Serie 3
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course. The
exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.
Definition 1 (lower/upper semi-continuity). Let f: R™ — R be a function.

(i) f is lower semi-continuous in xg € R™ if

Ve >03d=4d(e) >0 such that |z —xo| < = f(xo) — f(x) <e.

(i) f is lower semi-continuous if f is lower semi-continuous in every point zp € R™.
(iii) f is upper semi-continuous in xo € R™ if

Ve >03d=43d(e) >0 such that |z —xo| < = f(z) — f(zo) <e.
(iv) f is upper semi-continuous if f is upper semi-continuous in every point zo € R"™.

Exercise 1. We show that lower/upper semi-continuity implies measurability.

(i) Show that if f: R™ — R is lower semi-continuous, then for all & € R the set
Go:={zeR: f(x) <a}
is closed. Similarly, show that if f: R” — R is upper semi-continuous, then for all a € R the set
Fo={xeR: f(zx) > a}
is closed.

(ii) Deduce that an lower/upper semi-continuous function is measurable.



Solution:

(i) We show that if f is lower semi-continuous, then G, is closed. Let {z,}5°; C G, such that
limy, 00 T, = ¢ € R™. We need to show that x € G,. Let € > 0. By lower semi-continuity
in x, there is § > 0 such that

[z —yl <d=fz) < fy) +e
Since x,, — = as n — oo, there is N = N(J) € N such that |z —x,| < § for all n > N. Hence,
fl@) < f(zp)+e<a+e Vn>N.
The previous inequality being true for any e, we conclude

f(z) <a.

Thus, x € G, and therefore GG, is closed. In order to prove that if f is upper semi-continuous,

then Fy, is closed, we use the same approach.

(ii) If f is lower semi-continuous, then G, is closed and therefore measurable for every a € R.
We deduce that f is measurable. Finally, if f is upper semi-continuous, the measurability

follows from the fact that F,, closed for every o € R.

Exercise 2. Let f: R — R be increasing or decreasing. Prove that f is measurable.

Solution: Assume that f is increasing. We show that for any o € R
E, ={zxeR: f(x) > a}

is measurable. If E, = () the measurability is trivial. If E, # (), we set a := inf E, € RU {—o00}.
Note that if © € E,, then z > a and for any y > z, we have y € E, (since f is increasing). Thus,
[z, 00[C E,. Therefore E, is either equal to 0, ]a, oo, [a, 00 (for a € R) or to R. In any case E,

is measurable and hence f is measurable. The argument when f is decreasing is similar.

Exercise 3. Let f, g: R — R be measurable functions. Show that the functions

2 fa. |l

are measurable.

Solution:




(i) We begin with f2: We show that for any a € R, the set E, := {x € R" : f2(z) > a} is
measurable. If a < 0, E, = R. On the other hand, if & > 0

Eo={xeR": f(z) >Va}U{z e R": f(z) < —/a}
is measurable, since the union of two measurable sets is measurable.

(ii) Now fg: Note that
1
fo={(f+9° = f*=g"}.

Using (i), (f+9)?, f?, and g% are measurable. Thus, fg is measurable since it can be written

as a finite sum of measurable functions.

(iii) Finally |f|: We show that E, := {z € R" : |f(z)| > a} is measurable for every oo € R.
When a < 0, E, =R. When a > 0, we have that

E,={zeR":|f(zx)|>a}={zeR": f(z)>a}U{z eR": f(z) < —a}

is measurable as finite union of measurable sets.

Exercise 4. Let ¢ be measurable and f continuous. Show that f o ¢ is measurable. (On the other

hand, in general ¢ o f is not measurable and we will discuss a counterexample in Serie 5.)

Solution: We is enough to show that for any a € R the set
Eo:={zeR:(fop)(z)>a},
is measurable. We have
Eo = (fop) ' (a,o0) = ¢~ (7 (Jar, o0])).

Using the continuity of f, O := f~!(Ja, oc[) is open and therefore ¢ ~!(O) is measurable by the

measurability of ¢.

Exercise 5. Let 2 C R™ measurable and let f : Q — [0, 00) be a nonnegative and integrable function.
If «>0and E, :={z€Q: f(x) > a}, prove that

1
m(E,) < Q/Qfd:v.

