
Serie 6

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (⋆) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Let Ω := (0, 1)×(0, 1) . Investigate the existence and equality of
∫
Ω f d(x, y),

∫ 1
0

∫ 1
0 f(x, y) dx dy

and
∫ 1
0

∫ 1
0 f(x, y) dy dx for

(i) f(x, y) := x2−y2

(x2+y2)2
.

(ii) f(x, y) := (1− xy)−a for a > 0 .

Compare your result with Fubini’s Theorem.

Solution:

(i) We have∫ 1

0

∫ 1

0
f(x, y) dy dx =

∫ 1

0

∫ 1

0
∂y

(
y

x2 + y2

)
dy dx =

∫ 1

0

1

x2 + 1
dx = [arctan(x)]10 =

π

4

and∫ 1

0

∫ 1

0
f(x, y) dx dy =

∫ 1

0

∫ 1

0
∂x

(
−x

x2 + y2

)
dx dy =

∫ 1

0

−1

y2 + 1
dy = [− arctan(y)]10 = −π

4

This computation does not contradict Fubini as f /∈ L1(Ω) . Indeed, we compute by Tonelli:∫ 1

0

∫ 1

0
|f(x, y)| dy dx =

∫ 1

0

∫ x

0

x2 − y2

(x2 + y2)2
dy dx+

∫ 1

0

∫ 1

x

y2 − x2

(x2 + y2)2
dy dx

=

∫ 1

0

∫ x

0
∂y

(
y

x2 + y2

)
dy dx+

∫ 1

0

∫ 1

x
∂y

(
−y

x2 + y2

)
dy dx

=

∫ 1

0

[
y

x2 + y2

]x
0

dx+

∫ 1

0

[
−y

x2 + y2

]1
x

dx

=

∫ 1

0

x

2x2
− 1

1 + x2
+

x

2x2
dx =

∫ 1

0

1

x
− 1

1 + x2
dx = ∞.
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(ii) Let fa(x, y) = (1 − xy)−a. Note that fa(x, y) is positive on Ω so
∫
Ω fa(x, y)d(x, y) =∫ 1

0

∫ 1
0 fa(x, y) dy dx =

∫ 1
0

∫ 1
0 fa(x, y) dx dy by Tonelli’s theorem. We show that

∫
Ω fa(x, y)d(x, y)

is finite if and only if 0 < a < 2. Let’s consider two cases: a = 1 and a ̸= 1.

• Case a = 1: In this case the integral is finite and we can actually compute it.∫ 1

0

(∫ 1

0

dx

1− xy

)
dy =

∫ 1

0

(
−1

y

∫ 1−y

1

ds

s

)
dy by setting s = 1− xy, ds = −y dx

=

∫ 1

0

1

y
[log(s)]11−y dy =

∫ 1

0

− log(1− y)

y
dy

=

∫ 1

0

∞∑
k=1

yk−1

k
dy by expanding log(1− y) into its Maclaurin series

=
∞∑
k=1

∫ 1

0

yk−1

k
dy =

∞∑
k=1

[
1

k2
yk
]1
0

dy =
∞∑
k=1

1

k2
=

π2

6
,

where we interchanged the serie and the integral by either monotone convergence (the

serie has positive terms) or by uniform convergence of the Maclaurin serie.

• Case a ̸= 1: We have

∫ 1

0

(∫ 1

0

dx

(1− xy)a

)
dy =

∫ 1

0
−1

y

(∫ 1−y

1

ds

sa

)
dy

=

∫ 1

0
−1

y

[
s1−a

1− a

]1−y

1

dy

=

∫ 1

0
−1

y
· (1− y)1−a − 1

1− a
dy.

Observe that the integrand y 7→ − 1
y · (1−y)1−a−1

1−a is continuous and bounded (by 1
1−a)

on (0, 1) if 0 < a < 1, and thus has a finite integral.

