
Serie 5

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (⋆) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Compute the following limits and justify your computations.

(i) limn→∞
∫∞
0 n2e−nx arctan(x) dx .

(ii) limn→∞
∫ 1
0 n2(1− x)n sin(πx) dx .

(iii) limn→∞
∫ 1
0

n3/2x
1+n2x2 dx .

Solution:

(i) The monotone convergence theorem implies∫ ∞

0
n2e−nx arctan(x)dx = lim

m→∞

∫ ∞

0
n2e−nx arctan(x)1[0,m](x)dx

= lim
m→∞

∫ m

0
n2e−nx arctan(x)dx.

If f : [a, b] → R is Riemann integrable on the compact interval [a, b], then f is absolutely

integrable and the Riemann integral (R)
∫
f and the Lebesgue integral

∫
f of f on [a, b]

coincide. In that case, we can use the usual change of variables formula proved for Riemann

integration. So applying the change of variables y = nx (since the integrand below is

continuous, it is Riemann integrable),∫ m

0
n2e−nx arctan(x)dx = (R)

∫ m

0
n2e−nx arctan(x)dx = (R)

∫ mn

0
ne−y arctan

(y
n

)
dy

=

∫ mn

0
ne−y arctan

(y
n

)
dy =

∫ ∞

0
ne−y arctan

(y
n

)
1[0,mn](y)dy.
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Applying the monotone convergence theorem again (for the second equality below),∫ ∞

0
n2e−nx arctan(x)dx = lim

m→∞

∫ ∞

0
ne−y arctan

(y
n

)
1[0,mn](y)dy =

∫ ∞

0
ne−y arctan

(y
n

)
dy

=

∫ ∞

0
ye−y

arctan
(

y
n

)
y/n︸ ︷︷ ︸

=:fn(y)

dy.

Since arctan(u)
u ≤ 1 ∀u ≥ 0, the function fn is dominated on (0,∞) by f(y) = ye−y, which is

Lebesgue integrable on [0,∞), and limn→∞ fn(y) = f(y). So using the dominated conver-

gence theorem,

lim
n→∞

∫ ∞

0
n2e−nx arctan(x)dx = lim

n→∞

∫ ∞

0
ye−y

arctan
(

y
n

)
y/n

dy =

∫ ∞

0
ye−ydy.

Lastly, let us compute
∫∞
0 ye−ydy. By the monotone convergence theorem, we have

∫ ∞

0
ye−ydy = lim

k→∞

∫ ∞

0
ye−y1[0,k]dy = lim

k→∞

∫ k

0
ye−ydy

= lim
k→∞

(R)

∫ k

0
ye−ydy = lim

k→∞
(1− (k + 1)e−k) = 1.

(ii) If f : [a, b] → R is Riemann integrable on [a, b], then f is absolutely integrable and the

Riemann integral (R)
∫
f and the Lebesgue integral

∫
f of f on [a, b] coincide. In that

case, we can use the usual change of variables formula proved for Riemann integration. So

applying the change of variables y = nx, we have∫ 1

0
n2(1− x)n sin(πx)dx = (R)

∫ 1

0
n2(1− x)n sin(πx)dx

= (R)

∫ n

0
n
(
1− y

n

)n
sin
(
π
y

n

)
dy

=

∫ n

0
n
(
1− y

n

)n
sin
(
π
y

n

)
dy =

∫
Ω
fn(y)dy,

where Ω = (0,∞) and

fn(y) = n
(
1− y

n

)n
sin
(
π
y

n

)
1[0,n](y) = πy

(
1− y

n

)n sin(π y
n

)
πy/n

1[0,n](y).

Observe that the pointwise limit of fn is f(y) = πye−y, and each fn is dominated by f

because:

• sin(x) ≤ x for all x ≥ 0, and limx→0
sin(x)

x = 1;

• the sequence {(1− y
n)

n}n≥1 is increasing and has limit e−y.
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Hence, the dominated convergence theorem implies

lim
n→∞

∫ 1

0
n2(1− x)n sin(πx)dx = lim

n→∞

∫
Ω
fn(y)dy =

∫
Ω
πye−ydy = π,

using the computation from the previous exercise.

