Serie 9
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course. The
exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. For ¢ € R, consider the PDEs

Ot — gy = 0 for (z,t) € R?. (1)
O — Cugy =0 for (z,t) € R2. (2)

Decide for each of the following functions which PDE they solve.

a) u(z,t) = sin(x — ct), e) u(x,t) = e sin(x),

b) u(z,t) =log(x + ct) for x + ct > 0, f) u(x,t) = e cosh(x),

c) u(x,t) = x2 + 2ct, g) u(z,t) = e 9" cos(az) for a € R,

d) u(z,t) = cos(ax)sin(cat) for a € R, h) u(z,t) = ¥t 4 ¥,
Solution:

Exercise 2. Consider, for some F € C(R?) fixed, the two PDEs

Uy — e 2ty = F(x,t) for (z,t) € R?. (3)

Uy — e tug =0 for (z,t) € R2. (4)

Assume that v = v(z,t) solves (3) and w = w(x,t) solves (4). Which of the following statements

is/are true?



(i) v+ w solves (3). (iii) va(z,t) ;== v(Az,t) solves (3) for any A > 0.

(ii) av + pw solves (3) for any o, 5 € R. (iv) w(z,t) := w(x, —t) solves (4).
Solution:

(i) True. (iii) False.

(ii) False. (iv) False.

Exercise 3. Let u: : R? = R be a C? function. Express Ozyu in polar coordinates.

Hint: The formula we look for is
. . 1 2 . 9 1 .
Ozyu(r cos @, rsinf) = | Jppw cos fsin @ + ~gw(cos” 0 — sin” 0) — — Jpgw cos Osin f
r r

1
- ;&w cos fsin 6 + T—Q(?gw(siHQ 6 — cos?0) | (r,0).

To prove it, set w(r, ) = u(r cosd,rsinf) and compute d,gw in terms of Vu and V2u.

Solution: Recall from the lecture that

Orw(r,0) = Orpu(rcos B, rsin@) cosd + Oyu(r cos b, rsinf)sin b,
Ogw(r,8) = —0yu(r cos B, rsin)rsinf + dyu(rcos b, rsinf)r cos b,
Orrw(r, 0) = dppu(r cos B, rsin ) cos® O + 20, u(r cos 6, sin §) cos O sin 0

+ Oyyu(r cos 0,7 sin 0) sin? 0,
and

1
T—zaggw(r, 0) = Opru(r cos,rsin 0) sin® 6 — 20, u(r cos §,rsin 0) cos O sin 0

+ Oyyu(r cos B, rsin ) cos? 6 — lﬁrw(r, 9).
,

Now, we compute the derivative O,¢:

Or[Opw(r, 0)] = Op[—0zu(r cos @, rsin @)rsin 6 + dyu(r cos §, rsin f)r cos 0]
= [—0gzu(rcosf,rsinf) + Oy, u(r cos b, rsinf)]r cos §sin f
+ Ogyu(r cos 0,7 sin 0)r(cos? 6 — sin? )

— Opu(rcos @, rsin @) sin @ + dyu(r cosf,rsinf) cos f




so that

! row(r, 0) = [—0zzu(r cos @, rsinf) + 0y, u(r cos b, rsin )] cos § sin 6
,

+ Ozyu(r cos 0,1 sin 0)(cos? 6 — sin? 9)
1
+ ﬁ&gw(r, 0).

Thus, (to lighten the notation we write w without its arguments)

Oppw cos Bsin 6 + %O,ﬂgw(cos2 6 — sin? ) — 71289910 cos @sin 6
- %arw cos fsinf + %8910(811&2 6 — cos? 0)
= [Ogatt cos? 0 + 20yucosOsin @ + Oy, u sin? 0] cos O sin 0
+ [~ Ozt + Oyyu] cos O 8in 6 + Oyyyu(cos® § — sin® §) + :—28910] (cos® § — sin” 0)
— [Opzut sin?6 — 20yucos 0sin @ + Oy u cos? 0 — %Ehw] cosfsind
— ;arw cosfsinf + %89w(sin2 6 — cos®6)

= Opptt [cos® Asin @ — (cos® § — sin? #) cos A sin § — sin> @ cos 6]

=0
+ Opyyu[4 cos? O sin? 6 + (cos? § — sin? 6)?]

+ Oyyu [sin® O cos @ + (cos? 6 — sin® 0) cos O sin 6 — cos® § sin 6]

=0

= zyu

where the last equality follows from 4 cos? @ sin? 6 + (cos? 6 — sin? 0)? = (cos? 0 + sin? §)% = 1.

Exercise 4. Prove that the space of continuous, 1—periodic functions C°(R/Z; C) is dense in L?((0,1); C).

Solution: We extend f € L2((0,1)) to f € L?(R) by imposing f = 0 outside (0,1). We know

from the theory that we can approximate a function in L?(R) with
{fntnen C C°(R) such that f, — f in L*(R).

