
Serie 4

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course.

The exercises can be handed in until the following Monday at 8am. They will be marked with 0,

1 or 2 points.

• Starred exercises (⋆) are either more difficult than other problems or focus on non-core materials,

and as such they are non-examinable.

Exercise 1 (Properties of signed integrals). Let Ω ⊆ Rn be a measureable set and let f, g : Ω →
R be absolutely integrable functions. Show the following statements:

(i) Prove that ∣∣∣∣∫
Ω
f dx

∣∣∣∣ ≤ ∫
Ω
f+ dx+

∫
Ω
f− dx =

∫
Ω
|f | dx.

(ii) For any real number c (positive, zero, or negative), we have that cf is absolutely integrable

and ∫
Ω
(cf) dx = c

∫
Ω
f dx .

(iii) The function f + g is absolutely integrable and∫
Ω
(f + g) dx =

∫
Ω
f dx+

∫
Ω
g dx .

(iv) If f(x) ≤ g(x) for all x ∈ Ω, then we have∫
Ω
f dx ≤

∫
Ω
g dx.

(v) If f(x) = g(x) for almost every x ∈ Ω, then∫
Ω
f dx =

∫
Ω
g dx.
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Hint: For (iii), break f , g and f + g up into positive and negative parts, and try to write

everything in terms of integrals of non-negative functions. Then, use the linearity of the integral

with respect to non-negative functions.

Solution:

(i) Recall the triangular inequality |x− y| ≤ |x|+ |y| for all x, y ∈ R. Using that f+ and

f− are nonnegative, we can estimate∣∣∣∣∫
Ω
f dx

∣∣∣∣ = ∣∣∣∣∫
Ω
f+ dx−

∫
Ω
f− dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω
f+ dx

∣∣∣∣+ ∣∣∣∣∫
Ω
f− dx

∣∣∣∣ = ∫
Ω
f+ dx+

∫
Ω
f− dx

=

∫
Ω
|f | dx.

(ii) First of all, notice that since f is absolutely integrable, cf is also absolutely integrable.

Now, if c = 0, the result is obvious. If c is positive, we have using the linearity of the

integral for nonnegative functions that∫
Ω
(cf) dx =

∫
Ω
(cf)+ dx−

∫
Ω
(cf)− dx =

∫
Ω
cf+ dx−

∫
Ω
cf− dx = c

∫
Ω
f dx. (1)

If c is negative instead, we have∫
Ω
(cf) dx =

∫
Ω
(cf)+ dx−

∫
Ω
(cf)− dx =

∫
Ω
|c|f− dx−

∫
Ω
|c|f+ dx = −

(∫
Ω
|c|f+ dx−

∫
Ω
|c|f− dx

)
= −

∫
Ω
|c|f dx

(1)
= −|c|

∫
Ω
f dx = c

∫
Ω
f dx.

(iii) We begin by showing that f + g is absolutely integrable. Indeed, by the triangular

inequality and the monotonicity of the integral for nonnegative functions, we have∫
Ω
|f + g| dx ≤

∫
Ω
|f | dx+

∫
Ω
|g| dx < +∞.

Note that

(f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g−,

and so

(f + g)+ + f− + g− = (f + g)− + f+ + g+.

Therefore, using linearity of the integral for nonnegative functions,∫
Ω
(f + g)+dx+

∫
Ω
f−dx+

∫
Ω
g−dx =

∫
Ω
(f + g)−dx+

∫
Ω
f+dx+

∫
Ω
g+dx. (2)
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Thus, ∫
Ω
(f + g) dx

def
=

∫
Ω
(f + g)+ dx−

∫
Ω
(f + g)− dx

(2)
=

∫
Ω
f+ dx−

∫
Ω
f− dx+

∫
Ω
g+ dx−

∫
Ω
g− dx

def
=

∫
Ω
f dx+

∫
Ω
g dx.

(iv) The assumption |f(x)| ≤ |g(x)| guarantees f+(x) ≤ g+(x) and g−(x) ≤ f−(x) for all

x ∈ Ω and therefore by the monotonicity of the integral for nonnegative functions∫
Ω
f dx =

∫
Ω
f+ dx−

∫
Ω
f− dx ≤

∫
Ω
g+ dx−

∫
Ω
g− dx =

∫
Ω
g dx.