Solution: Define the function g, : 2 — R by

a ifxeFE,,
0 ifx¢E,.

ga(z) = axg, () =




Observe that g, is measurable because the set E, is a Lebesgue-measurable set (which, in turn,

is a consequence of the measurability of f). Moreover g, < f pointwise and therefore by the

a-m(Ea):/andxg/Qfdx.

monotonicity of the integral

Exercise 6. Let (2 C R™ measurable and let f: {2 — R be integrable. Show that for any € > 0, there
exists 0 = d(¢) > 0 such that for any measurable set E C €2, it holds that if

m(E) <0 = /E|f(x)|d:v§5.

Hint: Consider the sequence f,(z) := min {|f(x)|,n}.

Solution: For v € N we set
fu (@) == min{|f (z)|,v}.

The sequence if f, is an increasing sequence of measurable, nonnegative functions. Moreover,

fu — | f| pointwise as ¥ — oo . The monotone convergence theorem implies that

lim Qf,,dx:/9|f($)|da:.

V—00

In particular, for every € > 0, there is v = v(d) large enough such that

[ s = s do <
Q

N ™

We define § = ¢/2v. Then, for any measurable set E C € such that m(F) < ¢, we have

[ it@lde= [ f@det [ (@) - f@) do <vm(E)+ 5 <=

Exercise 7 (). Let f: R — R continuous. Prove that the sets of points x € R where f is differentiable

is a Lebesgue measurable set.

Solution: The solution is divided in several steps.

Step 1: We begin by proving the following equivalence

f(@) = fwo)  f(y) — flzo) <

1
r — X0 Yy —xo n

1 1
for all x,y € <x0—,xo+> and T # xg £ Y.
m m

f s differentiable at x9 <& Vn € N,3Im € N such that




We begin with the direction = which is the easiest one. Let n € N be arbitrary. By differen-
tiability, there exists m such that for all x € (z¢ — %, o + %), T # xg

[z o) 1
—_—— < —.
‘ - Fil@o)] < o
Thus for all z,y € (vg — -, z0 + ) T # x9, Yy # xo we have by the triangular inequality that
J@) = @) _ f) —fo)| - 1
x — X Y — X n

Now we prove the reverse direction <. We will show that the limit

i L) = fw0)

T—x0 T — X0

exists. (1)

f(zk) — f(=o)
Tk — X0
and therefore it converges. In order to prove that the above limit in (??) exists, we need to show
f(ar) — f(xo)
T — X0
Again, this follows easily from the condition that we suppose to be true.

Step 2: We rewrite the set of points of differentiability of f.
From Step 1,

Let {z1}72, be a sequence such that xj, — z¢. It is clear that is a Cauchy sequence

that the limit of the sequence is independent of the choice of the sequence {;}7° ;.

{zo € R :f is differentiable in zo}

f(z) = f(zo)  fly) — f(zo)

T —Zo Yy — 2o

<

1
n

= {xo € R :Vn € N,dm € N such that ‘

1 1
for all x,y € (xo—,:vo—i—) and x # xg ;éy.}
m m

= ﬂ {330 € R :dm € N such that ‘f(ac)—f(xo) — 1Y) — f(xo) < 1
neN T — X0 Yy — Zo n
for all x,y € (acg—l,xo—i—l) andx%mo#y.}
m m
_ AN f(@) = flzo)  fly) = flzo)| _ 1
_TQ\TmLEJN{xOGR.' T — o y—m | n
for all x,y € (xg—l,a:o—i-l) andx#xo#y}.
m m

We define the sets E,, ,,, as

‘f (o)  f(y) — f(z0)

1 1 1
vax7y€<x0_ , Lo + ) xi‘élﬁoi‘éy}
n m

En’m—{xoeR
T — X Yy —xo

With this notation

{zp € R : f is differentiable in z¢} = m U Epm.
neNmeN




Step 3: In order to prove that {xy € R : f is differentiable in xo} is measurable, we will prove

that each Ey, , is closed.

Let {z}} C E,m be a sequence such that ) — 9 € R as i — co. Let z,y € (zo — %, xo + %),
zh+ L), x,y # xf. Thus,

x,y # x¢ then there is N such that Vi > N, x,y € (x} — L

m’

% )

'f(w) — flay) _ f) — fap)

Letting ¢ — oo und using the continuity of f, we deduce

f(x) = flxo)  fly) = f(x0)

T — X0 Yy — o

hence xg € Ey, . We conclude that E, ,, is closed.

<

<

1
n

1
n

)




