Serie 4
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course.
The exercises can be handed in until the following Monday at 8am. They will be marked with 0,

1 or 2 points.

e Starred exercises (%) are either more difficult than other problems or focus on non-core materials,

and as such they are non-examinable.

Exercise 1 (Properties of signed integrals). Let 2 C R™ be a measureable set and let f,g: Q —

R be absolutely integrable functions. Show the following statements:

/fdac < / f+dac+/ f_dz::/ |f| dx.
Q Q Q Q
(ii) For any real number c (positive, zero, or negative), we have that cf is absolutely integrable
/(cf)da::c/ fdx.
Q Q

(iii) The function f + g is absolutely integrable and

/Q(f%-g)da::/gfda:%—/ggdx.

(iv) If f(z) < g(z) for all x € Q, then we have

/Qfdxg/ﬂgdzn.

(v) If f(z) = g(x) for almost every x € €, then

/Qfdx:/ﬂgd:r.

(i) Prove that

and



Hint:  For (iii), break f, g and f 4 ¢ up into positive and negative parts, and try to write
everything in terms of integrals of non-negative functions. Then, use the linearity of the integral

with respect to non-negative functions.

Solution:

(i) Recall the triangular inequality |z —y| < |z| + |y| for all z,y € R. Using that f* and

/Qerdx /Qf_dx :/Qerdx—i—/Qf_d;r

f~ are nonnegative, we can estimate

/Qfd:v /Qerd;v—/Qf_d:U
:LUMm

(ii) First of all, notice that since f is absolutely integrable, cf is also absolutely integrable.

= < +

Now, if ¢ = 0, the result is obvious. If ¢ is positive, we have using the linearity of the

integral for nonnegative functions that

/Q(cf)dx:/ﬂ(cffrdw—/ﬂ(cf)d:cz/gcf*da:—/ﬂcfd:c:c/ﬂfdx. (1)

If ¢ is negative instead, we have

/Q(cf)d:v:/Q(cf)erx—/Q(cf)_da::/Q|c|f_dx—/ﬂc|f+dx:—</Q|c|f+dx—/g|c|f_dm>

:—AMﬁm@—MAfm=cAfﬁ.

(ili) We begin by showing that f + g is absolutely integrable. Indeed, by the triangular

inequality and the monotonicity of the integral for nonnegative functions, we have

/|f+g|dm§/!f|dm~l—/|g|da:<—|—oo.
Q Q Q

Note that
f+9 " =(f+9) =f+g9=f"—f+g" -9,

and so
(f+pt+f+9 =(+g9 +f+g"

Therefore, using linearity of the integral for nonnegative functions,

/Q(f+g)+dx+/9f_dm—l—/gg_dm:/Q(f—l—g)_dx—k/ﬂf+dx+/gg+dm. (2)




Thus,

[urod™ [(trord- [(f+o da

@/erdx—/f_da:—l—/g’Ld:):—/g_d:r
Q Q Q Q
d:ef/fda:+/gda:.

Q Q

(iv) The assumption |f(z)| < |g(x)| guarantees f(z) < g*(x) and g~ (z) < f~ () for all

x € (2 and therefore by the monotonicity of the integral for nonnegative functions

/Qfdx:/Qerdq:—/Qf_dxg/Qngdx—/Qg_dx:/dix.

(v) Since f(z) = g(x) for almost every x € 2, there is a set A C Q of measure 0 such that
f(@)lg\a(z) = g(7) g\ a(z) for every x € Q. Applying (iv) in both directions we get

/ flowa = / 9loya-
Q Q
Thus, using (iii)

/fd:U:/fIlQ\Adx—i—/fdx]lA:/g]lQ\Ada:—l—/g]lAdx:/gd:c.
Q Q Q Q Q Q
S

—_——
=0 =0

Exercise 2. Recall from Serie 3 that if ¢ is measurable and f is continuous, then f o ¢ is
measurable. In general however, the composition of measurable functions is not measurable.
To see this, we define the function of Lebesgue. For xz € [0,1], we consider its binary

expansion

E

\V)

%)
a
X =
2: n
n=1

with a,, € {0,1}. As in Exercise 6 of Serie 3, this binary expansion is unique, if we identify the

expansions
0.a1---ap_101---1... and 0.a1---ap_110---0.... (3)

We will in the sequel always assume that the expansions are of the first form, i.e. that all but
finitely many a,, are equal to 1 (except for x = 0, where a,, = 0 for all n > 1). With this
convention, we then define f : [0,1] — [0, 1] by

fla):=3 2 (4)

n=1



(i) Prove that f is strictly increasing, measurable and f([0,1]) C P, where P C [0,1] is the

Cantor set.