(iii) We can actually explicitly compute the integral and limit (again using that if f : [a, b] → R
is Riemann integrable on [a, b], then the Riemann integral and the Lebesgue integral of f on

[a, b] coincide):

lim
n→∞

∫ 1

0

n3/2x

1 + n2x2
dx = lim

n→∞

[
1

2
√
n
log(1 + n2x2)

]1
0

= lim
n→∞

1

2
√
n
log(1 + n2) = 0

Exercise 2. For a ∈ R consider

fa(x, y) :=

 1
(1+|x|)a e

xy if (x, y) ∈ R× [x− e−x2
, x] ,

0 else .

Determine for which values of a it holds fa ∈ L1(R2) . Then compute (and justify your computation)

lima→∞
∫
R2 fa(x, y) dx dy .

Solution: By Tonelli’s theorem,

Ia :=

∫
R2

|fa| d(x, y) =
∫ ∞

−∞

∫ x

x−e−x2

exy

(1 + |x|)a
dy dx =

∫ ∞

−∞

1

(1 + |x|)a
1

x
ex

2

(
1− e−xe−x2

)
︸ ︷︷ ︸

=:g(x)

dx.

To compute the integral Ia we can split it in two parts:

Ia =

∫ 0

−∞

g(x)

(1 + |x|)a
dx︸ ︷︷ ︸

=:I1a

+

∫ ∞

0

g(x)

(1 + |x|)a
dx︸ ︷︷ ︸

=:I2a

.

Observe

lim
x→∞

1

x
ex

2

(
1− e−xe−x2

)
= 1, lim

x→−∞

1

x
ex

2

(
1− e−xe−x2

)
= 1.

Therefore, we can upper and lower bound g(x)
(1+|x|)a by functions of the form C

(1+|x|)a (where C > 0

is a constant). Thus, I1a and I2a are each finite if and only if a > 1. Lastly, Ia is finite if and only

if I1a and I2a are finite. Therefore, fa ∈ L1(R2) if and only if a > 1.

Now let us compute the integral lima→∞
∫
R2 fa(x, y) dx dy = lima→∞

∫
R

g(x)
(1+|x|)adx. Note that

for a ≥ 2, the integrand g(x)
(1+|x|)a is dominated on R by 2

(1+|x|)2 , which is absolutely integrable on

R. Also,

lim
a→∞

g(x)

(1 + |x|)a
=

(1 if x = 0

0 otherwise

)
= 1{0}.
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Therefore, the dominated convergence theorem implies

lim
a→∞

∫
R2

fa(x, y) dx dy = lim
a→∞

∫
R

g(x)

(1 + |x|)a
dx =

∫
R
1{0}(x)dx = 0.

Exercise 3. Prove or disprove the following statement: Let f : (a, b) → R be absolutely integrable

such that ∫ x

a
f(y) dy = 0 ∀x ∈ (a, b).

Then f = 0 almost everywhere.

Solution: We will prove that the statement is true. The solution consists in several steps.

Step 1: We prove that ∫
U
f(y) dy = 0 for any open set U ⊆ (a, b) .

First of all, notice that for any a < c ≤ d < b, we have by assumption∫ d

c
f(y) dy =

∫ d

a
f(y) dy −

∫ c

a
f dy = 0. (1)

Recall that every open set U ⊆ (a, b) can be written as a countable union of pairwise disjoint,

open intervals (see for instance exercise sheet 1). Define for every N ≥ 1, the sets

UN =

N⋃
n=1

(cn, dn) .

Observe f1UN
→ f1U pointwise everywhere and |f1UN

|, |f1U | ≤ |f | pointwise. Since |f | is

integrable, the dominated convergence theorem gives us

∫
U
f(y) dy =

∫
(a,b)

f(y)1U (y) dy = lim
N→∞

∫
(a,b)

f(y)1UN
(y) dy = lim

N→∞

N∑
n=1

∫
(cn,dn)

f(y) dy = 0

where the last equality follows from (1).

Step 2: We prove that ∫
A
f(y) dy = 0 for any measurable set A ⊆ (a, b) .

Let A ⊆ (a, b) measurable. For any n ∈ N, there is an open set Un such that A ⊆ Un and

m(Un \ A) ≤ 1/n. Notice that 1Un → 1A pointwise almost everywhere as n → ∞ and therefore

f1Un → f1A pointwise almost everywhere. Moreover, |f1Un | ≤ |f | so that by the dominated

convergence theorem ∫
A
f(y) dy = lim

n→∞

∫
Un

f(y) dy = 0.

