Serie 6
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course. The
exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Let  := (0,1)x(0, 1) . Investigate the existence and equality of [, f d(z,y), fol fol f(z,y)dzdy
and fo fo x,y) dy dz for

(i) f(.y) = Gy -
(ii)) f(z,y) =1 —zy) *fora>0.

Compare your result with Fubini’s Theorem.

Solution:

(i) We have

1 1 1 1 y 1 _
/o/of(xjy)dydx:/o /0 Oy <x2—|—y2> dydm:/o $2+1d$:[arctan(x)]ozz
//f )dz d // d d /1 Ly = = arctan(y)]} = -7

z,y)dedy = :U2+y xdy = v y = [Farctan(y)ly = —

This computation does not contradict Fubini as f ¢ L'(2). Indeed, we compute by Tonelli:

//|fxy\dyd:c—// :c2+y dydm—f—// $2+y 5 dy dx
= Oy | —— ) dyd +/ / 0 <_> dy d
/0/0 y(x2+y2> SR A A T
1 y oy 1t
= d d
/0 Luy] “/o [x2+y2L ’

Loy 1 T 1 1
— =t ——dr = - — dr = oo.
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(ii) Let fo(x,y) = (1 —zy)~® Note that fo(z,y) is positive on Q so [, fa(x,y)d(z,y) =
fol fol falz,y)dydx = fol fol fa(z,y) dz dy by Tonelli’s theorem. We show that [ fa(z,y)d(x, y)
is finite if and only if 0 < a < 2. Let’s consider two cases: a =1 and a # 1.

e Case a = 1: In this case the integral is finite and we can actually compute it.

1 1 1 1—
d 1 Yd
/ </ v > dy:/ <—/ S> dy by setting s =1 —xy,ds = —ydzx
o \Jo 1—ay 0 yJs s

M1 . [t =log(1—y)
- /0 fog(s)}ydy = /0 SR,

1.0 k-1
= / Z Y k; dy by expanding log(1 — y) into its Maclaurin series
0 k=1

®© el k-1 o0 1 00 9
Z Y Z 1 . Z 1 us
k:l/0 k ’ 1 [k2y ] ’ k=1 K 6’

k= 0

where we interchanged the serie and the integral by either monotone convergence (the

serie has positive terms) or by uniform convergence of the Maclaurin serie.

e Case a # 1: We have

L amm) w= [ = () e

Observe that the integrand y +— —% e i

) is continuous and bounded (by 1)

on (0,1) if 0 < a < 1, and thus has a finite integral.

So assume a > 1. In this case, observe that

-y -1_ 1
l1—a “a-—1

1
(1 - y)l_a < 7& : (1 - y)l_av Vy € (07 1)

Note that the integral fol(l —y)!1=%dy is finite if and only if a —1 < 1, i.e., a < 2. Hence,
(1-y)=e-1

we conclude that the integral fol —% R =T

dy is finite if and only if a < 2.

We conclude that f, is absolutely integrable if and only if 0 < a < 2. Since f is absolutely

integrable, we can apply Fubini’s theorem, which is consistent with our computations.

Exercise 2. The Dirichelet integral is the improper integral defined by

/ sin(x) .
0 ZT

It is an example of existence of improper Riemann integral, but it is but not absolutely integrable

in Lebesgue sense (therefore it is not Lebesgue integrable). In particular, prove that the following



equality holds

tsina

lim
t—o0 0 x€X

oo .
/ ]Slnz\d:r:oo
0 X

Remark 1. Notice that the Riemann integral is defined for bounded intervals and then extended to

dr =m/2,

but the Lebesgue integral

R with improper integrals. In class you studied that f : [a,b] — R (with a,b € R, i.e. a # —oo and

b # oo) is Riemann integrable then it is Lebesgue integrable.

