
Serie 8

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (⋆) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1 (Orthonormal system). Recall that L2((0, T );C) can be endowed with the scalar product

⟨f, g⟩ :=
∫ T

0
fḡ dx.

(i) Show that the functions {en(x) := e2πinx}n∈Z form an orthonormal system in L2((0, 1);C),
namely

⟨en, em⟩ =

0 if n ̸= m,

1 if n = m.
(1)

(ii) Show that the functions
{√

2
T sin(2πnxT ),

√
2
T cos(2πnxT )

}
n∈N

form an orthonormal system of

L2((0, T );R).

Solution:

(i) Indeed, using that e2πimx = e−2πimx, we have

⟨en, em⟩ =
∫ 1

0
e2πinxe2πimx dx =

∫ 1

0
e2πi(n−m)x dx =


∫ 1
0 dx = 1 if n = m,∫ 1
0 e2πi(n−m)x dx = 0 if n ̸= m.

(ii) Set an(x) :=
√

2
T cos

(
2πn
T x

)
and bn(x) :=

√
2
T sin

(
2πn
T x

)
. We need to show that ⟨an, bm⟩ =

0, ⟨an, am⟩ = δnm and ⟨bn, bm⟩ = δnm for all n,m ∈ N . Recall the following trigonometric

identities:

2 cos(x) cos(y) = cos(x+ y) + cos(x− y),

2 sin(x) sin(y) = cos(x− y)− cos(x+ y),

2 sin(x) cos(y) = sin(x− y) + sin(x+ y).
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We first prove ⟨an, bm⟩ = 0 for all n,m ∈ N: we compute using the third identity∫ T

0
sin

(
2πn

T
x

)
cos

(
2πm

T
x

)
dx =

1

2

∫ T

0

[
sin

(
2π

T
(n−m)x

)
+ sin

(
2π

T
(n+m)x

)]
dx

=
T

4π

∫ 2π

0
sin ((n−m)x) dx+

T

4π

∫ 2π

0
sin ((n+m)x) dx.

For any m,n ∈ N, both integrals take the value 0 and we conclude. The remaining equations

are proved in a similar way using the other two trigonometric identities.

Exercise 2. For f ∈ L1(Rn) , we define for ξ ∈ Rn

f̂(ξ) :=

∫
Rn

f(x)e−2πix·ξ dx . (2)

We will call f̂ the Fourier transform of f . Prove that

(i) f̂ is well-defined, i.e. that the integral on the right-hand side of (2) converges for every ξ ∈ Rn ,

(ii) f̂ is a bounded function on Rn ,

(iii) lim|ξ|→∞ f̂(ξ) = 0 .

Hint: Write (and justify it) that for any ξ ∈ Rn

f̂(ξ) =
1

2

∫
Rd

{
f(x)− f(x− ξ′)

}
e−2πix·ξ dx with ξ′ =

ξ

2|ξ|2
,

and use a previous exercise.

Solution: As for the well-definition (i), we use the monotonicity of the integral together with the

fact |e−2πix·ξ| = 1 for every x, ξ ∈ Rn to estimate

|f̂(ξ)| =
∣∣∣∣ ∫

Rn

f(x)e−2πix·ξ dx

∣∣∣∣ ≤ ||f ||L1(Rn)

for every ξ ∈ Rn . Hence the right-hand side of (2) converges for every ξ ∈ Rn and f̂ is well-defined.

The very same computation shows that

sup
ξ∈Rn

|f̂(ξ)| ≤ ||f ||L1(Rn) ,

i.e. f̂ is a bounded function of ξ . Regarding (iii), we note that

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξ dx

=

∫
Rn

f(z − ξ′)e−2πi(z−ξ′)·ξ dz

= −
∫
Rn

f(z − ξ′)e−2πiz·ξ dz with ξ′ =
ξ

2|ξ|2
,
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hence

f̂(ξ) =
1

2

∫
Rn

{
f(x)− f(x− ξ′)

}
e−2πix·ξ dx.