So assume a > 1. In this case, observe that

(1− y)1−a ≤ −1

y
· (1− y)1−a − 1

1− a
≤ 1

a− 1
(1− y)1−a, ∀y ∈ (0, 1).

Note that the integral
∫ 1
0 (1−y)1−ady is finite if and only if a−1 < 1, i.e., a < 2. Hence,

we conclude that the integral
∫ 1
0 − 1

y · (1−y)1−a−1
1−a dy is finite if and only if a < 2.

We conclude that fa is absolutely integrable if and only if 0 < a < 2. Since f is absolutely

integrable, we can apply Fubini’s theorem, which is consistent with our computations.

Exercise 2. The Dirichelet integral is the improper integral defined by∫ ∞

0

sin(x)

x
dx.

It is an example of existence of improper Riemann integral, but it is but not absolutely integrable

in Lebesgue sense (therefore it is not Lebesgue integrable). In particular, prove that the following
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equality holds

lim
t→∞

∫ t

0

sinx

x
dx = π/2 ,

but the Lebesgue integral ∫ ∞

0
|sinx

x
|dx = ∞

Remark 1. Notice that the Riemann integral is defined for bounded intervals and then extended to

R with improper integrals. In class you studied that f : [a, b] → R (with a, b ∈ R, i.e. a ̸= −∞ and

b ̸= ∞) is Riemann integrable then it is Lebesgue integrable.

Solution:

You might have already encountered this integral in other analysis courses and you were maybe

asked to show that the function x 7→ sin(x)
x is Riemann-integrable but not absolutely integrable.

Let’s recall the proofs of theses two properties :

• The function x 7→ sin(x)
x is Riemann-integrable on [0,∞) because it can be extended by

continuity at 0, and in particular it is Riemann-integrable on [0, π]. Also, ∀t ≥ π∫ t

π

sin(x)

x
dx =

IBP

[
− cos(x)

x

]t
π

−
∫ t

π

cos(x)

x2
dx =

− cos(t)

t
− 1

π
−
∫ t

π

cos(x)

x2
dx.

We know that the integral
∫∞
π

cos(x)
x2 dx exists and equals limt→∞

∫ t
π

cos(x)
x2 dx because

∣∣∣ cos(x)x2

∣∣∣
is dominated by 1

x2 . We conclude that
∫ t
π

sin(x)
x dx converges as t → ∞.

• The function is not not absolutely integrable because∫ ∞

0

∣∣∣∣sin(x)x

∣∣∣∣ dx = lim
n→∞

n∑
k=0

∫ (k+1)π

kπ

∣∣∣∣sin(x)x

∣∣∣∣ dx
≥ lim

n→∞

n∑
k=0

1

(k + 1)π

∫ (k+1)π

kπ
| sin(x)| dx︸ ︷︷ ︸
=2

=
2

π

∞∑
k=1

1

k
= ∞.

For the first equality, we implicitly used the monotone convergence theorem.

To compute the value of the integral, we use Fubini’s theorem, which can only be applied to

absolutely integrable functions. We therefore restrict the domain of integration to a bounded one

to understand the integral as a Lebesgue integral:∫ t

0

sinx

x
dx =

∫ t

0
sinx

∫ ∞

0
e−ax da dx =

Fubini

∫ ∞

0

∫ t

0
sinxe−ax dx︸ ︷︷ ︸
=:It(a)

da

Now the inner integral It(a) is taken on a bounded domain so we can again re-interpret it as a

Riemann-integral and use integration by parts:

It(a) =
[
− cos(x)e−ax − a sin(x)e−ax

]t
0
− a2It(a) =⇒ It(a) =

1− e−at(cos(t) + a sin(t))

1 + a2
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Notice that the function It is dominated by a 7→ 2
1+a2

, which is Lebesgue integable, and that

limt→∞ It(a) =
1

1+a2
. We can therefore use the dominated convergence theorem to conclude:

lim
t→∞

∫ t

0

sin(x)

x
dx = lim

t→∞

∫ ∞

0
It(a) =

∫ ∞

0

da

1 + a2
=

π

2
.

