
Serie 3

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (⋆) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Definition 1 (lower/upper semi-continuity). Let f : Rn → R be a function.

(i) f is lower semi-continuous in x0 ∈ Rn if

∀ ε > 0 ∃ δ = δ(ε) > 0 such that |x− x0| < δ ⇒ f(x0)− f(x) ≤ ε.

(ii) f is lower semi-continuous if f is lower semi-continuous in every point x0 ∈ Rn.

(iii) f is upper semi-continuous in x0 ∈ Rn if

∀ ε > 0 ∃ δ = δ(ε) > 0 such that |x− x0| < δ ⇒ f(x)− f(x0) ≤ ε.

(iv) f is upper semi-continuous if f is upper semi-continuous in every point x0 ∈ Rn.

Exercise 1. We show that lower/upper semi-continuity implies measurability.

(i) Show that if f : Rn → R is lower semi-continuous, then for all α ∈ R the set

Gα := {x ∈ R : f(x) ≤ α}

is closed. Similarly, show that if f : Rn → R is upper semi-continuous, then for all α ∈ R the set

Fα := {x ∈ R : f(x) ≥ α}

is closed.

(ii) Deduce that an lower/upper semi-continuous function is measurable.
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Solution:

(i) We show that if f is lower semi-continuous, then Gα is closed. Let {xn}∞n=1 ⊂ Gα such that

limn→∞ xn = x ∈ Rn . We need to show that x ∈ Gα. Let ε > 0. By lower semi-continuity

in x, there is δ > 0 such that

|x− y| < δ ⇒ f(x) ≤ f(y) + ε.

Since xn → x as n → ∞, there is N = N(δ) ∈ N such that |x−xn| ≤ δ for all n ≥ N . Hence,

f(x) ≤ f(xn) + ε ≤ α+ ε, ∀n ≥ N.

The previous inequality being true for any ε, we conclude

f(x) ≤ α.

Thus, x ∈ Gα and therefore Gα is closed. In order to prove that if f is upper semi-continuous,

then Fα is closed, we use the same approach.

(ii) If f is lower semi-continuous, then Gα is closed and therefore measurable for every α ∈ R.
We deduce that f is measurable. Finally, if f is upper semi-continuous, the measurability

follows from the fact that Fα closed for every α ∈ R.

Exercise 2. Let f : R → R be increasing or decreasing. Prove that f is measurable.

Solution: Assume that f is increasing. We show that for any α ∈ R

Eα := {x ∈ R : f(x) > α}

is measurable. If Eα = ∅ the measurability is trivial. If Eα ̸= ∅, we set a := inf Eα ∈ R ∪ {−∞} .
Note that if x ∈ Eα, then x ≥ a and for any y ≥ x, we have y ∈ Eα (since f is increasing). Thus,

[x,∞[⊂ Eα. Therefore Eα is either equal to ∅, ]a,∞[, [a,∞[ (for a ∈ R) or to R. In any case Eα

is measurable and hence f is measurable. The argument when f is decreasing is similar.

Exercise 3. Let f, g : Rn → R be measurable functions. Show that the functions

f2, fg, |f |

are measurable.

Solution:
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(i) We begin with f2: We show that for any α ∈ R, the set Eα := {x ∈ Rn : f2(x) > α} is

measurable. If α < 0, Eα = R. On the other hand, if α ≥ 0

Eα = {x ∈ Rn : f(x) >
√
α} ∪ {x ∈ Rn : f(x) < −

√
α}

is measurable, since the union of two measurable sets is measurable.

(ii) Now fg: Note that

fg =
1

2
{(f + g)2 − f2 − g2}.

Using (i), (f+g)2, f2, and g2 are measurable. Thus, fg is measurable since it can be written

as a finite sum of measurable functions.

(iii) Finally |f |: We show that Eα := {x ∈ Rn : |f(x)| > α} is measurable for every α ∈ R .

When α < 0, Eα = R. When α ≥ 0, we have that

Eα = {x ∈ Rn : |f(x)| > α} = {x ∈ Rn : f(x) > α} ∪ {x ∈ Rn : f(x) < −α}

is measurable as finite union of measurable sets.

Exercise 4. Let φ be measurable and f continuous. Show that f ◦ φ is measurable. (On the other

hand, in general φ ◦ f is not measurable and we will discuss a counterexample in Serie 5.)

Solution: We is enough to show that for any α ∈ R the set

Eα := {x ∈ R : (f ◦ φ)(x) > α},

is measurable. We have

Eα = (f ◦ φ)−1(]α,∞[) = φ−1(f−1(]α,∞[)).

Using the continuity of f , O := f−1(]α,∞[) is open and therefore φ−1(O) is measurable by the

measurability of φ .

Exercise 5. Let Ω ⊆ Rn measurable and let f : Ω → [0,∞) be a nonnegative and integrable function.

If α > 0 and Eα := {x ∈ Ω : f(x) > α}, prove that

m(Eα) ≤
1

α

∫
Ω
f dx.

Solution: Define the function gα : Ω → R by

gα(x) = αχEα(x) =

α if x ∈ Eα,

0 if x /∈ Eα.
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Observe that gα is measurable because the set Eα is a Lebesgue-measurable set (which, in turn,

is a consequence of the measurability of f). Moreover gα ≤ f pointwise and therefore by the

monotonicity of the integral

α ·m(Eα) =

∫
Ω
gα dx ≤

∫
Ω
f dx.