Then by monotonicity of the integral

|f̂(ξ)| ≤ 1

2

∫
Rn

|f(x)− f(x− ξ′)||e−2πix·ξ| dx =
1

2

∫
Rn

|f(x)− f(x− ξ′)| dx.

Finally, since |ξ′| → 0, as |ξ| → ∞, lim|ξ|→∞ |f̂(ξ)| = 0 due to Exercise 3 of Series 6.

Exercise 3. Show that there does not exist a function I ∈ L1(Rn) such that

f ∗ I = f for all f ∈ L1(Rn).

Hint: Use the Fourier transform and Exercise 2 of Series 8.

Solution: Suppose for a contradiction that such an I exists. Recall that that for f, g ∈ L1(Rn),

we have (̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ). Thus f̂(ξ)Î(ξ) = f̂(ξ), and therefore Î(ξ) = 1 for all ξ ∈ Rd.

However, since I ∈ L1(Rn), we have Î(ξ) → 0 as |ξ| → ∞ (see Exercise 2 of Series 8), giving the

desired contradiction.

Exercise 4. We introduce the Fejer kernel FN : R → C defined by

FN (x) =
N∑

n=−N

(
1− |n|

N

)
e2πinx .

The Fejer kernel will play a central role in the proof of the uniform convergence of the Fourier series.

Before that, we establish some of its important properties.

(i) Show that FN has no imaginary part for every x and plot with Wolfram-alpha F1, F2, F3, F4.

(ii) Show that

FN (x) =
1

N

∣∣∣∣∣
N−1∑
n=0

e2πinx

∣∣∣∣∣
2

=
1

N

(
sin(πNx)

sin(πx)

)2

.

(iii) Show that FN ≥ 0, that
∫ 1
0 FN dx = 1 and that for every ε, δ > 0 there exists N0 such that

∀N ≥ N0 we have

FN (x) < ε ∀x ∈ (δ, 1− δ).

(iv) If f, g : R → R are continuous and 1-periodic, we define the periodic convolution by

(f ∗ g)(x) :=
∫ 1

0
f(y)g(x− y) dy,
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for x ∈ R . Using (iii), show that for f continuous and 1-periodic, we have

∥f − f ∗ FN∥L∞ → 0 as N → ∞.

(v) For f : R → R continuous and 1-periodic, we define the Nth Cesaro mean by

ΦNf(x) :=
1

N

N−1∑
n=0

Snf(x) ,

where Snf(x) :=
∑n

j=−n⟨f, ej⟩ej(x) (recall from Exercise 1 that ej(x) := e2πijx and ⟨f, ej⟩ :=∫ 1
0 f(x)e−2πijx dx ). Using the definition of periodic convolution in (iv), show that

Φnf(x) := (FN ∗ f)(x) .

Hints:

• For (ii), use the geometric series formula.

• For (iv), observe (and prove) that f is uniformly continuous.

Solution:

(i) We have

N∑
n=−N

(
1− |n|

N

)
e2πinx = 1 +

N∑
n=1

(
1− n

N

)
(e2πinx + e−2πinx) = 1 + 2

N∑
n=1

(
1− n

N

)
cos(2πnx)

(3)

which proves that FN has no imaginary part.

(ii) We begin by proving

FN (x) =
1

N

∣∣∣∣∣
N−1∑
n=0

e2πinx

∣∣∣∣∣
2

.