Exercise 3 (Layer cake representation). Let f : Rd → R be integrable. For α > 0 , we set Eα := {x ∈
Rd : |f(x)| > α}. Prove that ∫

Rd

|f(x)| dx =

∫ ∞

0
m(Eα) dα.

Solution: First, notice that∫
Rd

|f(x)| dx =

∫
Rd

∫ |f(x)|

0
1 dα dx =

∫
Rd

∫ ∞

0
1[α<|f(x)|](x, α) dα dx

where

1[α<|f(x)|](x, α) =

1 if α < |f(x)|;

0 otherwise.

Since 1[α<|f(x)|] ≥ 0 is a non-negative and measurable function (here we use the measurability of

f), we can use Tonelli’s theorem to commute the integrals. In other words, we get∫
Rd

|f(x)| dx =

∫ ∞

0

∫
Rd

1[α<|f(x)|](x, α) dx dα =

∫ ∞

0

∫
Rd

1[x∈Eα](x, α) dx dα =

∫ ∞

0
m(Eα) dα.

Exercise 4. From every Lp-convergent sequence {fn}n>0 (1 ≤ p < ∞), we can always extract a

subsequence that converges pointwise almost everywhere. Yet, it might happen that the full sequence

fn nowhere converges pointwise. Here we discuss such an example. For all n ∈ N there exists a unique

m ∈ N and a unique j ∈ {0, 1, ..., 2m − 1} such that n = j + 2m. We define

In = [
j

2m
,
j + 1

2m
) fn(x) = χIn(x)

Observe that f1 = χ[0,1], f2 = χ[0,1/2], f3 = χ[1/2,1], f4 = χ[0,1/4], f5 = χ[1/4,2/4], f6 = χ[2/4,3/4],

f7 = χ[3/4,1], f8 = χ[0,1/8], · · · .

(i) Show that fn converges in Lp(0, 1) for 1 ≤ p < ∞.

(ii) Show that fn converges pointwise nowhere on [0, 1).

(iii) Find a subsequence of fn which converges pointwise a.e. on [0, 1).
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Solution:

(i) With 1 ≤ p < ∞ we have

∥fν∥Lp = m(Iν)
1/p =

1

2h(ν)/p
→ 0 as ν → ∞

and thus fν → 0 in Lp(0, 1) as ν → ∞.

(ii) For all n ∈ N, the family {I2n , I2n+1, . . . , I2n+1−1} covers [0, 1]. It follows that for all x ∈ [0, 1]

and k ∈ N, there is ν0k , ν
1
k > k such that

x /∈ Iν0k
and x ∈ Iν1k

.

Thus, for all x ∈ [0, 1], there are two subsequences (depending on x) of {fν}, given by

{f0
k}∞k=1 and {f1

k}∞k=1 , such that

lim
k→∞

f0
k (x) = 0 and lim

k→∞
f1
k (x) = 1 .

We deduce that limν→∞ fν(x) does not exist.

(iii) Consider the subsequence f̃k := f2k = χ[0,2−k] for k ≥ 0 . Then, for all x > 0, there is k ≥ 1

such that x > 2−k, hence limk→∞ f̃k(x) = 0. However, if x = 0, we have limk→∞ f̃k(0) = 1.

We conclude that f̃k → 0 a.e.

Exercise 5. Let Ω ⊆ Rn be measurable. Show that if Ω ⊂ Rn is bounded and if f ∈ L∞(Ω), then

lim
p→∞

∥f∥Lp(Ω) = ∥f∥L∞(Ω) .

Hint: Show the following inequalities

lim sup
p→∞

∥f∥Lp(Ω) ≤ ∥f∥L∞(Ω),

lim inf
p→∞

∥f∥Lp(Ω) ≥ ∥f∥L∞(Ω) − ε ∀ ε > 0 .