Step 3: Conclusion.
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Define A1 := {x ∈ (a, b) : f(x) > 0} and A2 := {x ∈ (a, b) : f(x) < 0} . From the measurability

of f it follows that A1 and A2 are measurable. From Step 2, we deduce that∫
A1

|f |(y) dy =

∫
A1

f(y) dy = 0 and

∫
A2

|f |(y) dy = −
∫
A2

f(y) dy = 0 .

We deduce that |f | = 0 almost everywhere on A1 ∪A2 , hence |f | = 0 almost everywhere.

Exercise 4. We show that translations are continuous on Lp(Rn). In other words, let f ∈ Lp(Rn) for

1 ≤ p < ∞ and prove that

lim
|ε|→0

∫
Rn

|f(x+ ε)− f(x)|p dx = 0.

Hint: Begin by showing the result for f ∈ C∞
c (Rn) and then approximate any function in Lp(Rn) by

functions in C∞
c (Rn) in order to conclude.

Solution: We split the proof in two steps.

Step 1: We prove the result in the case of f ∈ C∞
c (Rn) .

If f ∈ C∞
c (Rn), there exists R > 0 such that suppf ⊆ B(0, R). For any ε ∈ Rd such that |ε| < 1,

we define the function Gε : Rn → R by Gε(x) = |f(x+ε)−f(x)|p. Note that |Gε(x)| ≤ 2p∥f∥p
C0(Rn)

if x ∈ B(0, R+1) and Gε(x) = 0 if x /∈ B(0, R+1); in particular Gε is bounded and has compact

support, hence Gε ∈ L1(Rn). Moreover, Gε(x) → 0 pointwise as |ε| → 0. Thus, by the dominated

convergence theorem, we have

lim
|ε|→0

∫
Rn

|f(x+ ε)− f(x)|p dx = lim
|ε|→0

∫
Rn

Gε(x) dx = 0.

Step 2: We conclude the result for a general f ∈ Lp(Rn) by approximation.

Let τ > 0 . By density of C∞
c (Rn) in Lp(Rn), for any τ > 0 there exists g ∈ C∞

c (Rn), such that

||g − f ||pLp(Rn) =

∫
Rn

|g(x)− f(x)|p dx ≤ τ

3p
,

which directly implies that for every ε we also have∫
Rn

|g(x+ ε)− f(x+ ε)|p dx ≤ τ

3p
.

Since g ∈ C∞
c (Rn) we know from Step 1 that

lim
|ε|→0

∫
Rn

|g(x+ ε)− g(x)|p dx = 0,

and therefore for all ε = ε(τ) small enough, we have∫
Rn

|g(x+ ε)− g(x)|p dx ≤ τ

3p
.
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We conclude by the triangular inequality that∫
Rn

|f(x+ ε)− f(x)|p dx =

∫
Rn

|f(x+ ε)− g(x+ ε) + g(x+ ε)− g(x) + g(x)− f(x)|p dx

≤
∫
Rn

3p−1 {|f(x+ ε)− g(x+ ε)|p + |g(x+ ε)− g(x)|p + |g(x)− f(x)|p} dx

= 3p−1

{∫
Rn

|f(x+ ε)− g(x+ ε)|p dx+

∫
Rn

|g(x+ ε)− g(x)|p dx+

∫
Rn

|g(x)− f(x)|p dx
}

≤ τ.

The previous inequality being true for any τ , we deduce the result letting τ → 0 .

Exercise 5. We prove a kind of continuity of the Lebesgue measure under translations.

(i) Let A be a measurable set and m(A) < ∞. Show that

lim
|ε|→0

m
(
(A+ ε) \A

)
= 0.

(ii) Show that the result in (i) is false if m(A) = ∞.

(iii) Show that the result in (i) is false if A is not measurable. (Replace m by m∗.)

Solution:

(i) Let f = χA. Since f ∈ L1(Rn), using exercise 5, we get

lim
|ε|→0

∫
|χA(x− ε)− χA(x)|dx = 0.

