∗ is a σ-algebra on Ω ,
(b) G ⊆ Mµ∗ and hence it follows also that A = σ(G) ⊆ Mµ∗ ,
(c) µ∗ is σ-additive on Mµ∗ , that is for every countable family of pairwise disjoint sets

An ∈ Mµ∗ it holds µ∗ (⋃
n∈NAn

)
=
∑∞

n=1 µ
∗(An) .

We observe that in the construction of the Lebesgue measure, the same condition (A.1) led to
the notion of Lebesgue measurable sets and it was proved that the collection of Lebesgue measurable
sets forms a σ-algebra (cf lectures and lemmas 7.4.4 and 7.4.9 of[Tao16]) and that the Lebesgue
outer measure is σ-additive on this σ-algebra (cf. lectures and of [Tao16, Lemma 7.4.8]). Inspecting
the proofs, they did not make use of the specific structure of the Lebesgue measure and extend
without changes to this general setting showing properties (a) and (c) above.

As for property (b), it is enough to show that for every A ∈ G, it holds µ∗(B) ≥ µ∗(B ∩ A) +
µ∗(B ∩ Ac) for every B ∈ P(Ω). Indeed, the reverse inequality follows from the subaddivity of µ∗
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on P(Ω) (see Step 1). Fix ε > 0 . By the definition of the outer measure, we can find a countable
family of sets Bn ∈ G such that µ∗(B) ≥

∑∞
n=1 µ0(Bn)− ε. By finite additivity of µ0 on G applied

to every Bn = (Bn ∩ A) ⊔ (Bn ∩ Ac) (see Remark A.2), we deduce

µ∗(B) ≥
∞∑
n=1

µ0(Bn ∩ A) +
∞∑
n=1

µ0(Bn ∩ Ac)− ε ≥ µ∗(B ∩ A) + µ∗(B ∩ Ac)− ε ,

where we used in the last inequality that {Bn ∩ A}n∈N is a covering of B ∩ A by sets in G and
{Bn ∩ Ac}n∈N is a covering of B ∩ Ac by sets in G . We conclude by the arbitrariness of ε .

□

A.3. Uniqueness

Given an algebra G and a pre-measure µ0 , Theorem A.1 allows to construct a measure µ on
the full measure space (Ω,A) such that µ|G = µ0 . However, such extensions of a pre-measure may
be non-unique. For instance, let G be the algebra generated by the intervals of the form [a, b) . For
an interval [a, b), we define

µ0([a, b)) :=

{
+∞ if [a, b) ̸= ∅
0 otherwise

and, enforcing the condition (ii), it is straightforward to extend µ0 to a pre-measure on G . Two
different extensions of µ0 on (R,B(R)) are then given by

• µ1(A) =

{
+∞ if A ∈ B(R) and A ̸= ∅ ,

0 otherwise .
• the counting measure, i.e. µ2(A) := card(A) .

The goal of this chapter is therefore to establish conditions on G and µ0 which guarantee that there
is at most one measure µ on (Ω,A) with µ|G = µ0 . The notion of Dynkin systems will prove useful.

Definition (Dynkin system). A family of sets D ⊆ P(Ω) is called a Dynkin system if the
following conditions hold:

(i) Ω ∈ D .
(ii) D ∈ D =⇒ Dc ∈ D .
(iii) If {Dn}n∈N is a countable family of pairwise disjoint sets in D, then

⋃
n∈NDn ∈ D .

Remark A.4 (Properties of Dynkin systems).
• Arbitrary intersections of Dynkin systems are Dynkin systems (show it yourself! ). Hence it

makes sense to introduce the smallest Dynkin system containing a family of set F ⊆ P(Ω)
by setting

δ(F) :=
⋂

D Dynkin system :F⊆D

D .

We sometimes also say that δ(F) is generated by F .
• A Dynkin system D is a σ-algebra if and only if it is stable under intersections (i.e.
∀A,B ∈ D it holds A ∩B ∈ D). Indeed, it is clear that every σ-algebra is in particular a
Dynkin system and conversely, if a Dynkin system is stable under intersections then⋃

n∈N

Dn =
⋃
n∈N

[
Dn \

n−1⋃
j=1

Dj

]
=
⋃
n∈N

[
Dn ∩Dc

1 ∩ · · · ∩Dc
n−1

]
also belongs to D, making it a σ-algebra.
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The interest in Dynkin systems is motivated by the following fundamental result which ensures
that the smallest Dynkin system equals the σ-algebra generated by a family of sets H, provided
that the family is stable under intersections. This is remarkable as there are a priori many more
Dynkin systems containing H than σ-algebras.

Theorem A.2 (Dynkin). Let Ω a set, H ⊆ P(Ω) a family of sets which is stable under
intersections (i.e. A,B ∈ H =⇒ A ∩B ∈ H). Then σ(H) = δ(H) .

Proof of Theorem A.2. Since every σ-algebra is a Dynkin system, we already know that
σ(H) ⊇ δ(H) by minimality of δ(H) . Similarly, to prove the reverse inclusion, it is enough to show
that δ(H) is a σ-algebra by the minimality of σ(H).

