Serie 8
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course. The
exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1 (Orthonormal system). Recall that L?((0,7); C) can be endowed with the scalar product

T
(f.g) = /0 fgd.

(i) Show that the functions {e,(x) := e*™"*} .7 form an orthonormal system in L2((0,1);C),
namely

0 ifn#m,
(en,em) = ) (1)
1 ifn=m.

(ii) Show that the functions {\/% sin(2Z1L), \/% 005(2“%)} N form an orthonormal system of
ne
L*((0,T);R).

Solution:
(i) Indeed, using that e2mme = ¢=27MT e have

foldarzl if n = m,

1 1
<€n7 €m> _ / e2wian dr — / eQWi(n—m)z dr — A
0 0 [Lemitn-me de — 0 ifn £ m.

(i1) Set an(z) := \/%cos (2222) and b, (z) := /2 sin (2222) . We need to show that (a,,by,) =
0, (an,am) = dpm and (by,by,) = dppm, for all n,m € N. Recall the following trigonometric
identities:

2 cos(x) cos(y) = cos(xz + y) + cos(x — y),
2sin(z) sin(y) = cos(x — y) — cos(z + y),
2sin(z) cos(y) = sin(z — y) + sin(z + y).




We first prove (a,, by,) = 0 for all n,m € N: we compute using the third identity

/ Cein (2;%) cos (27;%) a3 | ' [Sin (2;@ - m):c) +sin <2T7T(n " m)m)] da

T 21 T 2m
sin ((n —m)x) de + — sin ((n 4+ m)x) dz.

:EO 47'('0

For any m,n € N, both integrals take the value 0 and we conclude. The remaining equations

are proved in a similar way using the other two trigonometric identities.

Exercise 2. For f € L*(R"), we define for £ € R"
[© = | femda. 2)

We will call f the Fourier transform of f. Prove that

~

(i) f is well-defined, i.e. that the integral on the right-hand side of (2) converges for every £ € R™,

(ii) f is a bounded function on R™,

(i) Ty o0 £(£) = 0.

Hint:  Write (and justify it) that for any £ € R"

f(e) = % y [f(2) = fla — &)} e~ g with € = 2é|2’

and use a previous exercise.

Solution: As for the well-definition (i), we use the monotonicity of the integral together with the

fact |[e~2™¢| = 1 for every x,& € R™ to estimate

NGIE

A f(@)e?™ S da| < || f]| 1wy

for every £ € R™. Hence the right-hand side of (2) converges for every £ € R™ and f is well-defined.

The very same computation shows that

sup | f(€)| < 1 @ny s

geR™

ie. f is a bounded function of £ . Regarding (iii), we note that

f©= [ J@erda
= f(z = &)e 2mGE=E)E gy
R”

§

= —/ f(z—€&)e 2™ dz with & = T




hence

£ 1 —2miz-
J© =35 | @)= fle-}e? de.
Then by monotonicity of the integral

F@1<5 [ 150 = fa=)lle =3 [ |f@) - fla =€) do.

Finally, since [£'| — 0, as || — 00, limjg|_,q |£(€)] = 0 due to Exercise 3 of Series 6.

Exercise 3. Show that there does not exist a function I € L*(R") such that
f*I=fforall fe L'(R").

Hint: Use the Fourier transform and Exercise 2 of Series 8.

Solution: Suppose for a contradiction that such an I exists. Recall that that for f,g € L'(R"),

we have (f * ¢)(€) = f(£)§(€). Thus f(€)I(€) = f(€), and therefore I(¢) = 1 for all ¢ € RY.
However, since I € L*(R"), we have I(£) — 0 as |¢| — co (see Exercise 2 of Series 8), giving the

desired contradiction.

Exercise 4. We introduce the Fejer kernel Fy: R — C defined by
3 ]\ ori
FN(_%') = Z <1 _ N> e?ﬂ'mx .

n=—N

The Fejer kernel will play a central role in the proof of the uniform convergence of the Fourier series.

Before that, we establish some of its important properties.
(i) Show that Fy has no imaginary part for every = and plot with Wolfram-alpha Fy, F», F3, Fj.

(ii) Show that
2

1 (sin(nNx) 2

N \_sin(mz) )

(iii) Show that F > 0, that fol Fydx = 1 and that for every ¢,§ > 0 there exists Ny such that
VN > Ny we have

Fi(o) = +

N-1
§ :627rzn:p
n=0

Fn(z) <e Vxe(6,1-56).

(iv) If f,g: R — R are continuous and 1-periodic, we define the periodic convolution by

1
(f*9)(x) = /O fw)a(z - v)dy,



for x € R. Using (iii), show that for f continuous and 1-periodic, we have

If — f* En|lze — 0as N — co.