(v) Since f(x) = g(x) for almost every x ∈ Ω, there is a set A ⊂ Ω of measure 0 such that

f(x)1Ω\A(x) = g(x)1Ω\A(x) for every x ∈ Ω. Applying (iv) in both directions we get∫
Ω
f1Ω\A =

∫
Ω
g1Ω\A.

Thus, using (iii)∫
Ω
f dx =

∫
Ω
f1Ω\A dx+

∫
Ω
f dx1A︸ ︷︷ ︸
=0

=

∫
Ω
g1Ω\A dx+

∫
Ω
g1A dx︸ ︷︷ ︸
=0

=

∫
Ω
g dx .

Exercise 2. Recall from Serie 3 that if φ is measurable and f is continuous, then f ◦ φ is

measurable. In general however, the composition of measurable functions is not measurable.

To see this, we define the function of Lebesgue. For x ∈ [0, 1] , we consider its binary

expansion

x :=
∞∑
n=1

an
2n

with an ∈ {0, 1} . As in Exercise 6 of Serie 3, this binary expansion is unique, if we identify the

expansions

0.a1 · · · ak−101 · · · 1 . . . and 0.a1 · · · ak−110 · · · 0 . . . . (3)

We will in the sequel always assume that the expansions are of the first form, i.e. that all but

finitely many an are equal to 1 (except for x = 0, where an = 0 for all n ≥ 1). With this

convention, we then define f : [0, 1] → [0, 1] by

f(x) :=

∞∑
n=1

2an
3n

. (4)
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(i) Prove that f is strictly increasing, measurable and f([0, 1]) ⊆ P , where P ⊂ [0, 1] is the

Cantor set.

(ii) Let V ⊂ [0, 1] be a non-measurable set (which you can assume to exist, see hint of Exercise

4) and define B := f(V ). Show that both 1B and f are measurable and yet, that their

composition 1B ◦ f is not measurable.

Remark: The Lebesgue function would not be well-defined without the identification (3) (Why?).

Moreover, it is not true that f([0, 1]) = P : Indeed, 2
3 ∈ P has the tenary expansions 0.20 · · · 0 . . .

and 0.12 · · · 2 . . . . For the second expansion, we do not have a preimage, and for the first ex-

pansion, we would have the preimage 0.10 · · · 0 . . . ; however with our convention, this is not the

binary expansion of a number on [0, 1] .

Solution:

(i) It follows from the definition of the Cantor set, that f([0, 1]) ⊂ P . It remains to prove

that f is strictly increasing which implies measurability. Take 0 < x < y < 1 and

consider their binary expansions (they are unique with our convention)

x =
∞∑
n=1

an
2n

and y =
∞∑
n=1

bn
2n

.

By the convention we chose for the binary expansion, we have that if x < y there

exists 1 ≤ k < ∞ such that

aj = bj for all j = 1, . . . , k − 1 and ak < bk ,

i.e. ak = 0 and bk = 1 . We then have

f(y)− f(x) =
2

3k
+

∞∑
n=k+1

2(bn − an)

3n

≥ 2

3k
− 2

∞∑
n=k+1

1

3n

≥ 2

3k
− 2

3k+1

∞∑
n=0

1

3n
=

1

3k
> 0 .

(ii) We know from (i) that f is measurable since it is strictly increasing (recall Serie 3).

By construction, B = f(V ) is a subset of the Cantor set, so in particular m∗(B) = 0

and hence B is Lebesgue measurable, in particular 1B is a measurable map. However,
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we have that 1B ◦ f : [0, 1] → [0, 1] and

{x ∈ R | (1B ◦ f)(x) > 0} =(1B ◦ f)−1 (]0,+∞[)

=f−1
(
1−1
B (]0,+∞[)

)
=f−1(B)

=f−1 (f(V ))

=V /∈ M,

where the last equality follows from the injectivity of f . Thus, 1B◦f is not measurable.

Exercise 3. In this exercise we will construct a famous example of a continuous function, the

Cantor function, whose range is [0, 1] despite being constant almost everywhere. Recall the

notation introduced in the construction of the Cantor set P =
⋂

n≥1 Pn in the Lecture Notes.

