Serie 7
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course. The
exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Derive the following formula by expanding part of the integrand into a series and justify

the term-by-term integration.
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Solution: Define the sequence of functions f,(z) = >}, %x%eﬁ%, for n > 1. Since

Zzozo(—l)k% converges to sin(x) for all x € R, f,,(x) converges pointwise to f(z) = e

for z € (0,00). The sequence {f,}, is dominated by F(z) = e~ =D% on [0, c0):
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We know F is absolutely integrable on [0, 00) because s > 1, hence the dominated convergence

theorem implies
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= arctan(1/s).
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Exercise 2. Let 2 € R? be measurable. Prove that L>°(2) is complete. In other words, if f,: Q — R,
n € N is a Cauchy sequence in L*(Q2), then there is f € L% () such that

lim [|fn — fllz= = 0.
n—oo

Hint: Note that {z € Q: |fn(x) — fin ()| > || fn — fm|lzc} has measure 0. Find a set E of measure 0
such that for any = € E¢, {f,(z)}nen is Cauchy sequence. Then call the limit f(z) = lim, o0 fn(2),
for all x € E°. We get a function f defined a.e. Finally show that f € L*°(f2) and f, — f in L.



Solution: For v, € N and v # u, we define

App =Lz € Q:[fu(x) = fu@)] > fv = fullL=}
B, ={z € Q:|fu(x)] = [[fullL=}-

Since all these sets have Lebesgue measure 0, the set

E=4|J A, U {QBV}

v

has measure 0 as well (as the countable union of null sets). We claim that for x € E¢ {f,(x)}52,

is a Cauchy sequence. Indeed, x € E° means that

T € mAvw

and therefore |f,(x) — fu(x)| < || fu — fullze for every v,u € N, hence Cauchy. For z € E¢, we
can therefore define f(x) to be the limit of this Cauchy sequence, that is f(z) = lim,— fu(2),
and for z € E we set f(z) to an arbitrary value. We now claim that f € L*(Q) and f, — f in
L>(Q).

Since f, is a Cauchy sequence in L>°(2), for any € > 0 there exists N € N such that

| fo = fullbee <& Vv,u>N.
Thus, for all z € E€ and if v, > N |f,(x) — fu(z)| < || fu — fullze < e. Letting v — oo,
7(@) = fu(@)] = lim |£(@) = ful@) <& Vi N.
Thus |f — fu| < € a.e. and implies
I 1L = Ful + 1l < 1l + 2 ace.
As a consequence, we get f € L*°(€2). Moreover, since |f — f,| < € a.e. for all 4 > N, we conclude
If = fullLe <& Yu>N,

which finishes the proof.

Exercise 3. Let Q C R? be a bounded and measurable set and let f, f, : @ — RU {#o0} for n € N

be measurable such that

(i) f, fn€ LY(Q) foralln €N,

(ii) lmp oo || fo — fHLw(Q) =0.

Prove, using the dominated convergence theorem, that

lim fnd:c—/fdx.

n—o0



Compare this with the first theorem about permuting limit and integral seen during the first year

analysis courses.

Solution: We first show that (ii) implies uniform convergence outside a set of measure 0. Indeed,
from (ii) we deduce that for every k > 0 there exists Nj € N such that for any n > N we have
Ilfrn = fllLee (o) < #. This implies that for all n > N}, there exists €, ; € Q with m(€2, x) = 0 such
that

for all z € Q\ Qp .

| =

[fu(z) = f2)] <

Set Q= Upen Un=n, nk - Since countable union of null sets are null sets, we deduce that
m(2) = 0. By definition, it follows that f, — f uniformly on ©Q\ €, in particular f, — f
pointwise on Q \ Q2.

Let now € > 0. From the uniform convergence on Q\ €2, we deduce that there exists N =
N(e) € N such that for all n > N

|fu(z) — f(z)]| <e forallzeQ\Q. (1)
We define the function
g = max(‘fﬂ ) ‘f2’ IERED) ‘fN—1’ ) ‘f| +5)'

It is clear that g is a measurable and nonnegative function which satisfies pointwise

N-1

0<g< ) |ful+1fl+e

n=1

Moreover, since €2 is bounded, the constant function equal to € belongs to L'(£2). The space L (£2)

being a vector space, we have

N—-1
S lfal+ £l +e € LY(Q).
n=1

By monotonicity of the integral, we get g € L'(Q2). Moreover, we claim that |f,(z)| < g(z) for
every z € Q\ Q and for all n € N (in particular, the bound holds for almost every z). Indeed, if
r €N\ Qand n < N — 1, the result follows from the definition of g. Otherwise, if n > N we have
by the triangular inequality and from the choice of N in (1) that for every z € Q\ Q

[fn(@)] < |fn(@) = f(2)] + [f(2)] < [f(@)[+e  <glz).

Finally, by the dominated convergence theorem,

lim fnd:v:/ lim f,dx = / fdx.

Exercise 4. We want to investigate the interaction of the L*>°-norm and continuous functions.

(i) Let © C R™ open and assume that F C € is a zero measure set. Prove that Q\ F is dense in .



(ii) Let f,g € C(R™) such that f = g almost everywhere. Show that f = g everywhere.

(iii) Let 2 C R™ open and f € C(2). Prove

10y = I fllcogey = sup | f(2)]-
e

Solution:

(i)

(iii)

Assume for a contradiction Q \ E is not dense. Then, there is z € ) and r > 0 such that
B(z,r) N QN (Q\ E) = (. This implies B(xz,r) N Q C E. Since 2 is open, we have that
m(B(z,r) N ) > 0 and then, by the monotonicity of the Lebesgue measure

0 < m(B(z,7) N Q) < m(E),

which is a contradiction.
Remark : The inverse statement is not true. For example, Q is dense in R but R\ Q is

not of measure 0.