Since

|χA(x− ε)− χA(x)| = χ[(A+ε)\A]∪[A\(A+ε)](x),

it follows that ∫
|χA(x− ε)− χA(x)|dx = m

(
[(A+ ε) \A] ∪ [A \ (A+ ε)]

)
.

Finally, using

m((A+ ε) \A) ≤ m([(A+ ε) \A] ∪ [A \ (A+ ε)])

we deduce the result.

(ii) Define

A :=

∞⋃
n=1

(n, n+ 1/2).

Then for all 0 < ε < 1/2,

(A+ ε) \A =

∞⋃
n=1

[n+ 1/2, n+ 1/2 + ε),
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and by additivity,

m
(
(A+ ε) \A

)
=

∞∑
n=1

ε = ∞.

(iii) Let V ⊂ [0, 1] be the non-measurable Vitali. Recall from the construction that V has the

following property:

(V + ε) ∩ V = ∅ ∀ε ∈ Q ∩ [−1, 1] \ {0}.

It follows from translation invariance of the outer measure that for any ε ∈ Q∩ [−1, 1] \ {0},
it holds

m∗ ((V + ε) \ V
)
= m∗(V + ε) = m∗(V ).

Notice that necessarily m∗(V ) > 0 (otherwise V would be measurable), hence

lim
|ε|→0

ε∈Q∩[−1,1]\{0}

m∗((V + ε) \ V ) = m∗(V ) > 0 .

Exercise 6. The goal of this exercise is to define a notion of dimension for general sets E ⊆ Rd

and to compute the dimension of the Cantor set. In order to do so, we first need to introduce the

s-Haussdorf measure of a set E ⊆ Rd, see the following definitions.

i) The diameter of E is the maximal distance between points in E, i.e.

diam(E) := sup {|x− y| : x, y ∈ E} .

ii) For any δ ∈ (0,∞], we say that {Fn}n∈N, with Fn ⊆ Rd, is a δ-covering of E if

E ⊆
⋃
n∈N

Fn and diam(Fn) < δ ∀n ∈ N.

iii) Let s ∈ [0,∞). For any δ > 0 we define

Hs
δ(E) := inf

{ ∞∑
n=0

diam(Fn)
s : {Fn}n∈N δ-covering of E

}
∈ [0,∞]

Notice that Hs
ϵ(E) ≤ Hs

δ(E), whenever ϵ ≥ δ.

iv) Finally, we define the s-Haussdorf measure of E as

Hs(E) := sup
δ>0

Hs
δ(E) ∈ [0,∞].

One can prove that Hs is in fact a measure, when restricted to the σ-algebra of Borel subsets of

Rd. Moreover, up to a multiplicative constant, Hd coincides with the Lebesgue measure in Rd,

and, more generally, the Hk-measure of a k-surface in Rd coincides with its k-surface measure.
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(i) Prove that H0 coincides with the ”counting measure”, i.e.

H0(E) =

#E if E is finite,

+∞ otherwise.

Here #E stands for the cardinality of the set E.

(ii) Take 0 ≤ s < t < ∞. Prove the following implications:

Hs(E) < ∞ =⇒ Ht(E) = 0; Ht(E) > 0 =⇒ Hs(E) = ∞.

Deduce that for any E ⊂ Rd there exists a unique number s∗ =: dimH(E) such that

Hs(E) = ∞ for every s ∈ [0, s∗), and Hs(E) = 0 for every s ∈ (s∗,∞].

dimH(E) is called the Haussdorf dimension of the set E. One can prove that this notion of

dimension coincides with the intuitive one for integer values: for instance, if E is a k-dimensional

vector space or a k-surface in Rd, then dimH(E) = k. However, as we will see in the next point,

not all sets need to have an integer dimension!

(iii) Let P ⊂ [0, 1] be the Cantor set. Prove that

dimH(P ) =
log(2)

log(3)
.

Hints:

i) To show the inequality dim(P ) ≤ log(2)/ log(3), remember that P =
⋂

k∈N Pk, where Pk

is the union of 2k disjoint intervals of length 3−k. Then use the definition of Haussdorf

measure and the characterization of the Haussdorf dimension.

ii) Observe that to prove dim(P ) ≥ log(2)/ log(3) =: α it is enough to show that Hα(P ) > 0.