By Remark A.4, we only have to show that δ(H) is stable under intersections. Fix A ∈ δ(H) and
let us define DA = {E ∈ P(Ω) : E ∩ A ∈ δ(H)}. We claim that DA is a Dynkin system. Indeed,

(i) Ω ∈ DA , since Ω ∩ A = A ∈ δ(H) .
(ii) if E ∈ DA , then by definition E ∩ A ∈ δ(H). Moreover, also Ac ∈ δ(H) as δ(H) is stable

under complements and hence, exploiting the stability of δ(H) under disjoint unions, we
deduce that (Ec ∩ A)c = E ∪ Ac = Ac ∪ (E ∩ A) ∈ δ(H) . But this implies Ec ∩ A ∈ δ(H)
(as δ(H) is stable under complements) and thus by definition Ec ∈ δ(H) .

(iii) if {En}n∈N ⊆ DA is a sequence of pairwise disjoint sets, then En ∩ A are pairwise disjoint
sets in δ(H) and since δ(H) is stable under countable disjoint unions, we conclude that(⋃

n∈NEn

)
∩ A =

⋃
n∈N(En ∩ A) ∈ δ(H) and hence by definition

⋃
n∈NEn ∈ DA .

We furthermore claim that H ⊆ DA. Indeed, if B ∈ H, then H ⊆ DB as H is stable under
intersections. By minimality of δ(H), we then deduce that in fact δ(H) ⊆ DB and hence in
particular A ∩B ∈ δ(H) . Since B was an arbitrary set in H, this shows the claimed inclusion.

Using once more the minimality of δ(H) , we infer that δ(H) ⊆ DA, which means, by definition,
that A ∩B ∈ δ(H) for all B ∈ δ(H). Since A was an arbitrary set in δ(H), this shows that δ(H) is
stable under intersections, thus a σ-algebra. □

The relevance of Dynkin’s theorem lays in the fact that it is the right tool to study the
uniqueness of the extension of pre-measures. We give here one possible uniqueness criterion (see
also Remark A.5).

Corollary A.3 (Uniqueness of Carathédory’s extension). Let (Ω,A) be a measurable space. Let G
be an algebra generating A and µ0 be a pre-measure on G as in Theorem A.1. Under the additional
hypothesis that µ0(Ω) < +∞ , the extension measure µ on (Ω,A), constructed in Theorem A.1, is
unique on A .

Proof of Corollary A.3. Let µ1, µ2 be two measures on (Ω,A) extending µ0, that is
µ1(G) = µ2(G) = µ0(G) for all G ∈ G . Observe that since Ω ∈ G the additional hypothesis
guarantees that

µ1(Ω) = µ0(Ω) = µ2(Ω) < +∞ . (A.2)

In other words, both µ1 and µ2 are finite measures and hence by σ-additivity it holds in particular
that

µi(A
c) = µ0(Ω)− µi(A) (A.3)

for all A ∈ A and i = 1, 2 . We now introduce D := {A ∈ A : µ1(A) = µ2(A)} and claim that it is
a Dynkin system. Indeed,

(i) Ω ∈ D follows from (A.2).
(ii) let A ∈ D . Using (A.3) we have µ1(A

c) = µ0(Ω)− µ1(A) = µ0(Ω)− µ2(A) = µ2(A
c) and

thus also Ac ∈ D .



134 A. COMPLEMENTS ON MEASURE THEORY

(iii) if {Dn}n∈N ⊆ D are pairwise disjoint sets, then by σ-additivity of µ1 and µ2 on A it holds

µ1

(⋃
n∈N

Dn

)
=

∞∑
n=1

µ1(Dn) =
∞∑
n=1

µ2(Dn) = µ2

(⋃
n∈N

Dn

)
,

showing that
⋃

n∈NDn ∈ D .

By assumption G ⊆ D and by minimality, we infer δ(G) ⊆ D . Moreover by Theorem A.2 (since G is
stable under intersections, see Remark A.1), we have δ(G) = σ(G) and, since σ(G) = A, we deduce
A ⊆ D , or in other words, µ1(A) = µ2(A) for all A ∈ A , showing that the extension is unique. □

Remark A.5 (Uniqueness under a σ-finiteness assumption). The assumption µ0(Ω) < +∞ in
Corollary A.3 can be relaxed. Indeed, it is enough that there exists a countable family {Gn}n∈N ⊆ G
such that Ω =

⋃
n∈NGn and for every n ∈ N it holds µ0(Gn) < +∞. Up to considering G′

n :=

Gn \
⋃n−1

k=1 Gk instead of Gn, we can always assume that Gn are pairwise disjoint.
Observe that the only point in the proof of Corollary A.3 that fails under these relaxed assumptions,
is the stability of D under complements (as (A.3) no longer holds). Instead, we introduce for every
n ∈ N the collection Dn := {A ∈ A : µ1(A ∩Gn) = µ2(A ∩Gn)}. As µ0(Gn) < +∞, we have by
σ-additivity of µ1 and µ2 on A that µi(A

c ∩Gn) = µ0(En)− µi(A∩Gn) for all A ∈ A and i = 1, 2 .
With this observation, one proceeds as in the proof of Corollary A.3 to show that Dn is a Dynkin
system and that A ⊆ Dn . Therefore A ⊆

⋂
n∈N Dn and thus for A ∈ A, it holds by σ-additivity

µ1(A) =
∑
n∈N

µ1(A ∩Gn) =
∞∑
n=1

µ2(A ∩Gn) = µ2(A) ,

showing the uniqueness of the extension.