For the second inequality, study the set Aε := {x ∈ Ω : |f(x)| ≥ ∥f∥L∞ − ε}.

Solution: Let f ∈ L∞(Ω) . Recalling from the Lectures that

∥f∥Lp ≤ |Ω|1/p∥f∥L∞ , (1)

we get, since |Ω|1/p → 1 as p → ∞, that

lim sup
p→∞

∥f∥Lp ≤ ∥f∥L∞ . (2)
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In order to show the reverse inequality, fix 0 < ε < ∥f∥L∞ and consider the set

Aε := {x ∈ Ω : |f(x)| ≥ ∥f∥L∞ − ε}.

By the definition of the essential supremum, it is clear that m(Aε) > 0. Thus,∫
Ω
|f |p dx ≥

∫
Aε

|f |p dx ≥ m(Aε)(∥f∥L∞ − ε)p > 0,

and therefore, taking the p-th root,

∥f∥Lp ≥ m(Aε)
1/p(∥f∥L∞ − ε).

Since m(Aε) > 0 we have m(Aε)
1/p → 1 as p → ∞, hence taking the limit p → ∞, we obtain

lim inf
p→∞

∥f∥Lp ≥ ∥f∥∞ − ε.

Since ε was arbitrary, we deduce

lim inf
p→∞

∥f∥Lp ≥ ∥f∥L∞ . (3)

Exercise 6. Let f, g : Rn → R be two measurable functions.

(i) Assuming the result of Exercise 8 of Series 6, prove that f(x− y)g(y) is measurable on R2n (as

a function of (x, y) ∈ R2n).

(ii) Show that if f and g are integrable on Rn, then f(x− y)g(y) is integrable on R2n (as a function

of (x, y) ∈ R2n).

(iii) We define the convolution of two integrable functions f, g : Rn → R by

(f ∗ g)(x) :=
∫
Rn

f(x− y)g(y) dy.

Show that (f ∗ g)(x) is well-defined for a.e. x ∈ Rn (that is, y 7→ f(x − y)g(y) is an integrable

function on Rn for a.e. x ∈ Rn fixed).

(iv) Show that f ∗ g is integrable whenever f and g are integrable, and that

∥f ∗ g∥L1(Rn) ≤ ∥f∥L1(Rn)∥g∥L1(Rn),

with equality if f and g are non-negative.

(v) Recall that the Fourier transform f̂ of an integrable function f ∈ L1(Rn) defined as

f̂(ξ) :=

∫
Rn

f(x)e−2πix·ξ dx

6



for ξ ∈ Rn . Check first that f̂ is bounded and continuous function of ξ. Then prove that for

f, g ∈ L1(Rn) integrable, one has

(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ) ∀ξ ∈ Rn .

Solution:

(i) Using the result of Exercise 8, we know that the function F : R2n → R defined by F (x, y) =

f(x − y) (as a function of (x, y) ∈ R2n) is measurable. Now we prove that the function

G : R2n → R given by G(x, y) = g(y) (as function of (x, y) ∈ R2n) is measurable. Indeed,

notice

{(x, y) ∈ R2n : G(x, y) > α} = {(x, y) ∈ R2n : g(y) > α} = Rn × {y ∈ Rn : g(y) > α}

which is measurable since it is the product of two measurable sets. Finally, the fact that

f(x − y)g(y) is a measurable function of (x, y) ∈ R2n follows from the fact f(x − y)g(y) =

F (x, y)G(x, y) and that the product of two measurable functions is measurable.

(ii) Since the function f(x− y)g(y) is measurable, using Tonelli’s theorem∫
R2n

|f(x− y)g(y)| d(x, y) =
∫
Rn

∫
Rn

|f(x− y)||g(y)| dx dy

=

∫
Rn

|g(y)|
∫
Rn

|f(x− y)| dx dy

= ∥f∥L1(Rn)

∫
Rn

|g(y)| dy

= ∥f∥L1(Rn)∥g∥L1(Rn) < ∞.

