Serie 2
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning on the moodle page of the course. The exercises
can be handed in until the following Monday at 8am, midnight, via moodle. They will be marked with
0, 1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Let A, B C R?. Show that if A C B and m*(B) = 0, then m*(A4) = 0.

Solution: Let € > 0. By definition of the outer Lebesgue measure, there is a countable collection

of cubes {B,} ;e covering B such that

ZVOI(BJ') <m*(B)+e=ce.
jeJ

Since A C B, {Bj};c covers A, and hence, from the definiton of outer measure

0<m*(A) <e.

Since the previous inequality is true for any €, we conclude m*(A) = 0.

Exercise 2. If A C R? and F is the half-plane E := {(z1,...,2,) € R? : 2, > 0}, show that
m*(A) =m*(ANE)+m*(A\ E).

Solution: We begin by proving m*(4) < m*(AN E) + m*(A\ E). For any ¢ > 0, let {B}}°,,

{B2}2°, be countable families of open boxes such that

o o
> vol(B}) <m*(ANE)+e, ANEC|JB!
=1 =1

and

S vol(B?) <m*(A\ E)+e, A\EC| B
i=1 =1




Then the countable collection {B;}5°, defined by

1 . o .
B; /2 if ¢ is even,

if 7 is odd.

Bii = 9
B(i+1)/2

covers A, hence

A) <D B <Y B+ B <m*(ANE) + m*(A\ E) + 2.

=1 =1 =1

The previous inequality being true for any € > 0, we deduce
m*(A) <m*(ANE)+m*"(A\ E).

Then we prove the reverse inequality. Fix € > 0. There is a countable family of open boxes {B;}°;
such that

> vol(B;) <m*(4)+e, AC|]B.
=1 i=1

Every B; is an open box of the form B; = HZ:1(‘L1(.:)» bl )) Define for any ¢ = 1,2, .

o — €
' 21 H i) _ b(1)|
and correspondingly,
n—1 '
B! =T (a8 x [(@,) 1 (0,00)] .
k=1
n—1 .
B2 = [[(a{",0{) x [(an’),b;)) m (_00751)}
k=1

Notice that Bi1 and Bi2 are open boxes and
vol(BL) + vol(B?) < H lal) — b ( (@) _ )] +5i) = [T 10l = 6| + /2" = vol(By) + /2
k=1
We can prove that AN E C UL, B! and A\ E C UL, B2. Finally,
m*(ANE)+m*(A\ E) < ivol(Bil) + ivol(BQ i vol(B;) +¢/2'] < m*(A) + 2e.
i=1 - i=1

Since this inequality is true for any e, we deduce

m (ANE)+m*(A\ E) <m*(A4).

Exercise 3. We want to show that the notion of Lebesgue outer measure does not depend on whether



we consider coverings by open, half-open or closed boxes. To this end, we introduce for a subset {2 C R"

n

= inf { S vol(By): QC|JBjandforallj>1 Bj=[[lal, by
j= j=1 i=1
for some —oo<a()<b( 7) <+oo}.

Show that for any subset Q C R"
m*(Q2) = m*(Q).

Solution: Let 2 C R™. We first prove m*(2) < m*(Q2). Fix ¢ > 0. There exists a cover of Q
consisting of countably many open boxes Bj = []'"(a Y )) such that

> vol(B;j) < m*(Q) +¢.
=1

Then consider the collection of closed boxes {§}OO given by the closure of the Bj, that is
E; =TI l[agj) b(])] Note that vol(B; ) = vol(B;), Bj C Bj and hence Q C [J7Z E;, so that

1=

m*(Q) <Y vol(Bj) =Y vol(B;) < m*(Q) +e.
j=1 j=1
Since ¢ is arbitrary, we conclude
m* () <m*(Q). (1)

We now show the reverse inequality. Fix € > 0. There exists a countable cover of {2 consisting of
closed boxes E; =117 [a, 2 b(])] such that

Now for each j > 1, define V) = (V1+e-1) minizlw,n{bg]‘) — agj)}. Consider the collection of
open boxes {B;}32; defined by

Then the B; are open boxes which cover Q (since B; C B; for all j > 1) and

n n

vol(Bj) = [T — af? + 20y < TT ¥T+ e — al?) = (1 + £) vol(B;).
=1 =1
Thus,
m* () §Z vol(Bj) < (1+¢) ZVOI +e)m*(Q) +e.
j=1




Since ¢ is arbitrary, we deduce

Finally, we deduce the equality from (1) and (2).

Exercise 4. We want to compute the measure of the intersection of a countable family of decreasing

sets.

(i) Show that if A; D Ay D As... is a decreasing sequence of measurable sets (that is A; O A,
for every j > 1) and m(A4;) < +o0, then

J]—00

(ii) Show that the previous equality fails without the assumption m(A4;) < +oc.