Indeed, ∣∣∣∣∣
N−1∑
n=0

e2πinx

∣∣∣∣∣
2

=
(N−1∑

n=0

e2πinx
)(N−1∑

n=0

e−2πinx
)

so that we easily see that the coefficient in front of each e2πinx is given by N − |n|. Thus,

FN (x) =
1

N

∣∣∣∣∣
N−1∑
n=0

e2πinx

∣∣∣∣∣
2

. (4)

Before continuing with the other equality, notice that
∑m

n=0 a
n = am+1−1

a−1 . Therefore,

N−1∑
n=0

e2πinx =
e2πiNx − 1

e2πix − 1
=

eπiNx(eiπNx − e−iπNx)

eiπx(eiπx − e−iπx)
= eiπ(N−1)x sin(πNx)

sin(πx)
.
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Thus, due to (4),

FN (x) =
1

N

(
sin(πNx)

sin(πx)

)2

. (5)

(iii) It follows from (5) that FN ≥ 0. Moreover, using (3) we have

∫ 1

0
FN (x) dx = 1 + 2

N∑
n=1

(
1− n

N

)∫ 1

0
cos(2πnx) dx = 1.

Fix now ε, δ > 0 . Since | sin(πNx)| ≤ 1, we deduce from (5) that whenever δ < x < 1− δ

FN (x) =
1

N

∣∣∣∣ 1

sin(πx)

∣∣∣∣2 ≤ 1

N sin2(πδ)
.

Thus, choosing N large enough, we can make FN (x) ≤ ε for all δ < x < 1− δ.

(iv) By periodicity, it is enough to show the convergence for x ∈ [0, 1] . Let thus ε > 0 fixed.

Since f is bounded, there is M such that |f(x)| ≤ M for all x ∈ [0, 1]. As a continuous

function on a compact set, f is uniformly continuous on [0, 1]; thus there exists δ = δ(ε) > 0

such that for all |x − y| < δ, then |f(x) − f(y)| < ε. From (iii), we know that there exists

N0 = N0(ε, δ) such that for all N ≥ N0, FN (x) ≤ ε for all x ∈ (δ, 1 − δ). Moreover since∫ 1
0 FN (x) dx = 1 , we have

f(x) =

∫ 1

0
f(x)FN (y) dy.

We estimate for x ∈ [0, 1] using the monotonicity of the integral and the positivity of FN

|f(x)− f ∗ FN (x)| =
∣∣∣∣∫ 1

0
f(x)FN (y) dy −

∫ 1

0
f(x− y)FN (y) dy

∣∣∣∣ = ∣∣∣∣∫ 1

0
[f(x)− f(x− y)]FN (y) dy

∣∣∣∣
≤

∫ 1

0
|f(x)− f(x− y)|FN (y) dy.

We can now split this integral in three parts: for y ∈ [0, δ]∪ [1− δ, 1] we have by choice of δ

|f(x)−f(x−y)| ≤ ε where as for y ∈ [δ, 1−δ] we just have the bound |f(x)−f(x−y)| ≤ 2M .

Thus for N ≥ N0

|f(x)− f ∗ FN (x)| ≤
∫ δ

0
εFN (y) dy +

∫ 1−δ

δ
2MFN (y) dy +

∫ 1

1−δ
εFN (y) dy

≤ ε+ 2Mε+ ε = (2M + 2)ε ,

where we used N ≥ N0 and the choice of N0 in the second inequality. Thus, for all N ≥ N0

∥f − f ∗ FN∥L∞([0,1]) ≤ (2M + 2)ε .

We conclude by the arbitrariness of ε .

(v) We compute for x ∈ [0, 1] using the linearity of the integral and the definition of the L2
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scalar product

f ∗ FN (x) =
N∑

n=−N

(
1− |n|

N

)∫ 1

0
f(y)e2πin(x−y) dx

=
N∑

n=−N

(
1− |n|

N

)
⟨f, en⟩en(x)

=
1

N

N∑
n=−N

(N − |n|)⟨f, en⟩en(x)

=
1

N

N−1∑
n=0

n∑
j=−n

⟨f, ej⟩ej(x) = ΦNf(x) .

