
Serie 9

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (?) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. For c ∈ R, consider the PDEs

∂ttu− c2uxx = 0 for (x, t) ∈ R2 . (1)

∂tu− cuxx = 0 for (x, t) ∈ R2 . (2)

Decide for each of the following functions which PDE they solve.

a) u(x, t) = sin(x− ct),

b) u(x, t) = log(x+ ct) for x+ ct > 0,

c) u(x, t) = x2 + 2ct,

d) u(x, t) = cos(ax) sin(cat) for a ∈ R,

e) u(x, t) = e−ct sin(x),

f) u(x, t) = ect cosh(x),

g) u(x, t) = e−a
2ct cos(ax) for a ∈ R,

h) u(x, t) = ex+ct + ex−ct.

Solution:

a) (1)

b) (1)

c) (2)

d) (1)

e) (2)

f) (2)

g) (2)

h) (1)

Exercise 2. Consider, for some F ∈ C(R2) fixed, the two PDEs

ux − e−2tuxt = F (x, t) for (x, t) ∈ R2 . (3)

ux − e−2tuxt = 0 for (x, t) ∈ R2 . (4)

Assume that v = v(x, t) solves (3) and w = w(x, t) solves (4). Which of the following statements

is/are true?
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(i) v + w solves (3).

(ii) αv + βw solves (3) for any α, β ∈ R .

(iii) vλ(x, t) := v(λx, t) solves (3) for any λ > 0.

(iv) w̃(x, t) := w(x,−t) solves (4).

Solution:

(i) True.

(ii) False.

(iii) False.

(iv) False.

Exercise 3. Let u : : R2 → R be a C2 function. Express ∂xyu in polar coordinates.

Hint: The formula we look for is

∂xyu(r cos θ, r sin θ) =

[
∂rrw cos θ sin θ +

1

r
∂rθw(cos2 θ − sin2 θ)− 1

r2
∂θθw cos θ sin θ

− 1

r
∂rw cos θ sin θ +

1

r2
∂θw(sin2 θ − cos2 θ)

]
(r, θ).

To prove it, set w(r, θ) = u(r cos θ, r sin θ) and compute ∂rθw in terms of ∇u and ∇2u.

Solution: Recall from the lecture that

∂rw(r, θ) = ∂xu(r cos θ, r sin θ) cos θ + ∂yu(r cos θ, r sin θ) sin θ,

∂θw(r, θ) = −∂xu(r cos θ, r sin θ)r sin θ + ∂yu(r cos θ, r sin θ)r cos θ,

∂rrw(r, θ) = ∂xxu(r cos θ, r sin θ) cos2 θ + 2∂xyu(r cos θ, r sin θ) cos θ sin θ

+ ∂yyu(r cos θ, r sin θ) sin2 θ,

and

1

r2
∂θθw(r, θ) = ∂xxu(r cos θ, r sin θ) sin2 θ − 2∂xyu(r cos θ, r sin θ) cos θ sin θ

+ ∂yyu(r cos θ, r sin θ) cos2 θ − 1

r
∂rw(r, θ).

Now, we compute the derivative ∂rθ:

∂r[∂θw(r, θ)] = ∂r[−∂xu(r cos θ, r sin θ)r sin θ + ∂yu(r cos θ, r sin θ)r cos θ]

= [−∂xxu(r cos θ, r sin θ) + ∂yyu(r cos θ, r sin θ)]r cos θ sin θ

+ ∂xyu(r cos θ, r sin θ)r(cos2 θ − sin2 θ)

− ∂xu(r cos θ, r sin θ) sin θ + ∂yu(r cos θ, r sin θ) cos θ
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so that

1

r
∂rθw(r, θ) = [−∂xxu(r cos θ, r sin θ) + ∂yyu(r cos θ, r sin θ)] cos θ sin θ

+ ∂xyu(r cos θ, r sin θ)(cos2 θ − sin2 θ)

+
1

r2
∂θw(r, θ).