Consider the function h € C(R™) defined by h := f — g. Clearly,

E:={z €R": f(x) # g(x)} = {z €R" : h(z) # 0} = h™'(R\ {0})

is open as preimage of an open set through a continuous function. Since f = g a.e.,

m ({z € R" : f(z) # g(z)}) = 0

and therefore R™ \ F is dense in R™ by (i). In addition R™ \ E is closed, thus R" \ E =
R"™ \ E = R", which implies £ = (). We conclude f = g everywhere.

Let f € C(Q). We have the inequality

Ifllzee = inf{a>0:|f(z)] < aae.} <inf{a>0:|f(z)| < a everywhere} = sup|f(z)]|.
e

Now, assume for a contradiction || f||ze < sup,cq |f(z)| and consider two cases.
Case 1: sup,cq |f(z)| = +oo.

In this case, for any constant C' > 0, there exists xg € € such that |f(z¢)|] > C and by
assumption || f||pe < +o00. Take C = || f||f+2 and fix g € Q such that | f(x)| > || f]| Lo +2.
By continuity of f, there is § > 0 such that for all x € B(zo,d), we have |f(z) — f(zo)| < 1.
Then, for all z € B(xg,?),

>
>

[f (@) = [f(@o)| = [f(wo) — f(@)| = [ fllzee + 1.

Since m(B(z0,0)) > 0 and |f| > || f||L~ on B(zo,d), this gives a contradiction.

Case 2: sup,cq | f(x)] < +oo.




Let € = sup,eq |f(z)| — || fl|Lee > 0. By definition of the supremum, there exists xg € € such
that

| f(zo)| = sup|f(2)] — e
Again, by the continuity of f, there is § > 0 such that for all x € B(xg,0),
1
7() — flao)| < 5.

In particular, for all x € B(xg,0), we have by the choice of € that

7(@)| 2 17 o) ~ 17 wo) ~ F@)] > sup |f(@)] — 2¢ = [Ifll= + 2=,
xeQ)

Again, since B(zg,d) is not a measure zero set and ¢ is arbitrary, this is a contradiction.

Exercise 5 (x). We show that there exist many non-measurable sets. More precisely, let A C R with
m*(A) > 0. Show that then there exists B C A such that B is not measurable.

Hint: Consider rational translations of the Vitali set V' and use and prove the following

Claim:  For any measurable set E such that m*(E) > 0 the difference set Dg := {x —y : xz,y € E}

contains an interval around the origin.

Solution: Recall the construction of the Vitali set. We call A C R a coset of Q if it takes the
form A = x + Q for some x € R. Note that two cosets are either equal or disjoint and each coset
has a nonempty intersection with [0, 1]. Using the axiom of choice we can pick an element in each
of the cosets belonging to [0, 1] and the union of these elements forms the Vitali set. Recall that

the Vitali set V' is not measurable. Moreover, if we define V, = ¢+ V for all ¢ € Q, we obtain

Uv.=Rr

q€Q

Indeed, for any x € R, = belongs to some coset A of Q. Hence there is v € V, ¢ € Q such that
x = v+ ¢q. Thus z € V, and therefore x € UyeqVy. This proves qu@Vq = R. In addition
V,NVy = 0 for all rationals ¢ # ¢’. To prove this, assume by contradiction that some z € V;N V.
Then there exists v,v’ € V such that z = v + ¢ = v/ + ¢/. It follows that v and v’ belong to
the same coset of Q and by construction of the Vitali set, v = v’. Thus, ¢ = ¢’ which gives us a
contradiction.

From subadditivity of the outer measure,

0<m*(4) <> m*(ANV).
qeQ

Therefore, there exists a ¢ € Q such that m*(ANV,) > 0. We will show that this set ANV, is
non-measuable. To this aim, we need the following

Claim: For any measurable set E such that m*(E) > 0 the difference set Dg := {x—y : x,y € E'}

contains an interval around the origin.




Assume for a moment that we have already proved this claim. Notice that that the difference set
Dy, does not contain any rational number. (To prove it, assume for a contradiction that there is

a non null rational number r € V;,. Then there exists two distinct u,v € V' such that
r=(u+q) - (v+q =u-—v,

which implies that u and v are in the same coset of Q and this contradicts the construction of the
Vitali set.) In particular, the difference set D Anv, C Dy, cannot contain any interval around the
origin and hence we deduce from the claim that A NV is non-measurable.

We are left to prove the claim.

Proof of the claim: We can suppose without loss of generality that m*(F) < co. Indeed, it
suffices to replace E by E N [—n,n] with n large enough. Observe that if F' C E, then Dr C Dg.
Moreover, since m*(E) > 0 there exists a compact set K C E such that m*(K) > 0 and then
there is an open set U such that K C U and

m*(U) < 2m* (K). 2)

Now take § := dist(K,U¢) = inf{|z —y| : * € K,y € U°}. Notice that since K is compact and U*¢
is closed, d > 0. Now we claim that for any = € (=4, ),

Kn(z+ K)#0.

Indeed, if we assume for a contradiction that for some z € (—4,6), K N (x + K) = (. Then, since
KUu(z+K)cU

m*(U) =m((U) >m(z+ K) + m(K) =2m(K) = 2m"(K),
which contradicts (2). Hence (z + K) N K # (), for all z € (—4,d). Thus,
(=0,0)C{r—y:zx,yec K} C{x—y:z,y € E}.

This proves the claim and achieves the exercise.