(ii) Let V' C [0,1] be a non-measurable set (which you can assume to exist, see hint of Exercise
4) and define B := f(V). Show that both 15 and f are measurable and yet, that their

composition 1z o f is not measurable.

Remark: The Lebesgue function would not be well-defined without the identification (3) (Why?).
Moreover, it is not true that f([0,1]) = P : Indeed, % € P has the tenary expansions 0.20---0. ..
and 0.12---2... . For the second expansion, we do not have a preimage, and for the first ex-
pansion, we would have the preimage 0.10---0... ; however with our convention, this is not the

binary expansion of a number on [0, 1].

Solution:

(i) It follows from the definition of the Cantor set, that f([0,1]) C P. It remains to prove
that f is strictly increasing which implies measurability. Take 0 < z < y < 1 and

consider their binary expansions (they are unique with our convention)

. a b

n n

a;zg on and yzg o
n=1 n=1

By the convention we chose for the binary expansion, we have that if x < y there
exists 1 < k < oo such that

aj=>bjforall j=1,....k—1 and a; <by,

i.e. ap = 0 and by = 1. We then have

o0

2 2(b, — an,
f(y)—f(x):?jk“‘ Z (3")
n=k+1
2 =1
22> &
n=k+1

2 2 X1 1
> g g 0
n=0

(ii) We know from (i) that f is measurable since it is strictly increasing (recall Serie 3).
By construction, B = f(V) is a subset of the Cantor set, so in particular m*(B) = 0

and hence B is Lebesgue measurable, in particular 1p is a measurable map. However,




we have that 1z o f:[0,1] — [0,1] and

{zeR| (Ipof)(z) >0} =(Lpof) (J0,+oc)
=/~ (15" (10, +00])
=f~(B)
=~ (f(V))
=V éM,

where the last equality follows from the injectivity of f. Thus, 1o f is not measurable.

Exercise 3. In this exercise we will construct a famous example of a continuous function, the
Cantor function, whose range is [0,1] despite being constant almost everywhere. Recall the
notation introduced in the construction of the Cantor set P = (), -, P, in the Lecture Notes.

We define recursively a sequence { f}nen,, of functions on [0, 1] by
folx) =2 =z €]0,1],

fn(3z) 0<xz<1/3,
1/3<x<2/3,
faBz—2)+1 2/3<z<1

Nl N

fn-‘rl(x) =

(i) Draw the graph of fi, fa, f3 and f4. Prove by induction that each f, is continuous on
[0,1] with f,(0) =0 and f,(1) = 1, monotonically increasing and constant on [0, 1]\ P,.

(ii) Prove that
|far1(z) — fu(z) < 27" Vz €0,1].

Deduce that f,, converges uniformly on [0, 1] to a limit f which is continuous. We call f

the Cantor function.

(iii) Prove that f is monotonically increasing on [0,1] with f(0) = 0, f(1) = 1 and that f is

piecewise constant on [0, 1]\ P.

(iv) Deduce that f induces a bijection between P and [0, 1]. In particular, the Cantor set P,

despite being a Lebesgue null set, has the cardinality of the continuum.

Solution:

(i) It is clear that fj is continuous with fy(0) = 0 and fy(1) = 1, monotonically increasing
and constant on [0, 1]\ Py = (). We prove that the same holds for any f,, by induction.




Assume that, f,, is continuous with f,,(0) = 0 and f,,(1) = 1, monotonically increasing,
constant on [0,1] \ P, and we want to prove the same properties for f,,4+1. First for
the continuity, it is clear from the definition that f,4; is continuous on (1/3,2/3).
Similarly, since f, is continuous and the functions = +— 3z and = — 3x — 2 are
continuous, fp+1 is continuous on (0,1/3) and (2/3,1). To get the continuity on the
whole interval [0, 1], it suffices to notice that since f,,(0) = 0 and f,(1) =1, we have

1 1 1 1
li = lim = == li = lim = =
i fny1() ;?ml 5fn(z) =5 and m fov1(x) zlér(l) g fn(@) +5 =5 (5)

Moreover, fp1+1(0) = 1f,(0) = 0 and fo41(1) = $fu(1) + 3 = 1. Now, for the
monotonicity, it is clear since f, is monotonically increasing and from the definition
of fn+1 combined with (5), that f,4+1 is monotonically increasing. Finally, we prove
that f,+1 is constant on [0,1] \ P,4+1. It is obvious from the definition that f, 41
is constant on [1/3,2/3]. In addition, for any = € [0,1] \ Py41, 3z € [0,1] \ P, if
0<z<1/3and3x—2¢€0,1]\ P, if 2/3 < x < 1. Since f, is constant on [0, 1]\ P, ,
this implies that f,11 is constant on [0, 1] \ Py41.