Thus, (to lighten the notation we write w without its arguments)

∂rrw cos θ sin θ +
1

r
∂rθw(cos2 θ − sin2 θ)− 1

r2
∂θθw cos θ sin θ

− 1

r
∂rw cos θ sin θ +

1

r2
∂θw(sin2 θ − cos2 θ)

= [∂xxu cos2 θ + 2∂xyu cos θ sin θ + ∂yyu sin2 θ] cos θ sin θ

+ [[−∂xxu+ ∂yyu] cos θ sin θ + ∂xyu(cos2 θ − sin2 θ) +
1

r2
∂θw](cos2 θ − sin2 θ)

− [∂xxu sin2 θ − 2∂xyu cos θ sin θ + ∂yyu cos2 θ − 1

r
∂rw] cos θ sin θ

− 1

r
∂rw cos θ sin θ +

1

r2
∂θw(sin2 θ − cos2 θ)

= ∂xxu [cos3 θ sin θ − (cos2 θ − sin2 θ) cos θ sin θ − sin3 θ cos θ]︸ ︷︷ ︸
=0

+ ∂xyu[4 cos2 θ sin2 θ + (cos2 θ − sin2 θ)2]

+ ∂yyu [sin3 θ cos θ + (cos2 θ − sin2 θ) cos θ sin θ − cos3 θ sin θ]︸ ︷︷ ︸
=0

= ∂xyu

where the last equality follows from 4 cos2 θ sin2 θ + (cos2 θ − sin2 θ)2 = (cos2 θ + sin2 θ)2 = 1.

Exercise 4. Prove that the space of continuous, 1−periodic functions C0(R/Z;C) is dense in L2((0, 1);C).

Solution: We extend f ∈ L2((0, 1)) to f ∈ L2(R) by imposing f = 0 outside (0, 1). We know

from the theory that we can approximate a function in L2(R) with

{fn}n∈N ⊂ C∞c (R) such that fn → f in L2(R).

Our {fn}n∈N have support in R, and we need to generate from them continuous functions with

compact support in (0, 1). To do so, we can define a continuous cutoff function

φ(x) =


1, x ≥ 1

0, x ≤ 1/2

2x− 1, x ∈ (1/2, 1)
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and localize the support in (0, 1) by multiplying fn by the cutoff gn, defined as

gn(x) := φ(ndist(x, (0, 1)C)),

where

dist(x, (0, 1)C) =


0, x ≥ 1, x ≤ 0

x, x ∈ (0, 1/2]

1− x, x ∈ (1/2, 1).

Thanks to the definition of the cutoff, the functions fngn are continuous, have compact support

in (0, 1) and we can prove that

fngn → f in L2(0, 1).

Indeed,

||fngn − f ||L2 = ||fngn − fgn + fgn − f ||L2

≤ ||f(gn − 1)||L2 + ||(fn − f)gn||L2

≤ ||f(gn − 1)||L2 + ||fn − f ||L2 ||gn||L∞︸ ︷︷ ︸
≤1

.

Passing to the limit for n → +∞, we can apply the dominated convergence theorem on the first

term, because |gn − 1| ≤ 2, and we have by hypothesis that ||fn − f ||L2 → 0.

Hence, we conclude the proof and get the approximation with the family {fngn}n∈N, that is

continuous and compactly supported in (0, 1).

Exercise 5. .

(i) Express the function v(x, y) =
x2 − y2

(x2 + y2)2
in polar coordinates and compute its radial derivative

∂r.

(ii) Compute ∆v both in standard coordinates and in polar coordinates.

(iii) Compute sup(x,y)∈B1\{0} v(x, y).

(iv) Compute the unique C2-solution w of the boundary value problem∆w = 0 in B1,

w = v on ∂B1.
(5)

Remark: We expect only a formal derivation of the solution and you don’t need to prove unique-

ness.

(v) Write w both in polar and standard coordinates.

Hints:

• For (ii) show that ∆v = 0 in B1 \ {0}.
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• For (iv), start by finding all solutions (in polar coordinates) to the equation “∆w = 0 in B1”

which are separable; that is make the ansatz w(r, θ) = ϕ(r)ψ(θ). Finally, find the unique solution

by looking at the boundary condition.

