
Serie 5

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (⋆) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Compute the following limits and justify your computations.

(i) limn→∞
∫∞
0 n2e−nx arctan(x) dx .

(ii) limn→∞
∫ 1
0 n2(1− x)n sin(πx) dx .

(iii) limn→∞
∫ 1
0

n3/2x
1+n2x2 dx .

Exercise 2. For a ∈ R consider

fa(x, y) :=

 1
(1+|x|)a e

xy if (x, y) ∈ R× [x− e−x2
, x] ,

0 else .

Determine for which values of a it holds fa ∈ L1(R2) . Then compute (and justify your computation)

lima→∞
∫
R2 fa(x, y) dx dy .

Exercise 3. Prove or disprove the following statement: Let f : (a, b) → R be absolutely integrable

such that ∫ x

a
f(y) dy = 0 ∀x ∈ (a, b).

Then f = 0 almost everywhere.

Exercise 4. We show that translations are continuous on Lp(Rn). In other words, let f ∈ Lp(Rn) for

1 ≤ p < ∞ and prove that

lim
|ε|→0

∫
Rn

|f(x+ ε)− f(x)|p dx = 0.

Hint: Begin by showing the result for f ∈ C∞
c (Rn) and then approximate any function in Lp(Rn) by

functions in C∞
c (Rn) in order to conclude.
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Exercise 5. We prove a kind of continuity of the Lebesgue measure under translations.

(i) Let A be a measurable set and m(A) < ∞. Show that

lim
|ε|→0

m
(
(A+ ε) \A

)
= 0.

(ii) Show that the result in (i) is false if m(A) = ∞.

(iii) Show that the result in (i) is false if A is not measurable. (Replace m by m∗.)

Exercise 6. The goal of this exercise is to define a notion of dimension for general sets E ⊆ Rd

and to compute the dimension of the Cantor set. In order to do so, we first need to introduce the

s-Haussdorf measure of a set E ⊆ Rd, see the following definitions.

i) The diameter of E is the maximal distance between points in E, i.e.

diam(E) := sup {|x− y| : x, y ∈ E} .

ii) For any δ ∈ (0,∞], we say that {Fn}n∈N, with Fn ⊆ Rd, is a δ-covering of E if

E ⊆
⋃
n∈N

Fn and diam(Fn) < δ ∀n ∈ N.

iii) Let s ∈ [0,∞). For any δ > 0 we define

Hs
δ(E) := inf

{ ∞∑
n=0

diam(Fn)
s : {Fn}n∈N δ-covering of E

}
∈ [0,∞]

Notice that Hs
ϵ(E) ≤ Hs

δ(E), whenever ϵ ≥ δ.

iv) Finally, we define the s-Haussdorf measure of E as

Hs(E) := sup
δ>0

Hs
δ(E) ∈ [0,∞].

One can prove that Hs is in fact a measure, when restricted to the σ-algebra of Borel subsets of

Rd. Moreover, up to a multiplicative constant, Hd coincides with the Lebesgue measure in Rd,

and, more generally, the Hk-measure of a k-surface in Rd coincides with its k-surface measure.

(i) Prove that H0 coincides with the ”counting measure”, i.e.

H0(E) =

#E if E is finite,

+∞ otherwise.

Here #E stands for the cardinality of the set E.
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(ii) Take 0 ≤ s < t < ∞. Prove the following implications:

Hs(E) < ∞ =⇒ Ht(E) = 0; Ht(E) > 0 =⇒ Hs(E) = ∞.

Deduce that for any E ⊂ Rd there exists a unique number s∗ =: dimH(E) such that

Hs(E) = ∞ for every s ∈ [0, s∗), and Hs(E) = 0 for every s ∈ (s∗,∞].

dimH(E) is called the Haussdorf dimension of the set E. One can prove that this notion of

dimension coincides with the intuitive one for integer values: for instance, if E is a k-dimensional

vector space or a k-surface in Rd, then dimH(E) = k. However, as we will see in the next point,

not all sets need to have an integer dimension!

(iii) Let P ⊂ [0, 1] be the Cantor set. Prove that

dimH(P ) =
log(2)

log(3)
.

Hints:

i) To show the inequality dim(P ) ≤ log(2)/ log(3), remember that P =
⋂

k∈N Pk, where Pk

is the union of 2k disjoint intervals of length 3−k. Then use the definition of Haussdorf

measure and the characterization of the Haussdorf dimension.

ii) Observe that to prove dim(P ) ≥ log(2)/ log(3) =: α it is enough to show that Hα(P ) > 0.

To do so, you can proceed along the following steps:

(a) Show that Hs(P ) does not change if in the definition of a δ-covering {Fn}n∈N of P we

require all the sets Fn to be open intervals.

(b) Take a δ-covering {Fn}n∈N of P made of open intervals. Use compactness to prove that

for some N, k0 ∈ N large enough, {Fn}Nn=0 is a covering of Pk, for every k ≥ k0.

(c) Again by compactness, prove that for some k1 ≥ k0 large enough, each of the 2k1

intervals of length 3−k1 composing Pk1 is included in at least one of the open intervals

{Fn}n∈N.
(d) By the previous step, for every i ∈ {1, . . . , 2k1} there is some n(i) ∈ {0, . . . , N} such

that Ik1i ⊂ Fn(i). Call Cn := {1 ≤ i ≤ 2k1 : n(i) = n}. Using the definition of the

Cantor set, prove the following inequality:

diam(Fn)
α ≥ 1

4
·#Cn · 3−αk1 ∀n = 0, . . . , N.

Deduce from it that Hα(P ) ≥ 1/4.
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