Solution:

(i) Note that the sets A;\ Aj11, j =1,2,..., are disjoint and in addition they are disjoint from

the set ﬂjoil Aj. Moreover, using since A; are decreasing, we can write

ﬂA U U i\ Ajp1] = Ay,

and therefore

m ﬁAJ +m GAJ\AJ+1 = m(4y). 3)
j=1

J=1

Since m(A4;) < oo, m(Ag) < oo for any k£ > 1. As a consequence,
m(A4; \ Aj+1) = m(A4;) —m(A4;41) for any j > 1.

Thus,

=

k

m < U4, \Aj+1> D om(4;\ Ajp) = Jim Zm(Aj \ Ajy1) = lim > [m(A)) — m(4j41)]
j=1

Jj=1 <=1 j=1
=m(A;) — lim m(Ag).
k—o0

From this last equality and (3), we deduce the result.

(ii) Observe that from (i), any counter-example must satisfy m(Ay) = oo for all £ > 1. If we
take, for instance, Ay = (k, ), then ﬂ;‘;l A; =0, so that

w(0)-




However, since m(Ay) = oo for all k =1,2,3,..., we have lim;j_,oo m(A4;) = occ.

The following technical exercise will be used, in a future exercise sheet, to give an equivalent

definition of the Cantor set and to prove some of its interesting properties.

Exercise 5. For any sequence {a;}?°, with a; € {0,1,2}, we denote by 0.ajasasz ... the number

oo
a;

3
i=1

Consider the inductive construction described below: for all a € [0, 1], we define

ay :== [3a],
Qi1 = {31#1(& — 51” 7 2 1,
where for i > 1

Qn
3n

n=1

a; =

Here we set
max{n € N:n <y} ify>0,

0 if y=0.

ly] =

(i) Show that for all i > 1

_ 1
OSa—aigg.

Deduce that any a € [0, 1] can be written as 0.ajazas . .. with a; € {0,1,2}.

(ii) Conversly, assume that {a;}°; is a sequence with a; € {0,1,2} for all ¢ > 1. Show that
0.ajazas ... € [0, 1].

(iii) The expansion of a number a € [0, 1] as 0.ajazas . .. is called the ternary expansion. Show that,

in general, this expansion is not unique.

(iv) We now adopt the following identification among tenary expansions: if there exists k > 2 such

that a; = 2 for all ¢ > k and a;_1 < 2, then we identify the expansion
0.a1---ak_12---2...

with the expansion
0.@1-“(&]@,1—!-1)0-“0...

Prove by contradiction that, modulo this identification, the ternary expansion of a number

a € [0,1] is unique.

Hint: For (iii), recall that 1 =0.9999...



Solution:

(i) The solution is divided into 3 steps. Let a € [0, 1] and let {a;}ien be the sequence defined

in the exercise.

Step 1: We show that for all i > 1 we have

~ 1

0<a—ua < 3 (4)
We know that for all x > 0,

xz — |z] €[0,1].
For ¢+ = 1, we have

~ 3 1
a—a; =a— L;J = §(3a —[3a]) € [0,1/3].
For i > 2, we compute
3i(a—a;) =3 (a i — :)T> = 3i(a—a_1) — |3(a—a@_1)] €[0,1].

Step 2: We show that a; € {0,1,2}.

Indeed, since 0 < a < 1, we have 0 < 3a < 3 and thus a; = |3a] € {0,1,2}. For i > 1 we
use (4) to obtain 0 < 3(a — @;) < 1 and thus

0 < 3" (a —@;) < 3, which implies a;11 = |3 (a —@;)] € {0,1,2}.

Step 3: Finally, we show that a = 0.a1az2a3 . . ..
Again, using (4), we get

0<a—a;=a-—

(i) If a; € {0,1,2}, then

2
0.a1a2a3...§2—:1.

(i) We have 1/3 = 0.1000... = 0.0222. . ..

(iv) Let a € [0,1] and assume that a admits two tenary expansions, i.e.
a:O.alag--- = O.blbg"- .
Assume that the expansions differ, i.e that there exists k£ > 1 such that

a; = bl for all ¢ < k and Af41 75 bk+1.




Without loss of generality, we may assume that api1 < bxr1. If we show that the only
possibility is

bp+1 = agp1 + 1;

a;=2 and b;=0, Vi>k+2,

()

we can conclude that the proposed identification makes the ternary expansion unique. To

this end, observe that for a sequence ¢; € {0, 1,2}, we have

o0
; 1
Z % < ThT with equality if and only if ¢; = 2 for all i > k + 2. (6)
i=k+2

Now show (5) by contradiction:

e if ap 1 = 0 and by = 2, then using (6)

2 — a; _ 2 1
OZ(O.bl-H)—(O.al-")ZW—ZgZﬁ—W>07
i=k+2

contradiction.
e if api1 + 1 = biyq and there is ¢ > k + 2 such that a; # 2 or b; # 0, then by (6)
(o]

1 ai—bi 1 1
0= (0b) = Qo) = gy = D0 "5 > oy — gy =0,
i=k+2

contradiction.