We define recursively a sequence {f}n∈N≥0
of functions on [0, 1] by

f0(x) = x x ∈ [0, 1],

fn+1(x) =


1
2fn(3x) 0 ≤ x < 1/3,

1
2 1/3 ≤ x < 2/3,

1
2fn(3x− 2) + 1

2 2/3 ≤ x ≤ 1.

(i) Draw the graph of f1, f2, f3 and f4. Prove by induction that each fn is continuous on

[0, 1] with fn(0) = 0 and fn(1) = 1, monotonically increasing and constant on [0, 1] \ Pn.

(ii) Prove that

|fn+1(x)− fn(x)| < 2−n ∀x ∈ [0, 1].

Deduce that fn converges uniformly on [0, 1] to a limit f which is continuous. We call f

the Cantor function.

(iii) Prove that f is monotonically increasing on [0, 1] with f(0) = 0, f(1) = 1 and that f is

piecewise constant on [0, 1] \ P .

(iv) Deduce that f induces a bijection between P and [0, 1]. In particular, the Cantor set P ,

despite being a Lebesgue null set, has the cardinality of the continuum.

Solution:

(i) It is clear that f0 is continuous with f0(0) = 0 and f0(1) = 1 , monotonically increasing

and constant on [0, 1]\P0 = ∅. We prove that the same holds for any fn by induction.

5



Assume that, fn is continuous with fn(0) = 0 and fn(1) = 1, monotonically increasing,

constant on [0, 1] \ Pn and we want to prove the same properties for fn+1. First for

the continuity, it is clear from the definition that fn+1 is continuous on (1/3, 2/3).

Similarly, since fn is continuous and the functions x 7→ 3x and x 7→ 3x − 2 are

continuous, fn+1 is continuous on (0, 1/3) and (2/3, 1). To get the continuity on the

whole interval [0, 1], it suffices to notice that since fn(0) = 0 and fn(1) = 1 , we have

lim
x→

<
1/3

fn+1(x) = lim
x→

<
1

1

2
fn(x) =

1

2
and lim

x→
>
2/3

fn+1(x) = lim
x→

>
0

1

2
fn(x) +

1

2
=

1

2
. (5)

Moreover, fn+1(0) = 1
2fn(0) = 0 and fn+1(1) = 1

2fn(1) +
1
2 = 1 . Now, for the

monotonicity, it is clear since fn is monotonically increasing and from the definition

of fn+1 combined with (5), that fn+1 is monotonically increasing. Finally, we prove

that fn+1 is constant on [0, 1] \ Pn+1. It is obvious from the definition that fn+1

is constant on [1/3, 2/3]. In addition, for any x ∈ [0, 1] \ Pn+1, 3x ∈ [0, 1] \ Pn if

0 ≤ x < 1/3 and 3x− 2 ∈ [0, 1] \Pn if 2/3 ≤ x ≤ 1. Since fn is constant on [0, 1] \Pn ,

this implies that fn+1 is constant on [0, 1] \ Pn+1.

(ii) As in the previous point, we use an induction argument. It is clear that

|f1(x)− f0(x)| < 1 ∀x ∈ [0, 1].

Now assume for some n that

|fn+1(x)− fn(x)| < 2−n ∀x ∈ [0, 1].

and prove the inequality for n+ 1. For any x ∈ [0, 1/3],

|fn+2(x)− fn+1(x)| =
1

2
|fn+1(3x)− fn(3x)| < 2−(n+1).

For any x ∈ [2/3, 1],

|fn+2(x)− fn+1(x)| =
1

2
|fn+1(3x− 2)− fn(3x− 2)| < 2−(n+1)

and for any x ∈ [1/3, 2/3]

|fn+2(x)− fn+1(x)| = 0 < 2−(n+1).

Thus,

|fn+2(x)− fn+1(x)| < 2−(n+1) ∀x ∈ [0, 1].

which gives the desired inequality. This proves that {fn}n∈N0 is a uniformly converging

Cauchy sequence. In particular, the pointwise limit of fn(x) exists for every x ∈ [0, 1]

(since {fn(x)} is Cauchy on R) and we call it f(x) . Since fn are continuous on [0, 1]
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and by the above, they converge to f uniformly, we deduce that f is continuous on

[0, 1] .