Solution:

(i) In polar coordinates,

u(r, θ) = v(r cos θ, r sin θ) =
cos2 θ − sin2 θ

r2

and

∂ru(r, θ) = − 2

r3
(cos2 θ − sin2 θ).

Note that the function is not well defined in (0, 0).

(ii) First in standard coordinates: with (x, y) 6= (0, 0)

∂xv(x, y) =
2x(x2 + y2)− 4x(x2 − y2)

(x2 + y2)4
=
−2x3 + 6xy2

(x2 + y2)3
,

∂xxv(x, y) =
(−6x2 + 6y2)(x2 + y2)3 − 6x(−2x3 + 6xy2)(x2 + y2)2

(x2 + y2)6
=

6x4 − 36x2y2 + 6y4

(x2 + y2)4

and

∂yyv(x, y) = −6y4 − 36x2y2 + 6y4

(x2 + y2)4
.

Thus,

∆v(x, y) = ∂xxv(x, y) + ∂yyv(x, y) = 0 ∀(x, y) ∈ B1 \ {0}.

And in polar coordinates: for r > 0

∂rru(r, θ) = ∂r(−
2

r3
(cos2 θ − sin2 θ)) =

6

r4
(cos2 θ − sin2 θ),

∂θu(r, θ) = − 4

r4
cos θ sin θ

and

∂θθu(r, θ) = − 4

r2
(cos2 θ − sin2 θ).

Thus,

∆u(r, θ) = ∂rru(r, θ) +
1

r
∂ru(r, θ) +

1

r2
∂θθu(r, θ) = 0 for r > 0.

(iii) When y = 0,

v(x, 0) =
x2

x4
=

1

x2
.

Thus letting x→ 0, we deduce sup(x,y)∈B1\{0} v(x, y) =∞

(iv) In order to find a solution w, we try to find a solution in polar coordinates. We assume at first

that the solution is separable, i.e. there are functions ϕ and ψ such that w(r, θ) = ϕ(r)ψ(θ).
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The problem (5) becomes 

r2 ϕ
′′(r)
ϕ(r) + rϕ

′(r)
ϕ(r) = −ψ′′(θ)

ψ(θ) = λ;

ϕ(1)ψ(θ) = cos2 θ − sin2 θ;

ϕ(r)ψ(0) = ϕ(r)ψ(2π);

ϕ(r)ψ′(0) = ϕ(r)ψ′(2π),

(6)

for some suitable λ. This yields two ODE’s
ψ′′(θ) + λψ(θ) = 0;

ψ(0) = ψ(2π);

ψ′(0) = ψ′(2π),

(7)

and
r2ϕ′′(r) + rϕ′(r)

ϕ(r)
= λ. (8)

The problem (??) admits a solution only if λ = n2, n ∈ N≥0 and the solution is given by

ψ(θ) = αn cos(nθ) + βn sin(nθ). When λ = n2 the solution to (??) is given by

ϕ(r) =

η0 + δ0 log(r) if n = 0;

ηnr
n + δnr

−n if n 6= 0.
(9)

Since we are searching for a continuous function, δn = 0 for all n, and thus

wn(r, θ) = [αn cos(nθ) + βn sin(nθ)]ηnr
n

is a solution to ∆wn = 0. In order to find a general solution to ∆w = 0, we write the solution

as a superposition of wn i.e.

w(r, θ) = η0α0 +

∞∑
n=1

[αn cos(nθ) + βn sin(nθ)]ηnr
n.

We determine the constants αn, βn, ηn by looking at the boundary condition

w(1, θ) = cos2 θ − sin2 θ = cos(2θ).

From this, we deduce w(r, θ) = r2 cos(2θ) = r2(cos2 θ − sin2 θ).

(v) We already know that in polar coordinates w(r, θ) = r2 cos(2θ) and in standard coordinates

we get x2 − y2.
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