(v) For f:R — R continuous and 1-periodic, we define the Nth Cesaro mean by

(I)Nf . N Z Snf

where Sy, f(z) = 377 (f,ej)ej(x) (recall from Exercise 1 that e;(z) := e?™I% and (f,e;) ==
fol f(x)e=?™% dx ). Using the definition of periodic convolution in (iv), show that

®, f(z) = (Fn * f)(x) .

Hints:
e For (ii), use the geometric series formula.

e For (iv), observe (and prove) that f is uniformly continuous.

Solution:
(i) We have
Yol o Y o - -
Z <1 _ N) e2minT _ 1 4 Z (1 _ N) (627rmm + e—27rzn;r _ Z (1 _ 7) cos(2mna)
n=—N n=1 n=1

(3)
which proves that Fj has no imaginary part.

(ii) We begin by proving

Indeed,

( Z e2mm> < Z —27rinx)

n=0

N-1
§ :e2mnz
n=0

so that we easily see that the coefficient in front of each e

2minx

is given by N — |n|. Thus,

L 2
_ 2min
Fy(z) = I Z e (4)
n=0
Before continuing with the other equality, notice that > ja" = ";L_l L Therefore,
Nzl dming _ e2miNz _ q _ ewiNac(eiﬂNm _ e—iWNJZ‘) _in(N-1)a Sin(ﬂ'Nﬂ?)
e2miz _ ] elne (eiwx _ e—iﬂ‘:l?) SiIl(T['.T) '




Thus, due to (4), ) 9
Fv@ = <W> |

(iii) It follows from (5) that Fiv > 0. Moreover, using (3) we have

1 N n 1
Fy(x)dr=1+2 1—— /cos27mx dr = 1.
| Pt > (1= 3) [ costzmna)

Fix now ¢,6 > 0. Since |sin(mNx)| < 1, we deduce from (5) that whenever 6 <z <1—46

2 1
< .
~ Nsin%(n6)

1
N

1

sin(7x)

Fn(z)

Thus, choosing N large enough, we can make Fy(z) <e forall d <z <1—9¢.

(iv) By periodicity, it is enough to show the convergence for z € [0,1]. Let thus € > 0 fixed.
Since f is bounded, there is M such that |f(z)| < M for all € [0,1]. As a continuous
function on a compact set, f is uniformly continuous on [0, 1]; thus there exists 6 = d(g) > 0
such that for all |z — y| < §, then |f(x) — f(y)| < e. From (iii), we know that there exists
No = Ny(g,6) such that for all N > Ny, Fy(x) < e for all z € (6,1 — §). Moreover since
fol Fn(z)dx =1, we have

1
f(z) = /0 J(@)Fx(y) dy.

We estimate for x € [0, 1] using the monotonicity of the integral and the positivity of Fy

1 1 1
|f($)f*FN($)|=' [ r@rstas - [ f(xy)FN@)dy\: [ 1@ - 1 - Pt ay

1
< /0 F(z) — F(z — )| Fy(y) dy.

We can now split this integral in three parts: for y € [0,0] U [1 — §, 1] we have by choice of §
|f(xz)—f(z—y)| < € where as for y € [§, 1 —0] we just have the bound |f(z)— f(z—y)| < 2M .
Thus for N > Ny

1-6 1

2MFy(y)dy + [ <Py dy
17

9
@)= 1+ Pyl < [ ePatway+ [

<e+2Me+e=(2M +2)e,
where we used N > Ny and the choice of Ny in the second inequality. Thus, for all N > Ny
If = f* Enllreeqo) < (2M +2)e.

We conclude by the arbitrariness of ¢.

(v) We compute for z € [0,1] using the linearity of the integral and the definition of the L2




scalar product

N
frFn()= >
=—N

n

n=—N
1 N—-1 n
= > (fie)ej(a) = onf().
n=0 j=—n

Exercise 5. Let p € [1,00), fx, f € LP(Q2) for @ C R™ measurable and denote p’ € [1, oo the conjugate
exponent, i.e.

+ - =1

1
v
Q)” or in short “f, — f” if for all g € L? (Q) we have :

"=

—~

We say that “f, converges to f weakly in LP

lim/fkgda::/fgdx.
k—oo J Q

Show that the following holds for p € [1,0), f,g, fr € LP(2):

(i) fr = fin LP(Q) = fr — f in LP(Q), that is strong convergence in LP(2) implies weak

convergence in LP(Q).
(ii) fx — fand fr — g in LP(Q2) = f =g in LP(Q), that is the weak limit is unique.