Exercise 6. Let Ω ⊂ Rn measurable and let f : Ω → R be integrable. Show that for any ε > 0 , there

exists δ = δ(ε) > 0 such that for any measurable set E ⊂ Ω , it holds that if

m(E) ≤ δ ⇒
∫
E
|f(x)| dx ≤ ε.

Hint: Consider the sequence fn(x) := min {|f(x)|, n}.

Solution: For ν ∈ N we set

fν (x) := min {|f (x)| , ν} .

The sequence if fν is an increasing sequence of measurable, nonnegative functions. Moreover,

fν → |f | pointwise as ν → ∞ . The monotone convergence theorem implies that

lim
ν→∞

∫
Ω
fν dx =

∫
Ω
|f(x)| dx .

In particular, for every ε > 0, there is ν = ν(δ) large enough such that∫
Ω
(|f(x)| − fν(x)) dx ≤ ε

2
.

We define δ = ε/2ν. Then, for any measurable set E ⊂ Ω such that m(E) ≤ δ, we have∫
E
|f(x)| dx =

∫
E
fν(x) dx+

∫
E
(|f(x)| − fν(x)) dx ≤ νm(E) +

ε

2
≤ ε.

Exercise 7 (⋆). Let f : R → R continuous. Prove that the sets of points x ∈ R where f is differentiable

is a Lebesgue measurable set.

Solution: The solution is divided in several steps.

Step 1: We begin by proving the following equivalence

f is differentiable at x0 ⇔ ∀n ∈ N, ∃m ∈ N such that

∣∣∣∣f(x)− f(x0)

x− x0
− f(y)− f(x0)

y − x0

∣∣∣∣ ≤ 1

n

for all x, y ∈
(
x0 −

1

m
,x0 +

1

m

)
and x ̸= x0 ̸= y.
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We begin with the direction ⇒ which is the easiest one. Let n ∈ N be arbitrary. By differen-

tiability, there exists m such that for all x ∈ (x0 − 1
m , x0 +

1
m), x ̸= x0∣∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < 1

2n
.

Thus for all x, y ∈ (x0 − 1
m , x0 +

1
m), x ̸= x0, y ̸= x0 we have by the triangular inequality that∣∣∣∣f(x)− f(x0)

x− x0
− f(y)− f(x0)

y − x0

∣∣∣∣ ≤ 1

n
.

Now we prove the reverse direction ⇐. We will show that the limit

lim
x→x0

f(x)− f(x0)

x− x0
exists. (1)

Let {xk}∞k=1 be a sequence such that xk → x0. It is clear that
f(xk)− f(x0)

xk − x0
is a Cauchy sequence

and therefore it converges. In order to prove that the above limit in (??) exists, we need to show

that the limit of the sequence
f(xk)− f(x0)

xk − x0
is independent of the choice of the sequence {xk}∞k=1.

Again, this follows easily from the condition that we suppose to be true.

Step 2: We rewrite the set of points of differentiability of f.

From Step 1,

{x0 ∈ R :f is differentiable in x0}

=

{
x0 ∈ R :∀n ∈ N,∃m ∈ N such that

∣∣∣∣f(x)− f(x0)

x− x0
− f(y)− f(x0)

y − x0

∣∣∣∣ ≤ 1

n

for all x, y ∈
(
x0 −

1

m
,x0 +

1

m

)
and x ̸= x0 ̸= y.

}

=
⋂
n∈N

{
x0 ∈ R :∃m ∈ N such that

∣∣∣∣f(x)− f(x0)

x− x0
− f(y)− f(x0)

y − x0

∣∣∣∣ ≤ 1

n

for all x, y ∈
(
x0 −

1

m
,x0 +

1

m

)
and x ̸= x0 ̸= y.

}

=
⋂
n∈N

⋃
m∈N

{
x0 ∈ R :

∣∣∣∣f(x)− f(x0)

x− x0
− f(y)− f(x0)

y − x0

∣∣∣∣ ≤ 1

n

for all x, y ∈
(
x0 −

1

m
,x0 +

1

m

)
and x ̸= x0 ̸= y.

}
.

We define the sets En,m as

En,m =

{
x0 ∈ R :

∣∣∣∣f(x)− f(x0)

x− x0
− f(y)− f(x0)

y − x0

∣∣∣∣ ≤ 1

n
, ∀x, y ∈

(
x0 −

1

m
,x0 +

1

m

)
, x ̸= x0 ̸= y

}
.

With this notation

{x0 ∈ R : f is differentiable in x0} =
⋂
n∈N

⋃
m∈N

En,m.

5



Step 3: In order to prove that {x0 ∈ R : f is differentiable in x0} is measurable, we will prove

that each En,m is closed.

Let {xi0} ⊆ En,m be a sequence such that xi0 → x0 ∈ R as i → ∞. Let x, y ∈ (x0− 1
m , x0+

1
m),

x, y ̸= x0 then there is N such that ∀i ≥ N , x, y ∈ (xi0 − 1
m , xi0 +

1
m), x, y ̸= xi0. Thus,∣∣∣∣f(x)− f(xi0)

x− xi0
− f(y)− f(xi0)

y − xi0

∣∣∣∣ ≤ 1

n
.

Letting i → ∞ und using the continuity of f , we deduce∣∣∣∣f(x)− f(x0)

x− x0
− f(y)− f(x0)

y − x0

∣∣∣∣ ≤ 1

n
,

hence x0 ∈ En,m. We conclude that En,m is closed.
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