Exercise 1 (Uniqueness of Lebesgue measure). Let µ be a measure on (Rd,B(Rd)) satisfying
the following conditions:

(1) µ is translation-invariant, i.e. µ(A+ x) = µ(A) for all A ∈ B(Rd) and every x ∈ Rd .
(2) µ([0, 1)d) =: λ < +∞ .

Prove that µ = λm on B(Rn), where m denotes the n-dimensional Lebesgue measure.

Solution. One can proceed in three steps.

Step 1: We show that µ(B) = km(B) holds for every box B =
∏d

i=1[ai, bi) with ai, bi ∈ Q .

Consider first a box B =
∏d

i=1[0,
pi
qi
) . Observe that [0, pi) is the union of pi translates of the interval

[0, 1) (being [k, k + 1) for k = 0, . . . , pi − 1). In particular,
∏d

i=1[0, pi) is the finite union of
∏d

i=1 pi
disjoint boxes of the form

∏d
i=1[ki, ki + 1) where ki = 1, . . . , pi − 1 for i = 1, . . . , d . By translation-

invariance of µ, we have, setting k̄ := (k1, . . . , kd), µ(
∏d

i=1[ki, ki+1)) = µ(k̄+ [0, 1)d) = λ and by σ-
additivity of µ , µ(

∏d
i=1[0, pi)) = λ

∏n
i=1 pi . With a similar reasoning, we have for any q1, . . . , qd ∈ N

by translation invariance and σ-additivity that µ(
∏d

i=1[0, pi)) =
∏d

i=1 qi µ
(∏d

i=1[0,
pi
qi
)
)
. Combining

both properties, we deduce that µ(B) = λ
∏d

i=1
pi
qi
= λm(B) . By translation invariance, we deduce

that this equality holds in fact for all boxes with rational endpoints.

Step 2: Consider H := {B =
∏d

i=1[ai, bi) : ai, bi ∈ Q}. We show that H is stable under in-
tersections and that σ(H) = B(Rd) .
The stability under intersections is straightforward to verify. It is clear that σ(H) ⊆ B(Rd) as
H ⊆ B(Rd) . To show the reverse inequality, it is by minimality enough to show that σ(H) contains
all open sets. By definition, every open set U ⊆ Rd can be written as a countable union of open
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boxes with rational endpoints
∏d

i=1(ai, bi) . Since open boxes with rational endpoints can be writ-
ten as a countable union of half-open boxes

∏d
i=1(ai, bi) =

⋃∞
k=1

∏d
i=1[ai+

1
k
, bi) , they belong to σ(H) .

Step 3: The Dynkin argument.
Let Bk := [−k, k)d for k ≥ 1 . Let Dk := {A ∈ B(Rd) : µ(A ∩Bk) = λm(A ∩Bk)} . We claim that
Dk is a Dynkin system and that H ⊆ Dk . With the claim, we apply Theorem A.2 and Step 2, to
deduce that B(Rd) = σ(H) = δ(H) ⊆ Dk . Thus B(Rd) ⊆

⋂
k≥1Dk and we conclude that for every

A ∈ B(Rd)
µ(A) = lim

k→∞
µ(A ∩Bk) = lim

k→∞
λm(A ∩Bk) = λm(A) .

Remark A.6. The attentive reader will notice that we prove that the Lebesgue measure on B(Rd)
is the unique translation invariant-measure with µ([0, 1]d) = 1 only on B(Rd) , but we do not give
any uniqueness statement of the Lebesgue measure on larger σ-algebra of all Lebesgue measurable
sets M(Rd) . The uniqueness on M(Rd) is related to the procedure of “completion of a measurable
fact” (a measurable space is called complete if the subsets of all null-sets are measurable) and the
fact that the completion of (Rd,B(Rd),m) is given by (Rd,M(Rd),m) .

A.4. Probability measures from cumulative distribution functions

We recall the definition of a joint cumulative distribution function from Probability (Definition
1.31 of [Aru21]).

Definition. Any function F : Rd → [0, 1] is called a joint cumulative distribution function
(short “cdf”), if it satisfies the following conditions:

(i) F is non-decreasing in each coordinate.
(ii) F (x1, . . . , xd) → 1 if all of xi → +∞ .
(iii) F (x1, . . . , xd) → 0 if at least one of xi → −∞ .
(iv) F is right-continuous, meaning that for every (xm1 , . . . , x

m
d ) converging to (x1, . . . , xd) such

that for all m ≥ 1 we have xmi ≥ xi for all i = 1, . . . , d, it holds that F (xm1 , . . . , xmd ) →
F (x1, . . . , xd) .