(i) fx = f = Ifller@) < liminfy oo || fellr(@) that is the LP(2)-norm is lower semi-continuous

with respect to weak convergence.

(iv) If f € LP(Q2), we have that
T p—— { | s9ds: g€ 7@, gl < 1}. (6)

(v) (%) If f: Q — R is measurable but f ¢ LP(€2) we set || f||r() = +00. Prove that (6) holds even

in this case.
Hints:

e For (iii), use and prove the following “convexity” inequality:
12l = yl” +y"(y)(z —y) Vz,yeR (7)

where
pylylP~? ify #0;

y'(y) = .
0 if y #0.



e For (v), construct a sequence of test functions g, € L? () such that

‘/Qfgkdx

> k.

Solution:

(i) If fx — f in LP(2) have limy o || f — fllzr() = 0 so that by Hélder’s inequality

lim ’/ fkgdx—/fgdac
k—oo | Jo QO

for all g € L” (). Hence for every test function g € L” (), we have

lim/fkgdx:/fgda:,
k—oo Jq Q

— Jim | [ (e~ g

< lim {|fy = fllzellgll =0

so that fi, — f in LP(Q).

(ii) We know that

/fhda:: lim/fkhdz:/ghdx
QO k—o0 QO QO
for any h € LP (€2). Thus

/(f—g)hdxzo Vh e LF' (). (8)
Q

We take h to be h = |f — g[P"!sgn(f — g). Before plugging it into (8), however, we show

that h € LP () and hence is a valid competitor. Indeed, h is measurable and

[l do= [ 1 =gV da = [ |7 = gl do < oc.
Q Q Q

By plugging this A into (8) we get

I — gl =/Q<f—g>hda::o,

which implies f = g in LP(Q).

(iii) We begin by proving the following inequality:
2P = P +y"()(z—y) VzyeR (9)

where

. pylylP~*  if y #0;
v (y) = (10)

0 if y # 0.
If z=0o0r y =0, (9) is trivial. Otherwise, it follows from convexity of { — |(|P. (Indeed,
recall that for f convex and C!, we have proven that f(z) > f(y) + (Vf(y),z — ) .) Now




(iv)

(v)

let x € Q and put y = f(z), z = fr(z). By (9) we get

[fe(@)P = [ (@) +y" (f () (fr(z) = f(=)).

Integrating over 2 we get

1ﬂnuwwxzlﬂﬂwW¢pgéyWﬂmxn@»—ﬂ@wm

(11)

Note that y*(f) € L' (Q) so that since f, — f the integral on the right converges to 0 as

kE — oo. Therefore taking the liminf of (11), we get

liminf/|fk|pdx2/|f|pdx
k—oo Jq Q

which gives the desired result.

Let f € LP(R). It is clear from Holder’s inequality that

sup{/ﬂfgdx g e LP(Q), 19l o (@) < 1} < £ oy

Now we prove the reverse inequality. Actually we prove that there is g € LPI(Q) such that

/mm:wm@
Q

If p=1, we define g: Q@ — R by g(x) = sgn(f(x)). It is clear that g € L*>°(2) and

Amm=4mm=wm@

If p > 1, we define g: 2 — R by

|f ()PP~

@)umm

sg(f(z))-

Then g is measurable and

/‘g|p/d$: de:1/|f|pdx
Q o IF 1z I fllzr () Jo

implying that g € LP' (Q). In addition,
p
IfIP 1 [y p—5
[ gets= [ d = [ 1sras e
0 o | fInm, I, 17126, ”

which proves the equality.

= fllzr (o)

Now, assume f is measurable but f ¢ LP(Q). Weset || f|| 1) = +oo. Consider gayr: @ — R




defined by

gum,r = fLyp<mzi<r)-

Then ga,r € LP(R) since it is a bounded function with compact support and [|gas, ||y (@) —
0o as M, R — oo. Thus, for all L > 0, 3My, Ry such that ||grs,, g, ||l Lr () > L. By (iv), there
exists hg € LP () such that 1ol o () < 1 and

L < |lgmo,roll o) = /QgMo,RohO dx = /Qfﬂ[|f|§Mo}ﬂ[|w§Ro}h0 dx = /thMo,Ro dx,

where hMo,RO: Q) — R defined by hMo,Ro = hUﬂHf\SMo]ILHfE\SRo]' Observe that HhMO,ROHLP’(Q) <
||h0HLp’(Q) <1and

/ tho,Ro d\ > L.
Q

Thus,
Sup{/gfgdx g c Lp/(Q)a ||g||LP’(Q) < 1} > L.

Since L is arbitrary, we get

sup{/ﬂfgda: g€ LP(Q), ||9||LPI(Q) < 1} — oo,

which finishes the exercise.