To do so, you can proceed along the following steps:

(a) Show that Hs(P ) does not change if in the definition of a δ-covering {Fn}n∈N of P we

require all the sets Fn to be open intervals.

(b) Take a δ-covering {Fn}n∈N of P made of open intervals. Use compactness to prove that

for some N, k0 ∈ N large enough, {Fn}Nn=0 is a covering of Pk, for every k ≥ k0.

(c) Again by compactness, prove that for some k1 ≥ k0 large enough, each of the 2k1

intervals of length 3−k1 composing Pk1 is included in at least one of the open intervals

{Fn}n∈N.
(d) By the previous step, for every i ∈ {1, . . . , 2k1} there is some n(i) ∈ {0, . . . , N} such

that Ik1i ⊂ Fn(i). Call Cn := {1 ≤ i ≤ 2k1 : n(i) = n}. Using the definition of the

Cantor set, prove the following inequality:

diam(Fn)
α ≥ 1

4
·#Cn · 3−αk1 ∀n = 0, . . . , N.

Deduce from it that Hα(P ) ≥ 1/4.
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Solution:

(i) Assume first that E = {p1, . . . , pN} is finite. We want to show that H0(E) = N . Call ρ > 0

the minimal separation between two points of E, i.e.

ρ := min{|pi − pj | : 1 ≤ i < j ≤ N}.

Let δ < ρ/2 and {Fn}n∈N be a δ-covering of E. Then, since each set Fn has diameter less

than δ < ρ/2 and any two points in E are separated at least by ρ, we deduce that there are

at least N non-empty sets in the covering {Fn}n∈N. Therefore∑
n∈N

diam(Fn)
0 ≥ N.

By arbitrariness of the δ-covering {Fn}n∈N we deduce H0
δ(E) ≥ N , and so, in particular

H0(E) ≥ 0. For the opposite inequality, we just notice that, for any δ > 0, {Bδ/2(pi)}Ni=1 is

a δ-covering of E and

H0
δ(E) ≤

N∑
i=1

diam(Bδ/2(pi))
0 = N,

therefore H0(E) = supδ>0H0
δ(E) ≤ N . Finally, to prove that H0(E) = +∞ for E infinite

we just observe that Haussdorf measures are clearly monotone non-decreasing with respect

to inclusion.

(ii) We prove only the first implication, as the second is analogous. Let E ⊂ Rd be such that

Hs(E) = L < ∞. Then, by the definition of Haussdorf measure, for every k ≥ 1 there exists

a (1/k)-covering {F k
n}n∈N of E such that∑

n∈N
diam(F k

n )
s ≤ L+ 1.

Hence,

Ht
1/k(E) ≤

∑
n∈N

diam(F k
n )

t ≤ 1

kt−s

∑
n∈N

diam(F k
n )

s ≤ L+ 1

kt−s
.

In particular, for a fixed δ > 0, we have

Ht
δ(E) ≤ Ht

1/k(E) ≤ L+ 1

kt−s
for any k ∈ N such that 1/k ≤ δ,

that is, Ht
δ(E) = 0 for every δ > 0, and so Ht(E) = 0.

(iii) Let α := log(2)/ log(3). We prove separately the two inequalities dimH(P ) ≤ α and

dimH(P ) ≥ α. Recall that P =
⋂

k∈N Pk, where Pk+1 ⊂ Pk, and Pk =
⋃2k

i=1 I
k
i is the

union of 2k disjoint closed intervals {Iki }2
k

i=1 each one of length (and hence diameter) 3−k.

• (dimH(P ) ≤ α). By the characterization of the Haussdorf dimension it is enough to

show that Hα(P ) < ∞. Take δ > 0, and choose k ∈ N large enough such that 3−k ≤ δ.
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Then {Iki }2
k

i=1 is a δ-covering of P . Therefore

Hα
δ (P ) ≤

2k∑
i=1

diam(Iki )
α = 2k3−kα = 1,

where in the last equality we have used the definition of α. Therefore, Hα(P ) ≤ 1 < ∞
and the first inequality is proved.