(v) Let A := (a1, b1] × · · · × (ad, bd] and V := {a1, b1} × · · · × {ad, bd}, where ai, bi ∈
(−∞,+∞) ∀i = 1, . . . , d (V is the set of the vertices of the finite rectangle A); if v ∈ V ,
let sgn(v) := (−1)# of ai in v. Then,

∆AF =
∑
v∈V

sgn(v)F (v).

We will let µ(A) = ∆AF , so we must assume

∆AF ≥ 0 for all rectangles A.

A fundamental result in Probability shows that there is a one-to-one correspondence between
probability measures P on (Rd,B(Rd)) and cumulative distribution functions F . More precisely, we
have the following

Theorem A.4. (Theorem 1.32 of [Aru21])
(i) Each probability measure on (Rd,B(Rd)) gives rise to a cdf F : Rd → [0, 1] through

F (x1, . . . , xd) := P

(
d∏

i=1

(−∞, xi]

)
. (A.4)

(ii) Conversely, given a cdf F : Rd → [0, 1], there exists a unique probability measure P on
(Rd,B(Rd)) such that (A.4) holds for all (x1, . . . xd) ∈ Rd .
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The item (i) of Theorem A.4 is a straightforward consequence of basic properties of probability
measures and the definition (A.4) and has been established in the probability course. The item
(ii) of Theorem A.4 instead has been proven only in dimension d = 1 in the probability course.
The proof took advantage of the fact that F has pseudo-inverse which is a peculiarity of the
one-dimensional case and as such, the proof does not extend to higher dimension. We here present
an alternative proof, relying on Carathéodory’s construction, which extends to all dimensions.

Proof of (ii) of Theorem A.4 via Carathéodory. We introduce

G0 :=

{
d∏

i=1

Ii where Ii = (si, ti] or Ii = (si,∞) with −∞ ≤ si < ti <∞

}
∪ {∅}

and G :=
{⋃N

i=1Gi : Gi ∈ G0

}
. One verifies that G is an algebra (see Exercise 2). Moreover, we

claim that σ(G) = B(Rd) . The inclusion σ(G) ⊆ B(Rd) is trivial as G ⊆ B(Rd). For the reverse
inclusion, we observe that σ(G) also contains all open boxes B =

∏d
i=1(si, ti). Since every open set

can be written as a countable union of open boxes, this implies that σ(G) contains all open sets
and hence, since B(Rd) is generated by all open sets, we have B(Rd) ⊆ σ(G) .

It now suffices to construct a pre-measure µ0 on G (i.e. a map µ0 : G → [0,+∞] satisfying (i)
and (ii) of Theorem A.1) such that

• µ0(
∏d

i=1(−∞, xi]) = F (x1, . . . , xd) for all x ∈ Rd ,
• µ0(Rd) = 1 .

Indeed, Theorem A.1 and Corollary A.3 then guarantee the existence of a unique measure µ on
(Rd,B(Rd)) such that µ|G = µ0 ; this guarantees both the validity of (A.4) as well as µ(Rd) = 1,
making µ a probability measure on (Rd,B(Rd)) .

In order to present the main idea, we show the construction of the pre-measure µ0 only for x = 1
and leave the case d ≥ 2 as an exercise (see Exercise 2). We first extend the cdf F : R → [0, 1] to a
function defined on R ∪ {±∞} by setting F (−∞) := 0 and F (+∞) := 1.

In a first step, we define µ0 on G0 by setting

µ0((s, t]) := F (t)− F (s) if −∞ ≤ s < t <∞ ,

µ0((s,∞)) := F (+∞)− F (s) = 1− F (s) .

By definition µ(∅) = 0 and µ0(R) = F (+∞)−F (−∞) = 1. Moreover, by construction it holds that
µ0((s, t]) + µ0((t, r]) = µ0((s, r]) and µ0((s, t]) + µ0((t,∞)) = µ0((s,∞)). Using this two properties
it is easy to verify that µ0 is finitely additive on G0 .

The finite additivity allows us in a second step to define µ0 on all of G. Indeed, every G ∈ G
can be written as G =

⋃N
i=1Gi with Gi ∈ G0 . Up to considering G′

i = Gi \
⋃i−1

k=1Gk = Gi ∩
⋂i−1

k=1G
c
k

instead of Gi (G′
i ∈ G0 because G0 is closed under intersections and complements), we can assume

w.l.o.g. that the sets Gi are pairwise disjoint. This allows to define µ0(G) :=
∑N

i=1 µ0(Gi). µ0 is
well-defined (i.e. it is independent of the choice of the family {Gi}Ni=1 thanks to the finite additivity)
and by construction, µ0 is finitely additive on G, meaning that (ii) holds for finite families of
pairwise disjoint sets. We are left to establish it for countable families. Let therefore {An}n∈N ⊆ G
be a countable family of pairwise disjoint sets such that also A :=

⋃
n∈NAn ∈ G. For k ≥ 1 fixed,

we rewrite A = Bk ∪
⋃k

i=1Ai with Bk :=
⋃

i≥k+1Ai = A∩
⋂k

i=1A
c
i . By stability under complements

and finite intersections, Bk ∈ G and hence by finite additivity of µ0 on G we have