Exercise 5. Let p ∈ [1,∞), fk, f ∈ Lp(Ω) for Ω ⊆ Rn measurable and denote p′ ∈ [1,∞] the conjugate

exponent, i.e.
1

p
+

1

p′
= 1.

We say that “fk converges to f weakly in Lp(Ω)” or in short “fk ⇀ f” if for all g ∈ Lp′(Ω) we have :

lim
k→∞

∫
Ω
fkg dx =

∫
Ω
fg dx.

Show that the following holds for p ∈ [1,∞), f, g, fk ∈ Lp(Ω):

(i) fk → f in Lp(Ω) ⇒ fk ⇀ f in Lp(Ω), that is strong convergence in Lp(Ω) implies weak

convergence in Lp(Ω).

(ii) fk ⇀ f and fk ⇀ g in Lp(Ω) ⇒ f = g in Lp(Ω), that is the weak limit is unique.

(iii) fk ⇀ f ⇒ ∥f∥Lp(Ω) ≤ lim infk→∞ ∥fk∥Lp(Ω) that is the Lp(Ω)-norm is lower semi-continuous

with respect to weak convergence.

(iv) If f ∈ Lp(Ω) , we have that

∥f∥Lp(Ω) = sup

{∫
Ω
fg dx : g ∈ Lp′(Ω), ∥g∥Lp′ (Ω) ≤ 1

}
. (6)

(v) (⋆) If f : Ω → R is measurable but f /∈ Lp(Ω) we set ∥f∥Lp(Ω) = +∞ . Prove that (6) holds even

in this case.

Hints:

• For (iii), use and prove the following “convexity” inequality:

|z|p ≥ |y|p + y⋆(y)(z − y) ∀z, y ∈ R (7)

where

y⋆(y) =

py|y|p−2 if y ̸= 0;

0 if y ̸= 0.
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• For (v), construct a sequence of test functions gk ∈ Lp′(Ω) such that∣∣∣∣∫
Ω
fgk dx

∣∣∣∣ ≥ k.

Solution:

(i) If fk → f in Lp(Ω) have limk→∞ ∥fk − f∥Lp(Ω) = 0 so that by Hölder’s inequality

lim
k→∞

∣∣∣∣∫
Ω
fkg dx−

∫
Ω
fg dx

∣∣∣∣ = lim
k→∞

∣∣∣∣∫
Ω
(fk − f)g dx

∣∣∣∣ ≤ lim
k→∞

∥fk − f∥Lp∥g∥Lp′ = 0

for all g ∈ Lp′(Ω). Hence for every test function g ∈ Lp′(Ω) , we have

lim
k→∞

∫
Ω
fkg dx =

∫
Ω
fg dx,

so that fk ⇀ f in Lp(Ω).

(ii) We know that ∫
Ω
fh dx = lim

k→∞

∫
Ω
fkh dx =

∫
Ω
gh dx

for any h ∈ Lp′(Ω). Thus ∫
Ω
(f − g)h dx = 0 ∀h ∈ Lp′(Ω). (8)

We take h to be h = |f − g|p−1 sgn(f − g). Before plugging it into (8), however, we show

that h ∈ Lp′(Ω) and hence is a valid competitor. Indeed, h is measurable and∫
Ω
|h|p′ dx =

∫
Ω
|f − g|p′(p−1) dx =

∫
Ω
|f − g|p dx < ∞.

By plugging this h into (8) we get

∥f − g∥pLp =

∫
Ω
(f − g)h dx = 0,

which implies f = g in Lp(Ω).

(iii) We begin by proving the following inequality:

|z|p ≥ |y|p + y⋆(y)(z − y) ∀z, y ∈ R (9)

where

y⋆(y) =

py|y|p−2 if y ̸= 0;

0 if y ̸= 0.
(10)

If z = 0 or y = 0, (9) is trivial. Otherwise, it follows from convexity of ζ 7→ |ζ|p. (Indeed,

recall that for f convex and C1, we have proven that f(x) ≥ f(y) + ⟨∇f(y), x − y⟩ .) Now
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let x ∈ Ω and put y = f(x), z = fk(x). By (9) we get

|fk(x)|p ≥ |f(x)|p + y⋆(f(x))(fk(x)− f(x)).

