
Serie 2

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning on the moodle page of the course. The exercises

can be handed in until the following Monday at 8am, midnight, via moodle. They will be marked with

0, 1 or 2 points.

• Starred exercises (⋆) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Let A,B ⊂ Rd . Show that if A ⊆ B and m∗(B) = 0, then m∗(A) = 0.

Solution: Let ε > 0. By definition of the outer Lebesgue measure, there is a countable collection

of cubes {Bj}j∈J covering B such that∑
j∈J

vol(Bj) ≤ m∗(B) + ε = ε.

Since A ⊆ B, {Bj}j∈J covers A, and hence, from the definiton of outer measure

0 ≤ m∗(A) ≤ ε.

Since the previous inequality is true for any ε, we conclude m∗(A) = 0.

Exercise 2. If A ⊆ Rd and E is the half-plane E := {(x1, . . . , xn) ∈ Rd : xn > 0}, show that

m∗(A) = m∗(A ∩ E) + m∗(A \ E).

Solution: We begin by proving m∗(A) ≤ m∗(A ∩ E) + m∗(A \ E). For any ε > 0, let {B1
i }∞i=1,

{B2
i }∞i=1 be countable families of open boxes such that

∞∑
i=1

vol(B1
i ) ≤ m∗(A ∩ E) + ε, A ∩ E ⊆

∞⋃
i=1

B1
i

and
∞∑
i=1

vol(B2
i ) ≤ m∗(A \ E) + ε, A \ E ⊆

∞⋃
i=1

B2
i .
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Then the countable collection {Bi}∞i=1 defined by

Bi : =

B1
i/2 if i is even,

B2
(i+1)/2 if i is odd.

covers A, hence

m∗(A) ≤
∞∑
i=1

|Bi| ≤
∞∑
i=1

|B1
i |+

∞∑
i=1

|B2
i | ≤ m∗(A ∩ E) + m∗(A \ E) + 2ε.

The previous inequality being true for any ε > 0, we deduce

m∗(A) ≤ m∗(A ∩ E) + m∗(A \ E).

Then we prove the reverse inequality. Fix ε > 0 . There is a countable family of open boxes {Bi}∞i=1

such that
∞∑
i=1

vol(Bi) ≤ m∗(A) + ε, A ⊆
∞⋃
i=1

Bi.

Every Bi is an open box of the form Bi =
∏n

k=1(a
(i)
k , b

(i)
k ). Define for any i = 1, 2, . . .,

εi =
ε

2i
∏n−1

k=1 |a
(i)
k − b

(i)
k |

,

and correspondingly,

B1
i =

n−1∏
k=1

(a
(i)
k , b

(i)
k )×

[
(a(i)n , b(i)n ) ∩ (0,∞)

]
,

B2
i =

n−1∏
k=1

(a
(i)
k , b

(i)
k )×

[
(a(i)n , b(i)n ) ∩ (−∞, εi)

]
.

Notice that B1
i and B2

i are open boxes and

vol(B1
i ) + vol(B2

i ) ≤
n−1∏
k=1

|a(i)k − b
(i)
k |

(
|a(i)n − b(i)n |+ εi

)
=

n∏
k=1

|a(i)k − b
(i)
k |+ ε/2i = vol(Bi) + ε/2i

We can prove that A ∩ E ⊆ ∪∞
i=1B

1
i and A \ E ⊆ ∪∞

i=1B
2
i . Finally,

m∗(A ∩ E) + m∗(A \ E) ≤
∞∑
i=1

vol(B1
i ) +

∞∑
i=1

vol(B2
i ) ≤

∞∑
i=1

[
vol(Bi) + ε/2i

]
≤ m∗(A) + 2ε.

Since this inequality is true for any ε, we deduce

m∗(A ∩ E) + m∗(A \ E) ≤ m∗(A) .

Exercise 3. We want to show that the notion of Lebesgue outer measure does not depend on whether
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we consider coverings by open, half-open or closed boxes. To this end, we introduce for a subset Ω ⊆ Rn

m∗(Ω) = inf

{ ∞∑
j=1

vol(Bj) : Ω ⊆
∞⋃
j=1

Bj and for all j ≥ 1 Bj =

n∏
i=1

[a
(j)
i , b

(j)
i ]

for some −∞ < a
(j)
i < b

(j)
i < +∞

}
.

Show that for any subset Ω ⊆ Rn

m∗(Ω) = m∗(Ω).

Solution: Let Ω ⊆ Rn . We first prove m∗(Ω) ≤ m∗(Ω) . Fix ε > 0 . There exists a cover of Ω

consisting of countably many open boxes Bj =
∏n

i=1(a
(j)
i , b

(j)
i ) such that

∞∑
j=1

vol(Bj) ≤ m∗(Ω) + ε .

Then consider the collection of closed boxes {B̃j}∞j=1 given by the closure of the Bj , that is

B̃j :=
∏n

i=1[a
(j)
i , b

(j)
i ]. Note that vol(B̃j) = vol(Bj) , Bj ⊆ Bj and hence Ω ⊆

⋃∞
j=1 B̃j , so that

m∗(Ω) ≤
∞∑
j=1

vol(B̃j) =
∞∑
j=1

vol(Bj) ≤ m∗(Ω) + ε.