µ0(A) = µ0

(
k⋃

i=1

Ai

)
+ µ0(Bk) =

k∑
i=1

µ0(Ai) + µ0(Bk) .
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We deduce the validity of (ii) by taking k → ∞, if
lim
k→∞

µ0(Bk) = 0 . (A.5)

To show (A.5), observe that Bk+1 ⊂ Bk is a decreasing sequence of sets with
⋂

k≥1Bk = ∅ .
Hence, since µ0 is monotone, limk→∞ µ0(Bk) ∈ [0, 1] exists and we assume by contradiction that
limk→∞ µ0(Bk) =: c > 0 . We will show that this assumption is absurd by showing that under this
assumption,

⋂
k∈NBk would contain a non-empty set.

To do so, we first observe that for every interval I ∈ G0 and any ε > 0, there exists I ′ ∈ G0 and
a compact K such that I ′ ⊆ K ⊆ I and such that µ0(I

′) ≥ µ0(I)− ε . Indeed,
• if I = (s, t]: then µ0(I) = F (t)−F (s) and thanks to the right-continuity of F , there exists
s′ ∈ (s, t) such that F (s′)− F (s) ≤ ε and hence setting I ′ := (s′, t] and K := [(s+ s′)/2, t],
we have that K is compact, I ′ ⊆ K ⊆ I and µ0(I

′) = F (t)− F (s′) ≥ µ0(I)− ε .
• if I = (s,∞): then µ0(I) = 1− F (s). Thanks to the to the right-continuity of F , there

exists s′ ∈ (s,∞) such that F (s′) − F (s) ≤ ε
2

and since limt→∞ F (t) = 1, there exists
t′ ∈ (s′,∞) such that F (t′) ≥ 1 − ε

2
. Hence setting I ′ := (s′, t′], K ′ := [(s + s′)/2, t′], we

have that K is compact, I ′ ⊆ K ⊆ I and µ0(I
′) = F (t′)− F (s′) ≥ µ0(I)− ε .

Since every Bk is made out of a disjoint union of intervals I ∈ G0 , this shows that for every Bk there
exists a compact Kk and B′

k ∈ G such that B′
k ⊆ Kk ⊆ Bk and µ0(B

′
k) ≥ µ0(Bk)− c2−(k+1) . Now

we set Ck :=
⋂k

j=1Kj and we observe that {Ck}k≥1 is a decreasing family of compact sets. We claim
that

⋂
k∈NCk ̸= ∅ which gives the desired contradiction since

⋂
k∈NCk ⊆

⋂
k∈NBk by construction.

It is a general fact from topology that the intersection of a decreasing sequence of non-empty
compact sets is non-empty1 and so, it suffices to show that Ck ̸= ∅ for every k ≥ 1 . By construction⋂k

j=1B
′
j ⊆ Ck and, since Bk \

⋃k
j=1(Bj \B′

j) ⊆
⋂k

j=1B
′
j, we have by finite (sub-)additivity

µ0

( k⋂
j=1

B′
j

)
≥ µ0(An)− µ0

( k⋃
j=1

(Bj \B′
j)

)
≥ µ0(An)− c

k∑
j=1

2−(j+1) ≥ c

2
.

In particular,
⋂k

j=1B
′
j ̸= ∅ and hence Ck ̸= ∅ . □

Exercise 2. Let F : R2 → [0, 1] a two-dimensional joint cumulative distribution function.
The goal of this exercise is to use Carathédory’s construction to show the existence of a unique
probability measure P on (R2,B(R2)) such that

P((−∞, x1]× (−∞, x2]) = F (x1, x2) for all x = (x1, x2) ∈ R2 . (A.6)
(a) As above, we introduce again the collections of sets

G0 :=

{
2∏

i=1

Ii where Ii = (si, ti] or Ii = (si,∞) with −∞ ≤ si < ti <∞

}
∪ {∅} ,

G :=

{
N⋃
i=1

Gi : Gi ∈ G0

}
.

Show that G is an algebra.
(b) Define a map µ0 : G0 → [0, 1] such that µ0(∅) = 0 , such that µ0(R2) = 1 and such that

µ0 is additive on finitely many disjoint sets in G0 (meaning that whenever A,B ∈ G0 with
A ∩B = ∅ , then it holds that µ0(A ∪B) = µ0(A) + µ0(B)).

1Indeed, by contradiction, assume that Ck+1 ⊆ Ck are compact, that Ck ≠ ∅ for all k ≥ 1 and that
⋂

k∈N Ck = ∅ .
Then the family Ok = Cc

k is an open cover for C1 (and hence for every Ck with k ≥ 1). By compactness, we can
extract a finite subcover. Since the Ck are decreasing, the family Ok is increasing and the subcover in fact only
consist of one open set Ok̄ . This is absurd as Ok̄ cannot possibly cover Ck̄ which by assumption is non-empty.
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(c) Extend µ0 to G ad verify that µ0 is a pre-measure on G (i.e. verify the properties (i) and
(ii) of Theorem A.1).