(iii) The fact that f is monotonically increasing follows from the fact that every fn is

monotonically increasing. Indeed, assume the contrary, then there are x < y such

that f(x) > f(y). Let ε = f(x)− f(y). Since fn converges uniformly to f there is an

N such that for all n ≥ N ∥fn − f∥C0 < ε/5. In particular, for N we get that

fN (y)− f(y) = fN (y)− fN (x) + fN (x)− f(x) + f(x)− f(y)

≥ fN (x)− f(x) + f(x)− f(y) ≥ 4ε

5
,

which is a contradiction. Finally, we prove that f is piecewise constant on [0, 1] \ P .

Since fn is piecewise constant on [0, 1] \ Pn and

Pk+1 ⊂ Pk for every k ≥ 1,

for any n and all m ≥ n, fm is piecewise constant on [0, 1] \ Pn. Since fn → f

uniformly, f is piecewise constant on [0, 1] \ Pn. Since this is true for any n and

[0, 1] \ P =
∞⋃
k=1

([0, 1] \ Pn) ,

f is piecewiece constant on [0, 1] \ P.

(iv) It is enough to prove that f(P ) = [0, 1]. Since f is piecewise constant on [0, 1] \ Pn,

f([0, 1] \ Pn) is finite. Thus

f([0, 1] \ P ) = {f(x) : x ∈ [0, 1] \ Pn for some n ≥ 1} =
∞⋃
n=1

{f(x) : x ∈ ([0, 1] \ Pn)}

=

∞⋃
n=1

f ([0, 1] \ Pn)

is countable, and therefore f(P ) is dense in [0, 1]. Since P is compact and f is

continuous, also f(P ) is compact and hence f(P ) = f(P ) = [0, 1].

Exercise 4. Show that there exists f : [0, 1] → [0, 1] continuous and two subsets A,B ⊆ [0, 1]

such that

(i) A is measurable and f(A) is not,

(ii) B is a null set and f(B) has positive Lebesgue measure.

Hint: You can assume (without proof) that there exists a non-measurable subset V ⊂ [0, 1] .

An example of such a subset will be constructed explicitly in the lecture.
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Solution:

(i) Let f be the Cantor function defined in Exercise 3 and V ⊂ [0, 1] be a non-measurable

set (the Vitali set for example). Denote the Cantor set by P . Define

A = {x ∈ P : f(x) ∈ V }.

Since A ⊆ P and the Cantor set P has Lebesgue measure 0, A has outer measure

0 and is therefore measurable (of measure 0). Since f maps P to [0, 1] surjectively,

f(A) = V and therefore f(A) is not measurable.

(ii) Again, let f be the Cantor function and set B = P to be the Cantor set P . We

already know that B = P has measure 0, and f(B) = [0, 1], which has measure 1.

Exercise 5. Integrability of f on R does not necessarily imply the convergence of f(x) to 0 as

x → ∞. Prove the following statements:

(i) There exists a positive continuous function f : R → [0,+∞) which is absolutely integrable

and yet lim supx→∞ f(x) = ∞.

(ii) If f is absolutely integrable and lim|x|→∞ f(x) exists, then necessarily lim|x|→∞ f(x) = 0.

(iii) Show that if f is uniformly continuous and absolutely integrable, then lim|x|→∞ f(x) = 0.

Solution:

(i) For each n ∈ N∗, we define φn : R → R by

φn(x) =



3n3(x− n) if n ≤ x ≤ n+ 1
3n3 ,

1 if n+ 1
3n3 ≤ x ≤ n+ 2

3n3 ,

3n3

(
n+

1

n3
− x

)
if n+ 2

3n3 ≤ x ≤ n+ 1
n3 ,

0 otherwise.

By construction
∫
R |φn| dx =

∫
R φn dx ≤ n−3 and φn is continuous. Now, define

f : R → R by

f(x) =
∞∑
n=1

nφn(x)

and observe that f is integrable and continuous. However, we have

lim sup
x→∞

f(x) = lim
n→∞

n = ∞.
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(ii) Assume for a contradiction that lim|x|→∞ f(x) = δ ̸= 0. Then there is R > 0 such

that for all x ∈ R with |x| > R we have |f(x)| > 2−1|δ|. Thus,∫
R
|f(x)| dx ≥

∫
|x|>R

|δ|
2

dx = ∞

so that f is not integrable, which yields the desired contradiction.