Our {f,}nen have support in R, and we need to generate from them continuous functions with

compact support in (0,1). To do so, we can define a continuous cutoff function

1, z>1
P(x) =40, z<1/2
2¢—1, ze(1/2,1)




and localize the support in (0,1) by multiplying f,, by the cutoff g,,, defined as

gn(x) = ¢(ndist(z, (0, 1)0)),
where
0, z>21,z<0
dist(z, (0,1)°) =Sz, =z € (0,1/2]
1—z, =ze€(1/2,1).

Thanks to the definition of the cutoff, the functions f,, g, are continuous, have compact support

in (0,1) and we can prove that
fagn = f in L*(0,1).

Indeed,

angn_fHL2 = ||fngn_fgn+fgn_f||L2
< [f(gn = Dllzz + [(fa = flgnllr2
< f(gn — Dllzz +[fn — fllz2 |lgnllre= -
~——

<1

Passing to the limit for n — 400, we can apply the dominated convergence theorem on the first

term, because |g, — 1| < 2, and we have by hypothesis that || f, — f||;2 — 0.

Hence, we conclude the proof and get the approximation with the family {f,gn}nen, that is

continuous and compactly supported in (0, 1).

Exercise 5.

22 — o2

———— in polar coordinates and compute its radial derivative
(22 + 42)2

(i) Express the function v(z,y) =
Or.

(ii) Compute Av both in standard coordinates and in polar coordinates.
(iii) Compute SUDP(z,4)e B1\ {0} v(x,y).

(iv) Compute the unique C?-solution w of the boundary value problem

Aw=0 in By, 5)

w="v on 0Bj.

Remark: We expect only a formal derivation of the solution and you don’t need to prove unique-

ness.
(v) Write w both in polar and standard coordinates.
Hints:

e For (ii) show that Av =0 in By \ {0}.



e For (iv), start by finding all solutions (in polar coordinates) to the equation “Aw = 0 in By”
which are separable; that is make the ansatz w(r, ) = ¢(r)y(6). Finally, find the unique solution
by looking at the boundary condition.

Solution:
(i) In polar coordinates,

20 _ in2
u(r,0) = v(rcosf,rsinf) = w
r

and

2
Opu(r,0) = — = (cos® § — sin” §).
3

Note that the function is not well defined in (0,0).
(ii) First in standard coordinates: with (z,y) # (0,0)

22(2% + y?) — dx(2? —y?)  —223 + 6ay?

Orvley) = (22 +y?)1 GRS E
Opzv(x,y) = (=622 + 6y?) (22 + y?)3 — 63(—223 + 6xy?)(a? + y*)? 62 — 3622y + 6y*
Tx yY) = (33‘2 + y2)6 - (.73‘2 + y2)4
and ) » 4
B0 (@, y) _ Gyt — 362y + 6y
vy ) (1.2 +y2)4
Thus,

Av(z,y) = Opev(z,y) + Opyv(z,y) =0 V(z,y) € By \ {0}.

And in polar coordinates: for r > 0

2 2 2 6 2 2
Opru(r, ) = 8T(—r—3(cos 0 —sin“0)) = T—4(cos 0 — sin“ ),

4
Opu(r,0) = — g o8 6 sin 0

and

4
Ogou(r,0) = —72(0052 6 — sin” 6).

Thus,
1 1
Au(r,0) = Oppu(r,0) + ;&nu(r, 0) + ﬁﬁggu(r, 0)=0 forr>0.
(iii) When y =0,
z? 1
U($,0) = g = ﬁ

Thus letting  — 0, we deduce sup(, ,yep,\ {0} v(z,y) = 00

(iv) In order to find a solution w, we try to find a solution in polar coordinates. We assume at first

that the solution is separable, i.e. there are functions ¢ and 1 such that w(r,0) = o(r)1(0).




The problem (5) becomes

20"(r) L Q) wO) _ .
L o B o M () M)

©(1)1(0) = cos? § — sin? 6;
p(r)P(0) = p(r)e(2m);
Le(r)'(0) = @(r)y’(2m),

for some suitable A. This yields two ODE’s

$1(0) + Map(0) =
$(0) = p(2n); (7)
W(0) = v (2r),
and 20 (r) + 1 (1)
rY
E R ®)

The problem (??) admits a solution only if A = n?,

¥(0) = ay, cos(nb) + B sin(nd). When A = n? the solution to (??) is given by

n € N>g and the solution is given by

no + dp log(r) if n=0;
p(r) = . (9)
1™ + 0pr™ ™ if n # 0.

Since we are searching for a continuous function, §, = 0 for all n, and thus
Wy (1, 0) = [a, cos(nb) + By, sin(nb)]n,r™

is a solution to Aw,, = 0. In order to find a general solution to Aw = 0, we write the solution

as a superposition of w, i.e.

w(r,0) = noag + Z[Ozn cos(nf) + By, sin(nd)]n,r".

n=1

We determine the constants oy, 8y,, 7, by looking at the boundary condition
w(1,0) = cos? § — sin® § = cos(26).

From this, we deduce w(r,8) = r2cos(26) = r?(cos? § — sin?f).

We already know that in polar coordinates w(r,6) = r2 cos(26) and in standard coordinates

we get z? — y2.