(iii) By (ii), f(x− y)g(y) is integrable on R2n and thus, using Fubini’s theorem, we have∫
Rn

|f(x− y)g(y)|dy < ∞ for a.e x ∈ Rn

and hence (f ∗ g)(x) is well-defined for a.e. x ∈ Rn.

(iv) We have (similar to the computation in (ii))∫
Rn

|(f ∗ g)(x)| dx =

∫
Rn

∣∣∣∣∫
Rn

f(x− y)g(y) dy

∣∣∣∣ dx ≤
∫
Rn

∫
Rn

|f(x− y)g(y)| dy dx

≤ ∥f∥L1(Rn)∥g∥L1(Rn),

and thus

∥f ∗ g∥L1(Rn) ≤ ∥f∥L1(Rn)∥g∥L1(Rn).
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If f and g are non-negative, then, again by Fubini,

∥f ∗ g∥L1(Rn) =

∫
Rn

∣∣∣∣∫
Rn

f(x− y)g(y) dy

∣∣∣∣ dx =

∫
Rn

∫
Rn

f(x− y)g(y) dy dx

=

∫
Rn

g(y)

(∫
Rn

f(x− y) dx

)
dy = ∥f∥L1(Rn)∥g∥L1(Rn) ,

where the last equality uses again the non-negativity of f and g together with a change of

variables.

(v) Let f ∈ L1(Rn) . We have for ξ ∈ Rn

|f̂(ξ)| ≤
∫
Rn

|f(x)e−2πix·ξ| dx ≤ ∥f∥L1∥ϕξ∥L∞ = ∥f∥L1 ,

where, ϕξ(x) = e−2πix·ξ, hence ∥f̂∥L∞(Rn) ≤ ∥f∥L1(Rn), which shows that f̂ is a bounded

function. Now for the continuity, let ξn → ξ. Then

• f(x)e−2πix·ξn → f(x)e−2πix·ξ for every x ∈ Rn,

• |f(x)e−2πix·ξn | ≤ |f(x)| for every x ∈ Rn,

• |f | ∈ L1(Rn) by assumption.

We can thus apply the dominated convergence theorem to deduce

lim
n→∞

f̂(ξn) = lim
n→∞

∫
Rn

f(x)e−2πix·ξn dx =

∫
Rn

f(x)e−2πix·ξ dx = f̂(ξ),

which proves continuity. Hence f̂ is a bounded continuous function. Since f, g are integrable

f ∗g ∈ L1(Rn) by (iv) and hence, by the above discussion, the Fourier transforms of f , g and

f ∗ g is well-defined and a continuous and bounded function. In particular, they are defined

for every ξ ∈ Rn and not only almost everywhere. Finally, by Fubini

(̂f ∗ g)(ξ) =
∫
Rn

(f ∗ g)(x)e−2πix·ξ dx

=

∫
Rn

{∫
Rn

f(x− y)g(y) dy

}
e−2πix·ξ dx

=

∫
Rn

∫
Rn

f(x− y)g(y)e−2πix·ξ dy dx

=

∫
Rn

∫
Rn

f(x− y)e−2πi(x−y)·ξg(y)e−2πiy·ξ dx dy

=

∫
Rn

g(y)e−2πiy·ξ
∫
Rn

f(x− y)e−2πi(x−y)·ξ dx dy

=

∫
Rn

g(y)e−2πiy·ξ f̂(ξ) dy = f̂(ξ)ĝ(ξ).

Exercise 7. Consider the convolution of two measurable functions f, g : Rd → R defined by

(f ∗ g)(x) =
∫
Rd

f(x− y)g(y) dy .
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Recall the properties of the convolution that we have established in the previous exercise.

(i) Show that f ∗ g is well-defined for every x ∈ Rd and that f ∗ g is uniformly continuous, if f is

integrable and g is bounded.

(ii) If in addition g is integrable, prove that (f ∗ g)(x) → 0 as |x| → ∞.