• (dimH(P ) ≥ α). Again by the characterization of the Haussdorf dimension it is enough

to show that Hα(P ) > 0. We proceed with the strategy outlined in the hints.

a) Here we show that Hα
δ (P ) remains unchainged if in the definition of δ-covering we

require the sets {Fn}n∈N to be open intervals. To do so, we just need to show that

for any δ-covering {Fn}n∈N of P and any ϵ > 0 we may find a δ-covering {Gn}n∈N
of P such that Gn are open intervals and∑

n∈N
diam(Gn)

α ≤ (1 + ϵ)
∑
n∈N

diam(Fn)
α.

We may assume without loss of generality that diam(Fn) < ∞ for every n ∈ N.
Then, the etremals an := inf Fn, and bn := supFn of Fn are well-defined, −∞ <

an ≤ bn ≤ +∞ and diamFn = bn− an. Then we may take ϵn > 0 sufficiently small

so that bn − an + 2ϵn < (bn − an)(1 + ϵ)1/α and define

Gn := (an − ϵn, bn + ϵn),

thus concluding this step.

b) Now we consider any covering {Fn}n∈N of P made of open intervals. Our final goal

is to give a lower bound for
∑

n∈N diam(Fn)
α independent of the covering. Observe

that since P is compact, we may extract from {Fn}n∈N a finite sub-covering {Fn}Nn=0

of P . Let us show that for some k0 ∈ N large enough, {Fn}Nn=0 covers Pk0 , (and

thus it also covers Pk for every k ≥ k0). If, by contradiction, this was not the case,

we would have a sequence of points xk ∈ Pk \
⋃N

n=0 Fn. Then up to subsequences,

xk → x∞ ∈ P \
⋃N

n=0 Fn, a contradiction, since {Fn}Nn=0 covers P .

c) In this step we want to show that if k1 ≥ k0 is large enough, then each interval Ik1i
composing Pk1 is included in at least one of the open intervals Fn, for n = 0, . . . , N .

The proof is again by contradiction using compactness. Suppose we have, for every

k ≥ k0, an interval Ikik = (ak, bk) with bk − ak = 3−k such that (ak, bk) ̸∈ Fn,

for any n = 0, . . . , N . Then up to extracting a subsequence, there exist a point

p ∈ P such that ak, bk → p. However, since P ⊂
⋃N

n=0 Fn, there must be some

n ∈ {0, . . . , N} such that p ∈ Fn. Moreover, being Fn open, for k large enough we

have [ak, bk] ⊂ Fn, a contradiction.

d) In this final step we prove the desired lower bound on
∑

n∈N diam(Fn)
α. Let

k1 ≥ k0 be as in the previous step. Then, for every i ∈ {1, . . . , 2k1} there exist

n(i) ∈ {0, . . . , N} such that Ik1i ⊂ Fn. We may then split {1, . . . , 2k1} =
⋃N

n=0Cn,

where Cn := {i : n(i) = n}.
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We claim that

diam(Fn)
α ≥ 1

4
·#Cn · 3−αk1 ∀n = 0, . . . , N. (2)

Assuming the claim is proved, then we conclude as follows:

∑
n∈N

diam(Fn)
α ≥

N∑
n=0

diam(Fn)
α ≥ 1

4
3−k1α

N∑
n=0

#Cn =
1

4
3−k1α2k1 =

1

4
,

where in the last equality we used the definition of α. By the arbitrariness of the

covering {Fn}n∈N we deduce that Hα(P ) ≥ 1/4, thus concluding the proof.

Let us prove claim (??) now. Let k ≤ k1 be the smallest integer for which Fn

contains some interval Iki . From the construction of the Cantor set, we see that

Fn will intersect at most 4 intervals of the k-th generation (otherwise Fn would

contain some Ik−1
i , thus contradicting the definition of k). Let F ⊂ {Iki }2

k

i=1 be the

family of such intervals (#F ≤ 4). We will have:

4 diam(Fn)
α ≥

∑
Iki ∈F

diam(Iki )
α =

∑
Iki ∈F

3−kα

=
∑
Iki ∈F

2k1−k3−k1α =
∑
Iki ∈F

∑
I
k1
j ⊂Iki

3−k1α

≥
∑

I
k1
j ⊂Fn

3−k1α ≥ #Cn · 3−k1α.

In the first passage we used that #F ≤ 4; in the third we exploited the definition

of α; finally, in the fifth we used the fact that any Ik1j which is included in Fn, must

also be included in some Iki which intersect Fn.
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