(iii) Assume for a contradiction that f(x) does not converge to 0 as |x| → ∞. Then there

is a sequence {xn}∞n=1 such that |xn| → ∞ and limn→∞ |f(xn)| = c > 0. We can

assume without loss of generality that |xn+1| ≥ |xn|+ 1 for all n ≥ 1. There is N ≥ 1

such that for all n ≥ N |f(xn)| > c/2. By uniform continuity, there is 0 < δ < 1 such

that whenever x and y satisfy |x− y| < δ, we get |f(x)− f(y)| < c/4. Thus, for any

n ≥ N and any x ∈ (xn − δ, xn + δ), we have

|f(x)| > c/4.

Finally, since the intervals {(xn − δ, xn + δ)}n≥N are disjoint, we get∫
R
|f(x)| dx ≥

∫
∪n≥N (xn−δ,xn+δ)

|f(x)| dx ≥
∑
n≥N

∫ xn+δ

xn−δ
|f(x)| dx ≥

∑
n≥N

cδ

2
= ∞,

which shows that f is not integrable and gives us a contradiction.

Exercise 6 (⋆). Let 0 < ε < 1.

(i) Construct an open dense set E ⊆ [0, 1] such that m(E) = ε.

(ii) Construct a closed set F that does not contain any non-empty open set with m(F ) = ε.

Solution:

(i) We construct the set E as an countable union of open and pairwise disjoint sets

{Ek}∞k=0. We will inductively construct the sets {Ek}∞k=1 having the properties

(a) m(Ek) =
ε

2k+1
,

(b) Ei ∩ Ej = ∅ ∀i ̸= j ,

(c) Ek is the union of 2k disjoint, open intervals of equal length ε
22(k+1) ,

(d)
(⋃k−1

i=0 Ei

)c
is a union of 2k disjoint closed sets of equal length

(
1− ε

(
1− 1

2k
))

.
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We start the construction by defining

E0 :=

(
1

2
− ε

4
,
1

2
+

ε

4

)
,

Now, assume by induction that we have already constructed the sets E0, . . . , En−1

verifying (a)-(d) for some n ≥ 1. Now we will construct the set En. Let x1, . . . , x2n

be the middle points of the complementaries of those intervals. Since

ε

22n+1
≤ 1

2n

(
1− ε

(
1− 1

2n

))
,

the sets (
xi −

ε

22n+2
, xi +

ε

22n+2

)
are clearly disjoint from

⋃n−1
k=1 Ek. Defining,

En =

2n⋃
i=1

(
xi −

ε

22n+2
, xi +

ε

22n+2

)
,

it is clear that Ei ∩ Ej = ∅, ∀i, j = 1, . . . , n, i ̸= j. In addition,

m(En) = 2n
2ε

22n+2
=

ε

2n+1
.

Finally, the complement of ∪n
k=1Ek consists of 2n+1 intervals since every interval in

(∪n−1
k=1Ek)

c generates two intervals in (∪n
k=1Ek)

c due to the construction of En. From

this construction, it is clear that all these intervals have length

1
2n (1− ε(1− 1

2n ))−
ε

22n+1

2
=

1

2n+1

(
1− ε

(
1− 1

2n+1

))
.

This proves that the family {Ek}∞k=1 is composed of disjoint sets and

m(E) = m

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

m(Ek) =

∞∑
k=1

ε

2k+1
= ε.

Now we prove that E is dense in [0, 1]. Let x ∈ [0, 1] and δ > 0 and prove that there is

y ∈ E such that |x− y| < δ. If x ∈ E, it is obvious. Instead, we suppose that x ̸∈ E.

Then there is n ≥ 1 such that
1

2n+1
< δ.

Since x ̸∈ E, x ̸∈
⋃n

i=1Ei, i.e. x ∈ (
⋃n

i=1Ei)
c. Since (

⋃n
i=1Ei)

c consists of disjoint

intervals of length
1

2n+1

(
1− ε

(
1− 1

2n+1

))
<

1

2n+1
,
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there must exist y ∈
⋃n

i=1Ei such that

|x− y| < 1

2n+1
< δ.

This proves that E is dense in [0, 1].

(ii) Due to the previous point, there is an open, dense set E ⊆ [0, 1] such that m(E) = 1−ε.

Define F = [0, 1] \ E. Thus

m(F ) = 1−m(E) = ε.

Since E is dense in [0, 1], F cannot contain a non-empty open set.
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