(d) Deduce that there exists a unique probability measure P on (R,B(R)) satisfying (A.6).

Solution. (a) Since G is by definition stable by unions, we only have to show that it is
stable under complements and intersections with the following steps:
(i) if G1, G2 ∈ G0 then G1 ∩G2 ∈ G0 :

We can use the fact that for some sets A,B,C,D we have (A × B) ∩ (C × D) =
(A ∩ C)× (B ∩D) to reduce the argument to each dimension and apply the fact that
the intersections of two intervals (of one of the forms in the definition of G0) is either
an interval (of one of the same forms) or the empty set. Hence the intersections of
sets in G0 is still in G0✓

(ii) if G1 = ∪N
i=1G1,i , G2 = ∪M

j=1G2,i ∈ G (with each G1,i and G2,i in G0) then G1 ∩G2 ∈ G
:
because

G1 ∩G2 =

(
N⋃
i=1

G1,i

)
∩

(
M⋃
i=1

G2,i

)
=

N⋃
i=1

M⋃
j=1

G1,i ∩G2,j︸ ︷︷ ︸
∈G0 by (i)

∈ G0✓

(iii) if G ∈ G0 then Gc ∈ G :
For some sets A,B we can’t say that (A × B)c = (Ac) × (Bc) so we can’t use the
argument used for (i). However, as shown in the figure 1, we can actually obtain the
complement by adding up to 4 other sets of G0. This can be easily generalized to the
case where A×B is unbounded.✓

A×B

Ac ×Bc

Figure 1. Black: the set A×B ∈ G0 we are considering. Gray: the set (Ac)× (Bc).
Dark gray: the 4 sets we need to add to obtain the complement (A×B)c

(iv) if G = ∪N
i=1Gi ∈ G (with each Gi in G0) then Gc ∈ G :

because (
N⋃
i=1

Gi

)c

=
N⋂
i=1

Gc
i︸︷︷︸

∈G by (iii)

∈ G︸︷︷︸
by (ii)

✓

(b) We define µ0(∅) = 0, and for a < b and c < d

µ0((a, b]× (c, d]) = F (b, d)− F (a, d)− F (b, c) + F (a, c).
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For simplicity, let us just focus on the case where a, b, c, d are all finite (we can handle
the cases a = +∞, etc. as done for the one-dimensional case in the notes). To verify
finite additivity on G0, we need to show that if A,B ∈ G0 with A∩B = ∅ and A∪B ∈ G0,
then µ0(A ∪ B) = µ0(A) + µ0(B). Indeed, by our definition of µ0, for a1 < b1 < c1 and
a2 < b2 < c2, we have

µ0((a1, b1]× (a2, b2]) + µ0((a1, b1]× (b2, c2]) = µ0((a1, b1]× (a2, c2]),

and

µ0((a1, b1]× (a2, b2]) + µ0((b1, c1]× (a2, b2]) = µ0((a1, c1]× (a2, b2]).

Note that µ0 satisfies the desired properties because
• µ0(∅) = 0
• µ0((−∞, b]× (−∞, d]) = F (b, d)
• µ0((a, b]× (−∞, d]) = F (b, d)− F (a, d)
• µ0((−∞, b]× (c, d]) = F (b, d)− F (b, c)
• µ0((a, b]× (c, d]) = F (b, d)− F (a, d)− F (b, c) + F (a, c)
• µ0((−∞, b]× R) = limd→∞ F (b, d)
• µ0(R× (−∞, d]) = limb→∞ F (b, d)
• µ0((a,∞)× (c, d)) = F (b, d)− F (a, d)− F (b, c) + F (a, c)
• µ0((a, b)× (c,∞)) = F (b, d)− F (a, d)− F (b, c) + F (a, c)
• µ0((−∞, b] × (c,∞)) = µ0((−∞, b] × R) − µ0((−∞, b] × (−∞, c]) = −F (b, c) +
limd→∞ F (b, d)

• ...
• µ0((a,∞)× (c,∞)) = F (b, d)− F (a, d)− F (b, c) + F (a, c)

(c) The first assumption (i) is verified by definition. For the exact same reasons as for the
one-dimensional case (from the notes), we can extend µ0 to a premeasure on G. The only
(slight) difference is we have to prove that for every box I ∈ G0 and any ϵ > 0, there exists
I ′ ∈ G0 and a compact K such that I ′ ⊂ K ⊂ I and such that µ0(I

′) ≥ µ0(I) − ϵ. For
simplicity, let’s just show this is true for the case where I = (a, b]× (c, d] and a, b, c, d are
finite.