Solution:
You might have already encountered this integral in other analysis courses and you were maybe

asked to show that the function = — smxﬂ is Riemann-integrable but not absolutely integrable.
Let’s recall the proofs of theses two properties :

sin(x)

e The function =z +— is Riemann-integrable on [0,00) because it can be extended by

continuity at 0, and in particular it is Riemann-integrable on [0, 7|. Also, Vt > 7

t o _ t ¢ _ ¢
/ sin(z) dr — cos(z) _/ cos(z) dp — cos(t) 1 _/ cos(z) g
. T IBP T Y t T Jr x?

t cos :c)

cos(x)

We know that the integral [~ <= x) dzx exists and equals limy_, [ dx because | =

is dominated by . We conclude that f ¢ Sm(x) dx converges as t — 00.
e The function is not not absolutely integrable because

r

n

‘ (k+1)m
=t > [

sin(x) sin(z)

dx

X X
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=2
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For the first equality, we implicitly used the monotone convergence theorem.
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To compute the value of the integral, we use Fubini’s theorem, which can only be applied to
absolutely integrable functions. We therefore restrict the domain of integration to a bounded one

to understand the integral as a Lebesgue integral:

t sinz t (o] [e%¢] t
dr = sinx e “dadr = sinze * dx da
0 X 0 0 Fubini 0 0
—_—

=:I¢(a)

Now the inner integral I;(a) is taken on a bounded domain so we can again re-interpret it as a

Riemann-integral and use integration by parts:

1 — e %(cos(t) + asin(t))
1+ a?

Ii(a) = [ cos(z)e™** — asin(x)efax]g —a*Ii(a) = Ii(a) =




Notice that the function I; is dominated by a — H%’ which is Lebesgue integable, and that
1

limy_ 00 I4(a) = THaZ - We can therefore use the dominated convergence theorem to conclude:

t o o0 o0
1im/ sin(z) dr = lim I(a) :/ da =
0 0 0

s
t—00 x t—00 1+ a2 2

Exercise 3 (Layer cake representation). Let f : R? — R be integrable. For a > 0, we set £, := {x €

R : |f(z)| > a}. Prove that
/ ()| da _/ n(E,) da.
R4 0

Solution: First, notice that

|f () 00
/ \f(:v)dx:/ / 1dadx:/ / Lo f(@)) (2, ) dacdz
R4 re Jo re Jo

1 ifa<|f(x)];

where

1 a<|f(x (x,a) =
sl 0 otherwise.

Since Ljq<|f(z)) = 0 is a non-negative and measurable function (here we use the measurability of

f), we can use Tonelli’s theorem to commute the integrals. In other words, we get

/ \f(x)\dw:/ / ]l[a<f(x)”(x,a)dwda:/ / ]l[era](m,a)dxda:/ m(E,) do.
R4 0o Jrd 0o Jrd 0

Exercise 4. From every LP-convergent sequence {f,}n>0 (1 < p < 00), we can always extract a
subsequence that converges pointwise almost everywhere. Yet, it might happen that the full sequence
fn nowhere converges pointwise. Here we discuss such an example. For all n € N there exists a unique
m € N and a unique j € {0,1,...,2™ — 1} such that n = j 4+ 2™. We define

=51 =@

Observe that f1 = X011, fo = Xjo,/2p f3 = Xq/2.1) fa = Xoa/4) f5 = Xjjaz/a fo = Xp/az s
J7= X[3/4,1] Js = X[0,1/8]>" " -

(i) Show that f, converges in LP(0,1) for 1 < p < oo.
(ii) Show that f,, converges pointwise nowhere on [0, 1).

(iii) Find a subsequence of f,, which converges pointwise a.e. on [0, 1).



Solution:
(i) With 1 < p < oo we have

1
HquLp = m(L,)l/p = G —0asv— o

and thus f, — 0 in LP(0,1) as v — oc.

(ii) For alln € N, the family {Ian, Ioni1,. .., Ign+1_1} covers [0, 1]. It follows that for all z € [0, 1]
and k € N, there is 1/2, 1/,% > k such that

x ¢ IV;? and z € Il/i.

Thus, for all x € [0,1], there are two subsequences (depending on x) of {f,}, given by
{2352, and {fL}32,, such that

lim f2(z) =0 and lim fi(z)=1.
k—o0 k—o0
We deduce that lim, o f, () does not exist.