As in the previous point, we use an induction argument. It is clear that
|fi(z) — fo(z)| <1 Yz €[0,1].
Now assume for some n that
|fror1(x) — falz)] <27 Vo €[0,1].

and prove the inequality for n + 1. For any z € [0,1/3],

’fn-i-?(x) - fn—i—l(fb)‘ = %|fn+1(3x) — fn(3x)| < 27(n+1).

For any = € [2/3,1],

[frr2(2) = fryr(z)] = %|fn+1(3x —2) — fu(3z — 2)| < 2-(+)

and for any x € [1/3,2/3]
| friz(2) = faga(z)] =0 < 27 FD),

Thus,
Fara(@) = fara(@)] < 270D v [0,1]

which gives the desired inequality. This proves that { f,, }nen, is a uniformly converging
Cauchy sequence. In particular, the pointwise limit of f,,(x) exists for every x € [0, 1]

(since {fn(x)} is Cauchy on R) and we call it f(z). Since f,, are continuous on [0, 1]




and by the above, they converge to f uniformly, we deduce that f is continuous on
[0,1].

(iii) The fact that f is monotonically increasing follows from the fact that every f, is
monotonically increasing. Indeed, assume the contrary, then there are x < y such
that f(z) > f(y). Let € = f(x) — f(y). Since f, converges uniformly to f there is an
N such that for all n > N ||f, — fllco < £/5. In particular, for N we get that

InW) = fy) = fny) — In(@) + fy(@) = f(z) + f(z) = f(y)

4e

2 fv(a) = flz) + fl2) = fly) = +

which is a contradiction. Finally, we prove that f is piecewise constant on [0,1] \ P.
Since f,, is piecewise constant on [0,1] \ P, and

P.y1 C P, forevery k> 1,

for any n and all m > n, f,, is piecewise constant on [0,1] \ P,. Since f, — f

uniformly, f is piecewise constant on [0,1] \ P,. Since this is true for any n and

o0

[0, 1]\ P = U([Ovl]\Pn)7
k=1

f is piecewiece constant on [0, 1]\ P.

(iv) It is enough to prove that f(P) = [0,1]. Since f is piecewise constant on [0, 1] \ Py,
f([0,1]\ P,) is finite. Thus

f([0,1]\ P) ={f(x) : z € [0,1] \ P, for some n > 1} = U {f(x):xz € ([0,1]\ P,)}

n=1

= U f([071]\Pn)
n=1

is countable, and therefore f(P) is dense in [0,1]. Since P is compact and f is
continuous, also f(P) is compact and hence f(P) = f(P) = [0, 1].

Exercise 4. Show that there exists f: [0,1] — [0, 1] continuous and two subsets A, B C [0, 1]
such that

(i) A is measurable and f(A) is not,
(ii) B is a null set and f(B) has positive Lebesgue measure.

Hint: You can assume (without proof) that there exists a non-measurable subset V' C [0, 1].

An example of such a subset will be constructed explicitly in the lecture.



Solution:

(i) Let f be the Cantor function defined in Exercise 3 and V' C [0, 1] be a non-measurable
set (the Vitali set for example). Denote the Cantor set by P . Define

A={zeP: f(x) eV}

Since A C P and the Cantor set P has Lebesgue measure 0, A has outer measure
0 and is therefore measurable (of measure 0). Since f maps P to [0, 1] surjectively,
f(A) =V and therefore f(A) is not measurable.

(ii) Again, let f be the Cantor function and set B = P to be the Cantor set P. We
already know that B = P has measure 0, and f(B) = [0, 1], which has measure 1.

Exercise 5. Integrability of f on R does not necessarily imply the convergence of f(x) to 0 as

x — 00. Prove the following statements:

(i) There exists a positive continuous function f : R — [0, +00) which is absolutely integrable

and yet limsup,_, . f(z) = oc.
(ii) If f is absolutely integrable and lim, o f(z) exists, then necessarily lim|,_,o, f(x) = 0.

(iii) Show that if f is uniformly continuous and absolutely integrable, then lim g 00 f (x) =0.