Integrating over Ω we get∫
Ω
|fk(x)|p dx ≥

∫
Ω
|f(x)|p dx+

∫
Ω
y⋆(f(x))(fk(x)− f(x)) dx. (11)

Note that y⋆(f) ∈ Lp′(Ω) so that since fk ⇀ f the integral on the right converges to 0 as

k → ∞. Therefore taking the liminf of (11), we get

lim inf
k→∞

∫
Ω
|fk|p dx ≥

∫
Ω
|f |p dx

which gives the desired result.

(iv) Let f ∈ Lp(Ω). It is clear from Hölder’s inequality that

sup

{∫
Ω
fg dx : g ∈ Lp′(Ω), ∥g∥Lp′ (Ω) ≤ 1

}
≤ ∥f∥Lp(Ω).

Now we prove the reverse inequality. Actually we prove that there is g ∈ Lp′(Ω) such that∫
Ω
fg dx = ∥f∥Lp(Ω).

If p = 1, we define g : Ω → R by g(x) = sgn(f(x)). It is clear that g ∈ L∞(Ω) and∫
Ω
fg dx =

∫
Ω
|f | dx = ∥f∥L1(Ω).

If p > 1, we define g : Ω → R by

g(x) =
|f(x)|p−1

∥f∥p/p
′

Lp(Ω)

sgn(f(x)).

Then g is measurable and∫
Ω
|g|p′ dx =

∫
Ω

|f |(p−1)p′

∥f∥pLp(Ω)

dx =
1

∥f∥Lp(Ω)

∫
Ω
|f |p dx

implying that g ∈ Lp′(Ω). In addition,

∫
Ω
fg dx =

∫
Ω

|f |p

∥f∥p/p
′

Lp(Ω)

dx =
1

∥f∥p/p
′

Lp(Ω)

∫
Ω
|f |p dx =

∥f∥pLp(Ω)

∥f∥p/p
′

Lp(Ω)

= ∥f∥
p− p

p′

Lp(Ω) = ∥f∥Lp(Ω),

which proves the equality.

(v) Now, assume f is measurable but f ̸∈ Lp(Ω). We set ∥f∥Lp(Ω) = +∞ . Consider gM,R : Ω → R
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defined by

gM,R = f1[|f |≤M ]1[|x|≤R].

Then gM,R ∈ Lp(Ω) since it is a bounded function with compact support and ∥gM,R∥Lp(Ω) →
∞ as M,R → ∞. Thus, for all L > 0, ∃M0, R0 such that ∥gM0,R0∥Lp(Ω) > L. By (iv), there

exists h0 ∈ Lp′(Ω) such that ∥h0∥Lp′ (Ω) ≤ 1 and

L ≤ ∥gM0,R0∥Lp(Ω) =

∫
Ω
gM0,R0h0 dx =

∫
Ω
f1[|f |≤M0]1[|x|≤R0]h0 dx =

∫
Ω
fhM0,R0 dx,

where hM0,R0 : Ω → R defined by hM0,R0 = h01[|f |≤M0]1[|x|≤R0].Observe that ∥hM0,R0∥Lp′ (Ω) ≤
∥h0∥Lp′ (Ω) ≤ 1 and ∫

Ω
fhM0,R0 dλ ≥ L.

Thus,

sup

{∫
Ω
fg dx : g ∈ Lp′(Ω), ∥g∥Lp′ (Ω) ≤ 1

}
≥ L.

Since L is arbitrary, we get

sup

{∫
Ω
fg dx : g ∈ Lp′(Ω), ∥g∥Lp′ (Ω) ≤ 1

}
= ∞,

which finishes the exercise.
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