Solution:

(i) First of all, observe that the convolution is well-defined. Indeed, for every x ∈ Rd fixed,

y 7→ f(x− y)g(y) is measurable on Rd (as a product of measurable functions) and hence

|(f ∗ g)(x)| ≤
∫
Rd

|f(x− y)||g(y)| dy ≤ ||g||L∞(Rd)||f ||L1(Rd)

is well-defined. We now show the uniform continuity. To this aim, we define for h ∈ Rd the

function fh : Rd → R by fh(x) = f(x+ h). Recall that

lim
h→0

∥fh − f∥L1(Rd) = 0

due to Exercise 2. This means in particular that for any ε > 0, there exist a δ > 0 such that

for all |h| < δ, we have

∥fh − f∥L1(Rd) <
ε

∥g∥L∞(Rd)

.

Thus for all x, z ∈ Rd such that |z − x| < δ, we have

(f ∗ g)(x)− (f ∗ g)(z) =

∫
Rd

[f(x− y)− f(z − y)]g(y) dy

=

∫
Rd

[f(x− y)− f(x− y + (z − x))]g(y) dy

=

∫
Rd

[f(x− y)− fz−x(x− y)]g(y) dy.

Using Hölder’s inequality on the right-hand side, we obtain

|(f ∗ g)(x)− (f ∗ g)(z)| ≤ ∥f − fz−x∥L1∥g∥L∞ < ε

for all |x− z| < δ . This proves that (f ∗ g) is uniformly continuous.

(ii) Note that we know from Exercise 6 of Serie 6 that ∥(f ∗g)∥L1(Rd) ≤ ∥f∥L1(Rd)∥g∥L1(Rd) < +∞
and therefore f ∗g is integrable. Therefore it suffices, due to (i), to prove that any integrable

function h : Rd → R that is uniformly continuous satisfies |h(x)| → 0 as |x| → ∞. We

already proved this in Exercise 3 (iii) of Serie 5, in one dimension. The exact same argument

can be applied here as well. It suffices to replace intervals by d-dimensional balls.

Exercise 8 (⋆). Assume that f : Rn → R is a measurable function. Prove that the function F :

R2n → R defined by F (x, y) = f(x− y), (x ∈ Rn, y ∈ Rn) is measurable.
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Solution: For any α ∈ R we will show that

Êα = {(x, y) ∈ R2n : F (x, y) < α}

is measurable. Then for any set A ⊂ Rn, we define the set Ã by

Ã := {(x, y) ∈ R2n : x− y ∈ A}

Define

Eα = {z ∈ Rn : f(z) < α}

and note that Êα = Ẽα = {(x, y) : x− y ∈ Eα}, so that is suffices to show that Ẽα is measurable.

Step 1: As a preliminary result, we show that any measurable set can be written as the union of a

countable union and intersection of closed sets and a measure 0 set.

Let E be a measurable set and consider Ec. We first want to show that there exists O, a countable

union and intersection of open sets, such that

m(O \ Ec) = 0 . (4)

To show (4), assume first that m(Ec) = m∗(Ec) < +∞ . By definition of the outer measure,

there exists for any k ∈ N an open set Ok such that Ec ⊂ Ok and m∗(Ok \ Ec) ≤ 1/k. Clearly,

Ec ⊂
⋂∞

k=1Ok and

m∗

( ∞⋂
k=1

Ok \ Ec

)
≤ m∗(Oj \ Ec) ≤ 1

j
, ∀j ∈ N.

We conclude m(
⋂∞

k=1Ok \ Ec) = 0 and the desired set is therefore given by O :=
⋂∞

k=1Ok.

If now m(Ec) = ∞ , then we consider Fn := Ec ∩B(0, n) . Since Fn is bounded, m(Fn) < +∞
and by the above procedure, we find for every n ∈ N a collection of open sets {On,k}∞k=1 such that

m

( ∞⋂
k=1

On,k \ Fn

)
= 0 .