Solution:

(i) For each n € N*, we define ¢, : R — R by
(
3n3(xfn) ifn§x§n+#,

1 ifn+ 55 <z <n+ 33,

en(T) = 1
" 3n3<n+n3—x> ifn—i—%gajgn%—n%,

0 otherwise.

By construction fR]cpn]dx = fR opdr < n~3 and ¢, is continuous. Now, define
f:R—=R by

o0
flx) = nen(x)
n=1
and observe that f is integrable and continuous. However, we have

limsup f(z) = lim n = co.
T—00 LLanas




(ii) Assume for a contradiction that lim, o f(7) = 0 # 0. Then there is R > 0 such
that for all z € R with |z| > R we have |f(z)| > 271[6]. Thus,

181 4 —
/R\f(x)]de/|$>R 5 dx = o0

so that f is not integrable, which yields the desired contradiction.

(iii) Assume for a contradiction that f(x) does not converge to 0 as |x| — co. Then there
is a sequence {x,}5°; such that |z,] — oo and lim, e |f(zn)] = ¢ > 0. We can
assume without loss of generality that |z, 11| > |z,| + 1 for all n > 1. Thereis N > 1
such that for all n > N | f(z,)| > ¢/2. By uniform continuity, there is 0 < § < 1 such
that whenever = and y satisfy |z — y| < 0, we get |f(x) — f(y)| < ¢/4. Thus, for any
n > N and any z € (2, — 0,2, + J), we have

[f(@)] > ¢/4.

Finally, since the intervals {(z, — d,z,, + 0) }n>n are disjoint, we get

0(5
ey widr= Y0 [ fa)de > oo,
/]R UnZN(xn—(SJn'HS) Z Z

n>N n>N

1'7L+6

which shows that f is not integrable and gives us a contradiction.

Exercise 6 (x). Let 0 < e < 1.

(i) Construct an open dense set E C [0, 1] such that m(E) = e.

(ii) Construct a closed set F' that does not contain any non-empty open set with m(F') = €.

Solution:
(i) We construct the set E as an countable union of open and pairwise disjoint sets
{Er}2o- We will inductively construct the sets {E}}7°, having the properties

(8) m(Er) = 5oy

(b) EiﬂEj—(bVZ#j,

(c) Ej is the union of 2* disjoint, open intervals of equal length ﬁ ,

c 1
(d) (Uf:_ol E1> is a union of 2F disjoint closed sets of equal length ( (1 - ﬁ)) .




We start the construction by defining

1 1 ¢
Eyi={=—-,=+-
0 <2 4’2+4>’

Now, assume by induction that we have already constructed the sets Fy,..., E,_1
verifying (a)-(d) for some n > 1. Now we will construct the set E,. Let x1,...,xon

be the middle points of the complementaries of those intervals. Since
€ 1 1
w1 (-5)),

S S
Ti = Sont20 Ui T Sanye

are clearly disjoint from Uz;i E}.. Defining,

the sets

on

€ £
En = U (xl ~ oy i T 22n+2> '
i=1

it is clear that E;NE; =0, Vi,j =1,...,n, i # j. In addition,

2¢e €
m(E,) = 2" 92n+2 ~ gnil-

Finally, the complement of U?_, Fj, consists of 2" intervals since every interval in

n

(UZ;%E;G)C generates two intervals in (U}_; E};)¢ due to the construction of E,. From

)

This proves that the family {E}}72, is composed of disjoint sets and

m(E) =m (U Ek> :Zm(Ek) :Z;ﬁ =ec.

k=1 k=1 k=1

this construction, it is clear that all these intervals have length

B0 A e _ 1 (1
B = gntl £ ont1

Now we prove that E is dense in [0, 1]. Let x € [0,1] and § > 0 and prove that there is
y € E such that |z —y| < d. If x € E, it is obvious. Instead, we suppose that = ¢ E.
Then there is n > 1 such that

W<5‘

Since z ¢ E, x ¢ Ui, B, i.e. € (Ui, E;)°. Since (|, E;)¢ consists of disjoint

intervals of length
1 1 1
on+1 IT—el{l- on+1 NSTESE

10




there must exist y € | JI_; E; such that

1
This proves that E is dense in [0, 1].

(ii) Due to the previous point, there is an open, dense set E C [0, 1] such that m(E) = 1—e.
Define F' = [0,1] \ E. Thus

m(F)=1-m(F) =¢.

Since E is dense in [0, 1], F' cannot contain a non-empty open set.

11