(iii) Consider the subsequence fi := for = X[o,2-*) for k > 0. Then, for all z > 0, there is k > 1
such that z > 27F, hence limy_, oo fk(a:) = 0. However, if x = 0, we have limj._, o fk(O) =1.
We conclude that fk — 0 a.e.

Exercise 5. Let 2 C R™ be measurable. Show that if Q C R™ is bounded and if f € L*(2), then
pli_{go 1 flle) = [ fll Lo () -
Hint: Show the following inequalities

limsup || fllzr ) < Iz (@),

p—0o0

liminf (| fllrei) 2 [ fllze@) —¢ Ve>0.

For the second inequality, study the set A. :={zx € Q: |f(z)| > || fllre — €}

Solution: Let f € L>®(Q). Recalling from the Lectures that

1o < 1907 fllze, (1)

we get, since |Q/P — 1 as p — oo, that

limsup || fllze < [|fllzo- (2)
p—00




In order to show the reverse inequality, fix 0 < € < || f||z> and consider the set
Aci={z e Q: [f(@)| = [flle — €}
By the definition of the essential supremum, it is clear that m(A.) > 0. Thus,
[ o= [ 1P de = w1~ - o > 0
Q Ae
and therefore, taking the p-th root,
1£llze = m(A) P (| fll — o).

Since m(A.) > 0 we have m(A.)'/? — 1 as p — oo, hence taking the limit p — oo, we obtain

lim inf [| fl|ze = [ flloc — &

p—00
Since € was arbitrary, we deduce

liminf [[f||ze = || f]|ze- (3)
p—+00

Exercise 6. Let f,g: R" — R be two measurable functions.

(i) Assuming the result of Exercise 8 of Series 6, prove that f(x —y)g(y) is measurable on R?" (as
a function of (z,y) € R?").

(ii) Show that if f and g are integrable on R™, then f(z —1¥)g(y) is integrable on R?" (as a function
of (x,y) € R?"),

(iii) We define the convolution of two integrable functions f, g : R™ — R by

(fxg)(x):= | flz—1y)g(y)dy.

R

Show that (f * g)(z) is well-defined for a.e. x € R" (that is, y — f(x — y)g(y) is an integrable

function on R” for a.e. z € R” fixed).
(iv) Show that f x g is integrable whenever f and g are integrable, and that
1f * gllzr@ny < I fllzr@eylgll o @mnys
with equality if f and g are non-negative.

(v) Recall that the Fourier transform f of an integrable function f € L*(R™) defined as

f&) = [ fla)e ™ da

RTL



for £ € R™. Check first that f is bounded and continuous function of £&. Then prove that for
f,g € L*(R™) integrable, one has

—

(f*9)(&) = f(©)g(&)  VEeR™.

Solution:

(i) Using the result of Exercise 8, we know that the function F : R?® — R defined by F(x,y) =
f(x — 1) (as a function of (z,y) € R?") is measurable. Now we prove that the function
G : R*™ — R given by G(z,y) = g(y) (as function of (x,y) € R?") is measurable. Indeed,

notice
{(z,y) €R* : G(z,y) > a} ={(z,y) ER* : g(y) > a} =R" x {y e R" : g(y) > o}

which is measurable since it is the product of two measurable sets. Finally, the fact that
f(x —y)g(y) is a measurable function of (z,y) € R*" follows from the fact f(x — y)g(y) =

F(z,y)G(x,y) and that the product of two measurable functions is measurable.

(ii) Since the function f(x — y)g(y) is measurable, using Tonelli’s theorem
L e =wewlden = [ [ 15—l dedy

= [ low)l [ 17— n)ldzy
=l [ lotwldy

= £l @mllgll 1 my < o0

(iii) By (ii), f(z — y)g(y) is integrable on R?® and thus, using Fubini’s theorem, we have

/ lf(z —y)g(y)|dy < oo for a.e z € R"

and hence (f % g)(x) is well-defined for a.e. z € R".