By the right-continuity of F , there is an a′ ∈ (a, b) and c′ ∈ (c, d) so that F (a′, d) −
F (a, d) ≤ ϵ/2 and F (b′, c)−F (b, c) ≤ ϵ/2. Set I ′ = (a′, b]× (c′, d] and K = [(a+a′)/2, b]×
[(b+ b′)/2, d]. Then,

µ0(I)− µ0(I
′) = (F (b, d)− F (a, d)− F (b, c) + F (a, c))− (F (b, d)− F (a′, d)− F (b, c′) + F (a′, c′))

= F (a′, d)− F (a, d) + F (b, c′)− F (b, c) + F (a, c)− F (a′, c′) ≤ ϵ,

where we used that F (a, c)− F (a′, c′) ≤ 0 since F is nondecreasing in each coordinate. By
the right-continuity of F , there is an a′ ∈ (a, b) and c′ ∈ (c, d) so that F (a′′, d)− F (a, d) ≤
ϵ/3 for all a′′ ∈ (a, a′] and F (b′′, c) − F (b, c) ≤ ϵ/3 for all b′′ ∈ (b, b′]. By the right-
continuity of F , there is a t′ > 0 such that F (a + t, c + t) − F (a, c) ≤ ϵ/3 for all
t ∈ (0, t′]. Let ã = min{a′, a + t′} and b̃ = min{b′, b + t′}. Set I ′ = (ã, b] × (c̃, d] and
K = [(a+ ã)/2, b]× [(b+ b̃)/2, d]. Then,

µ0(I)− µ0(I
′) = (F (b, d)− F (a, d)− F (b, c) + F (a, c))− (F (b, d)− F (ã, d)− F (b, c̃) + F (ã, c̃))

= F (ã, d)− F (a, d) + F (b, c̃)− F (b, c) + F (a, c)− F (ã, c̃) ≤ ϵ.

(d) This follows directly from Theorem 2.4 and Corollary 3.4 (as for the one-dimensional case).





APPENDIX B

The Laplace Transform

We introduce an integral transform akin to the Fourier transform. We will see that it enjoys
properties making it applicable to resolution of ODEs, turning these into algebraic equations.

B.1. Definition

We have seen in Chapter 5 that integral transforms can allow one to rephrase certain problems
into a more tractable language. A kernel integral transform of general type takes the following
form. Given a function f : Ω ⊂ R → C of sufficient regularity, one can define

K[f ](y) :=

∫
Ω

f(x)K(x, y)dx

for some sufficiently regular "kernel" K : Ω × Ω → C. The case of the Fourier transform takes
Ω = R and K(x, y) = e−2πixy. In a similar manner, the Laplace transform is a kernel integral
transform of the following shape.

Definition. [Laplace Transform] Let f : R≥0 → C. Its Laplace transform is

L[f ](s) :=
∫ ∞

0

e−stf(t)dt

defined on the domain D(L[f ]) = {s ∈ [0,+∞[: e−stf(t) ∈ L1(R)}. We will also denote the Laplace
transform of f by F := L[f ].
Remark B.1. (1) L is an integral transform with kernel K(s, t) = e−st and Ω = R≥0;

(2) We take the domain of L[f ] to live within the reals. More generally one usually considers
a complex variable s;

(3) As we will see, L transforms derivatives into multiplications. Thus its principal use will be
in solving differential equations, by turning ODEs (of solution f) into algebraic equations
solvable in F . This then raises the question of whether one can invert the Laplace transform
in a meaningful way.

As is explicited in the definition of the Laplace transform, L[f ] is generally not defined on R≥0.
In fact D(L[f ]) might be empty. If non-empty however, D(L[f ]) is large in the following sense.

Lemma B.1. If s ∈ D(L[f ]), then R≥s ⊂ D(L[f ]).
Proof. Let s ∈ D(L[f ]), s′ > s. Then∫ ∞

0

|f(t)|e−s′tdt =

∫ ∞

0

|f(t)|e(s−s′)te−stdt ≤
∫ ∞

0

|f(t)|e−st <∞,

so that s′ ∈ D(L[f ]). □

Remark B.2. D(L[f ]) is not necessarily closed, as is shown by f(t) = et, of domain R>1.
We want a nice class of functions for which L[f ] is non-empty. We take Remark B.2 as

inspiration.

Definition. Let a ∈ R>0. The exponential class Expa is defined by

Expa :=
{
f ∈ L1

loc(R≥0) : |f(t)| = O(eat) as t→ +∞
}
.

141
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Lemma B.2. Let f ∈ Expa. Then R>a ⊂ D(L[f ]).

Proof. Let K > 0, C > 0 be such that |f(t)| ≤ Cat ∀t > K. Then∫ ∞

0

|f(t)|e−stdt =

∫ K

0

|f(t)|e−stdt+

∫ ∞

K

|f(t)est

≤
∫ K

0

|f(t)|e−stdt+ C

∫ ∞

K

e(a−s)tdt

The first integral converges since f ∈ L1
loc, while the second converges iff s > a, as required. □

B.2. Properties and Applications

In what follows we do not carry along domain considerations, and assume the unexplicited
functions f, g are regular enough for each expression to make sense.