We use that by construction Ec =
⋃∞

n=1 Fn and we conclude by subadditivity that

m

([ ∞⋃
n=1

∞⋂
k=1

On,k

]
\ Ec

)
≤

∞∑
n=1

m

( ∞⋂
k=1

On,k \ Fn

)
= 0 .

The desired set is therefore given by O :=
⋃∞

n=1

⋂∞
k=1On,k. This finishes the proof of (4).

We now define Z := O \ Ec, where O is given by (4). By construction, we have Ec = O \ Z
and by taking complements on both sides, we obtain

E = Oc ∪ Z ,

where Oc =
⋂∞

n=1

⋃∞
k=1O

c
n,k with Oc

n,k closed (as complements of open sets).

Step 2: We show that for any open set O ⊂ Rn, the set Õ is open and for every closed set C ⊂ Rn

the set C̃ is closed.

Indeed, let O open and z ∈ Õ, then z writes z = (x, y), where x − y ∈ O. Since O is open, let
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r > 0 be such that B(x− y, r) ⊂ O. All the norms being equivalent in finite dimension, we define

the norm on R2n as ∥(u, v)∥R2n = max(∥u∥Rn , ∥v∥Rn). Then, for any h = (a, b) ∈ B
(
z, r2
)
, by the

triangular inequality,

∥(a− b)− (x− y)∥Rn ≤∥a− x∥Rn + ∥b− y∥Rn ≤ 2∥(x, y)− (a, b)∥R2n ≤ r ,

therefore a − b is in O and h is in Õ. This proves that Õ is open. The claim about closed sets

follows by writing a closed set C as C = Rn \ O for some open set O.

Step 3: We prove that if A can be written as a countable union and intersection of closed sets,

then the same holds for Ã.

Indeed, assume that there is a countable family {Cn,k}n,k∈N of closed sets such that

A =
∞⋂
n=1

∞⋃
k=1

Cn,k.

Then clearly,

Ã =

∞⋂
n=1

∞⋃
k=1

C̃n,k,

and due to the previous step every C̃n,k ⊂ R2n is a closed set.

Step 4: We prove that Ẽα is measurable.

Since Eα is measurable, there is a set A that can be written as a countable union and intersection

of closed sets A and measure 0 set Z such that Eα = A∪Z and therefore Ẽα = Ã∪Z̃. Due to the

previous step combined with the fact that any countable union and intersection of measurable sets

is measurable, it suffices to prove that Z̃ is measurable. Actually, we will prove that m∗(Z̃) = 0

and therefore it is measurable. For any n ∈ N, let On be an open set such that Z ⊂ On such that

m(On) < 1/n. Then define,

Bk = {(x, y) ∈ R2n : |y| ≤ k} = Rn ×B(y, k),

and put Z̃k := Z̃ ∩Bk and Ôn
k = Õn ∩Bk. Note that Z̃k ⊂ Ôn

k . Now we will prove that

m(Ôn
k ) = m(On)m(Bk).

First note that χÔn
k
(x, y) = χÕn∩Bk

(x, y) = χOn(x− y)χBk
(y), and therefore

m(Ôn
k ) =

∫
R2n

χO(x− y)χBk
(y)d(x, y) =

∫
Rn

(∫
Rn

χOn(x− y) dx

)
χBk

(y) dy = m(On)m(Bk),

where the second equality is justified by Tonelli’s theorem. Thus since m(On) → 0 as n → ∞, for

any fixed k ∈ N, m(Ôn
k ) → 0, as n → ∞. Then, since Z̃k ⊂ Ôn

k , for all n we get

m∗(Z̃k) = 0.
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Then finally, since Z̃ =
⋃∞

k=1 Z̃k,

0 ≤ m∗(Z̃) ≤
∞∑
k=1

m∗(Z̃k) = 0.

This proves that Z̃ is measurable and we deduce the result.
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