(iv) We have (similar to the computation in (ii))

| o@ia= |

and thus

fe=vgm | o< [ [ 1= nalayas

Rn

<[ fllzr@mllgll L1 @nys

1f * gllzr@ny < I Fllzr@eylgll o mny-




If f and g are non-negative, then, again by Fubini,

I <ol = [ [ te-momal e = [ [ e dvo

/ (/ o —y) dx) By =l ol g

where the last equality uses again the non-negativity of f and g together with a change of

variables.

Let f € LY(R"). We have for £ € R®
@) < / F@)e 2 da < | £l el = 1112,
Rn

where, ¢¢(z) = e~ 2™@¢ hence ”fHLoo(Rn) < |lfllz1ny, which shows that f is a bounded
function. Now for the continuity, let &, — £. Then

o f(x)e 2m@in 5 f(x)e” 2™ ¢ for every x € R,
o |f(x)e ?@én| < | f(x)| for every z € R™,

e |f| € L'(R™) by assumption.

We can thus apply the dominated convergence theorem to deduce

lim f(&n) = lim | fl@)e™ S de= | f@)em e de = f(©),

n—oo n—oo

which proves continuity. Hence f is a bounded continuous function. Since f, g are integrable
f*g € L'(R™) by (iv) and hence, by the above discussion, the Fourier transforms of f, g and
f * g is well-defined and a continuous and bounded function. In particular, they are defined

for every £ € R" and not only almost everywhere. Finally, by Fubini
T = [ (o) da
[ A - vewasfem<an
/ f T — ( ) —2mix-€ dy dx
n Rn
/ f T — —2mi(z—y)- fg(y)e—Qﬂ'iy-{ dr dy
n RTL
_/ g(y) 27”:’/5 f( ) —27ri(a;—y)~§ d:Edy

_ / . g(y)azﬂyff(f) dy = J(€)d(©).

Exercise 7. Consider the convolution of two measurable functions f, g : R? — R defined by

(f * o) /f:c—




Recall the properties of the convolution that we have established in the previous exercise.

(i) Show that f * g is well-defined for every x € R? and that f % ¢ is uniformly continuous, if f is
integrable and ¢ is bounded.

(ii) If in addition g is integrable, prove that (f % g)(z) — 0 as |z| — oo.

Solution:

(i) First of all, observe that the convolution is well-defined. Indeed, for every z € R? fixed,

y+— f(z —1y)g(y) is measurable on R? (as a product of measurable functions) and hence

[(f *g)(2)] < /Rdlf(w = llg@Wldy < |lgllzee eyl fll21Ray

is well-defined. We now show the uniform continuity. To this aim, we define for h € R? the
function f; : RY — R by f(z) = f(x + h). Recall that

L [[fn = fllzr ey =0
due to Exercise 2. This means in particular that for any € > 0, there exist a § > 0 such that

for all |h| < 6, we have
€

< /.
) HQHLOO(R‘I)

11 = Fllzr e

Thus for all x, z € R? such that |z — | < §, we have

(F29)@ - (Fr9)) = [ 17 =9)~ = vlow)dy
= /i[f(w —y) = fle—y+(z—2))]g(y) dy
= /i [f(@ = y) = foalz — y)lg(y) dy.

d

Using Holder’s inequality on the right-hand side, we obtain

[(f = g)(@) = (Fx9)(2)| < If = famallprllgll> < e
for all |x — z| < §. This proves that (f * ¢g) is uniformly continuous.

(ii) Note that we know from Exercise 6 of Serie 6 that ||(f*9)l 11 ey < Il 21 ey 9]l 11 (mey < +00
and therefore f g is integrable. Therefore it suffices, due to (i), to prove that any integrable
function A : R? — R that is uniformly continuous satisfies |h(z)| — 0 as |z| — co. We

already proved this in Exercise 3 (iii) of Serie 5, in one dimension. The exact same argument

can be applied here as well. It suffices to replace intervals by d-dimensional balls.

Exercise 8 (). Assume that f : R” — R is a measurable function. Prove that the function F :
R?" — R defined by F(z,y) = f(z — y), (x € R", y € R") is measurable.