Proposition B.3 (Properties of the Laplace Transform). The Laplace transform enjoys the following
properties:

(1) (Linearity) L[af + bg] = aL[f ] + bL[g] ∀a, b ∈ C
(2) (Derivatives in t) Derivatives are transformed into products: ∀n ∈ N,

L[f (n)](s) = snL[f ](s)−
n−1∑
i=0

sn−i−1f (i)(0)

(3) (Derivatives in s) Products are transformed into derivatives:

L[tnf(t)](s) = (−1)n
dn

dsn
L[f ](s)

(4) (Translation) L[f ](s− a) = L[eatf(t)](s)
(5) (Scaling) For a > 0, L[f(at)](s) = a−1L[f ](sa−1)

Proof. (1) This is an immediate consequence of linearity of integrals.
(2) We first consider n = 1. Integrating by parts gives∫ ∞

0

f ′(t)e−stdt = f(t)e−st|∞0 + s

∫ ∞

0

f(t)estdt = sL[f ](s)− f(0).

One can then conclude by induction:

L[f (n)](s) = sL[f (n−1)](s)− f (n−1)(0) = snL[f ](s)−
n−1∑
i=0

sn−i−1f (i)(0).

(3) We begin with n = 1. By Corollary 2.18 we have

d

ds
L[f ](s) = d

ds

∫ ∞

0

e−stf(t)dt =

∫ ∞

0

(−te−st)f(t)d = −L[tf(t)].

By induction we then conclude, for
dn

dsn
L[f ](s) = (−1)n−1 d

ds
L[tn−1f(t)] = (−1)nL[tnf(t)].

(4)

L[f ](s− a) =

∫ ∞

0

f(t)e(a−s)tdt =

∫ ∞

0

eatf(t)e−stdt = L[eatf(t)](s).
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(5)

L[f(at)](s) =
∫ ∞

0

f(at)e−stdt = a−1

∫ ∞

0

f(t)e−sa−1tdt = a−1L[f ](sa−1)

□

Let us now see how these properties, in particular (2), help us to solve ODEs. Suppose given
an ODE of the form {

G(f, f ′, ..., fn) = h h "nice", say in Expa

f (i)(0) = ai ai ∈ C, i = 0, ..., n− 1

If G is compatible enough with L, for example it is linear, or has non constant coefficients given by
polynomials of degree k < n, we obtain after applying the Laplace transform

G̃(F, F ′, ..., F (k), f(0), ..., f (n)(0)) = H

with some new set of initial conditions. The hope is that this is easier to solve and the solution F
has an easy to find Laplace inverse.
Remark B.3. (1) We will not explicit L−1 or show injectivity of L. However in practice it

suffices to find an appropriate candidate for this inverse and check explicitly that it satisfies
the initial ODE.

(2) The case discussed above is particular, and can already be solved by standard methods
of ODE resolution. However beyond providing us an alternative means of resolution, the
Laplace transform also gives a transform to an often physically meaningful domain (in
electrical engineering, the s-space is often called the frequency domain for reasons similar to
the Fourier transform, while the t-space is the time domain). It also makes exact computer
resolution of ODEs computationally simpler.

Before seeing explicit examples of this procedure, we need to have a toolkit of a few know
Laplace transforms.
Example B.1. A quick integral computation shows that L[1](s) = s−1, defined on R>0. We can use
this with the translation property of L to immediately obtain L[eat](s) = (s− a)−1. Differentiating
in s gives L[tn](s) = n!s−(n+1). Finally, we may observe that

L[cos(bt) + i sin(bt)] =
1

s− ib
=

s+ ib

s2 + b2
=⇒ L[cos(bt)] = s

s2 + b2
,L[sin(bt)] = b

s2 + b2

We thus have the following preliminary table of Laplace transforms:

Laplace transforms

f(t) L[f ](s)

C Cs−1

tn n!s−(n+1)

eat (s− a)−1

cos(bt) s(s2 + b2)−1

sin(bt) b(s2 + b2)−1

Let us now run a few example ODEs
Example B.2. (1) 

y′′ − 2y′ + y = 0

y(0) = 1

y′(0) = 1
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Applying L gives
s2Y − sy(0)− y′(0)− 2sY + 2y(0) + Y = 0

which has solution (after applying initial conditions) Y = s−2
(s−1)2

. It now remains to find a
Laplace inverse. We give two methods. Note that Y (s+ 2) = s 1

(s+1)2
= sL[t](s+ 1). Thus

Y (s) = (s− 2)L[t](s− 1) = (s− 2)L[tet] = L[(tet)′ − 2tet] = L[et − tet]

we thus claim y(t) = et(1− t) is a solution of our ODE. This can be verified by plugging it
back in (thus all computations above are only formal in nature). Alternatively we could
write Y = 1

s−1
− 1

(s−1)2
and run similar computations using properties (2) and (4) of the

Laplace transform to find the same answer.
(2) 

y′′ + y = sin(2t)

y(0) = 0

y′(0) = 1

Then applying L we obtain

Y =
1

s2 + 1

(
2

s2 + 4
+ 1

)
Note that (s2 + 1)−1 = L[sin(t)]. We thus get, after a partial fractions decomposition

Y =
2

3

(
1

1 + s2
− 1

s2 + 4

)
+ L[sin(t)] = L

[
5

3
sin(t)− 1

3
sin(2t)

]
and one may again verify that y = 5

3
sin(t)− 1

3
sin(2t) solves the initial ODE.
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