Solution: For any o € R we will show that
Eo = {(x,y) € R™: F(z,y) < a}

is measurable. Then for any set A C R", we define the set A by

A:={(z,y) eR™:z —y c A}

Define
E,={z€eR": f(z) < a}

and note that Ey = Eo = {(2,y) : # —y € Ea}, so that is suffices to show that E, is measurable.
Step 1: As a preliminary result, we show that any measurable set can be written as the union of a
countable union and intersection of closed sets and a measure 0 set.

Let E be a measurable set and consider E°. We first want to show that there exists O, a countable

union and intersection of open sets, such that
m(O\ E°) =0. (4)

To show (4), assume first that m(E¢) = m*(E°) < +o0o0. By definition of the outer measure,
there exists for any k£ € N an open set O such that E¢ C Oy and m*(Oy, \ E) < 1/k. Clearly,
E° C M2, O and

, VjeN.

S|

k=1
We conclude m((;2; Ok \ E€) = 0 and the desired set is therefore given by O := (72 Ox.
If now m(E¢) = oo, then we consider F,, := E°N B(0,n). Since F, is bounded, m(F},) < 400

and by the above procedure, we find for every n € N a collection of open sets {Oy, 1. }7°; such that

m (ﬁ On,k\Fn> =0.
k=1

We use that by construction E¢ = Jo7; F;, and we conclude by subadditivity that

" ([[j M 0w \Ec) <3 m (ﬁO\F> “0.

n=1 k=1 n=1

The desired set is therefore given by O :=J;2; sy On,k- This finishes the proof of (4).
We now define Z := O\ E€, where O is given by (4). By construction, we have E¢ = O\ Z

and by taking complements on both sides, we obtain
E=0°UZ,

where O°¢ = (2, U2, Oy, with Oy, ;. closed (as complements of open sets).

Step 2: We show that for any open set O C R", the set O is open and for every closed set C C R™
the set C is closed.

Indeed, let O open and z € (5, then z writes z = (x,y), where x —y € O. Since O is open, let
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r > 0 be such that B(z —y,r) C O. All the norms being equivalent in finite dimension, we define
the norm on R?" as ||(u, v)||gzn = max(||ul|gn, ||v||rn). Then, for any h = (a,b) € B (z, %), by the

triangular inequality,
@ —b) = (z — y)llrr <[la = zllrn +[|b—yllrr < 2[|(z,y) — (a,b)||gen <7,

therefore a — b is in © and h is in O. This proves that O is open. The claim about closed sets

follows by writing a closed set C as C = R™ \ O for some open set O.

Step 8: We prove that if A can be written as a countable union and intersection of closed sets,
then the same holds for A.
Indeed, assume that there is a countable family {C,, ; }n ren of closed sets such that

A= U Cus

n=1 k=1
Then clearly,

)
A= ﬂ Cn,k:
n=1k=1

and due to the previous step every 5nk C R?" is a closed set.

Step 4: We prove that Ea is measurable.

Since E,, is measurable, there is a set A that can be written as a countable union and intersection
of closed sets A and measure 0 set Z such that F, = AUZ and therefore E’a = AUZ. Due to the
previous step combined with the fact that any countable union and intersection of measurable sets
is measurable, it suffices to prove that Z is measurable. Actually, we will prove that m*(é) =0
and therefore it is measurable. For any n € N, let O™ be an open set such that Z C O™ such that
m(O™) < 1/n. Then define,

By = {(z,y) e R*: |y| <k} =R" x B(y, k),
and put gk =ZN By, and Oor =0mn By,. Note that Z~k - @Z Now we will prove that
m(0f) = m(O") m(By).

First note that Xon (z,y) = XGnnB, (z,y) = xon(x —y)xB,(y), and therefore

w(@) = [ vola = mxadtes) = [ ([ xorle =) de) xu ) dy = m(©@) m(z),

n

where the second equality is justified by Tonelli’s theorem. Thus since m(O™) — 0 as n — oo, for
any fixed k € N, m(@g) — 0, as n — o0o. Then, since gk - @Z, for all n we get

m*(Z) = 0.
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Then finally, since Z = Urey Z,

0<m*(2) < im*(ék) =0.
k=1

This proves that Z is measurable and we deduce the result.
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