Since ε is arbitrary, we conclude

m∗(Ω) ≤ m∗(Ω). (1)

We now show the reverse inequality. Fix ε > 0 . There exists a countable cover of Ω consisting of

closed boxes B̃j =
∏n

i=1[a
(j)
i , b

(j)
i ] such that

∞∑
j=1

vol(B̃j) ≤ m∗(Ω) + ε .

Now for each j ≥ 1, define ε(j) = ( n
√
1 + ε − 1)mini=1,...,n{b(j)i − a

(j)
i }. Consider the collection of

open boxes {Bj}∞j=1 defined by

Bj =
n∏

i=1

(
a
(j)
i − ε(j)

2
, b

(j)
i +

ε(j)

2

)
.

Then the Bj are open boxes which cover Ω (since B̃j ⊂ Bj for all j ≥ 1) and

vol(Bj) =
n∏

i=1

(b
(j)
i − a

(j)
i + 2ε(j)) ≤

n∏
i=1

n
√
1 + ε(b

(j)
i − a

(j)
i ) = (1 + ε) vol(B̃j) .

Thus,

m∗(Ω) ≤
∞∑
j=1

vol(Bj) ≤ (1 + ε)

∞∑
j=1

vol(B̃j) ≤ (1 + ε)m∗(Ω) + ε.
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Since ε is arbitrary, we deduce

m∗(Ω) ≤ m∗(Ω). (2)

Finally, we deduce the equality from (1) and (2).

Exercise 4. We want to compute the measure of the intersection of a countable family of decreasing

sets.

(i) Show that if A1 ⊇ A2 ⊇ A3 . . . is a decreasing sequence of measurable sets (that is Aj ⊇ Aj+1

for every j ≥ 1) and m(A1) < +∞, then

m

 ∞⋂
j=1

Aj

 = lim
j→∞

m(Aj)

(ii) Show that the previous equality fails without the assumption m(A1) < +∞.

Solution:

(i) Note that the sets Aj \Aj+1, j = 1, 2, . . ., are disjoint and in addition they are disjoint from

the set
⋂∞

j=1Aj . Moreover, using since Aj are decreasing, we can write

∞⋂
j=1

Aj ∪
∞⋃
j=1

[Aj \Aj+1] = A1,

and therefore

m

( ∞⋂
j=1

Aj

)
+m

( ∞⋃
j=1

Aj \Aj+1

)
= m(A1). (3)

Since m(A1) < ∞, m(Ak) < ∞ for any k ≥ 1. As a consequence,

m(Aj \Aj+1) = m(Aj)−m(Aj+1) for any j ≥ 1 .

Thus,

m

( ∞⋃
j=1

Aj \Aj+1

)
=

∞∑
j=1

m(Aj \Aj+1) = lim
k→∞

k∑
j=1

m(Aj \Aj+1) = lim
k→∞

k∑
j=1

[m(Aj)−m(Aj+1)]

= m(A1)− lim
k→∞

m(Ak).

From this last equality and (3), we deduce the result.

(ii) Observe that from (i), any counter-example must satisfy m(Ak) = ∞ for all k ≥ 1 . If we

take, for instance, Ak = (k,∞), then
⋂∞

j=1Aj = ∅, so that

m

( ∞⋂
j=1

Aj

)
= 0.
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However, since m(Ak) = ∞ for all k = 1, 2, 3, . . . , we have limj→∞m(Aj) = ∞.

The following technical exercise will be used, in a future exercise sheet, to give an equivalent

definition of the Cantor set and to prove some of its interesting properties.

Exercise 5. For any sequence {ai}∞i=1 with ai ∈ {0, 1, 2}, we denote by 0.a1a2a3 . . . the number

∞∑
i=1

ai
3i
.

Consider the inductive construction described below: for all a ∈ [0, 1], we definea1 := ⌊3a⌋,

ai+1 := ⌊3i+1(a− ãi)⌋ i ≥ 1,

where for i ≥ 1

ãi :=
i∑

n=1

an
3n

.

Here we set

⌊y⌋ :=

max{n ∈ N : n < y} if y > 0 ,

0 if y = 0.

(i) Show that for all i ≥ 1

0 ≤ a− ãi ≤
1

3i
.

Deduce that any a ∈ [0, 1] can be written as 0.a1a2a3 . . . with ai ∈ {0, 1, 2}.

(ii) Conversly, assume that {ai}∞i=1 is a sequence with ai ∈ {0, 1, 2} for all i ≥ 1. Show that

0.a1a2a3 . . . ∈ [0, 1].

(iii) The expansion of a number a ∈ [0, 1] as 0.a1a2a3 . . . is called the ternary expansion. Show that,

in general, this expansion is not unique.

(iv) We now adopt the following identification among tenary expansions: if there exists k ≥ 2 such

that ai = 2 for all i ≥ k and ai−1 < 2, then we identify the expansion

0.a1 · · · ak−12 · · · 2 . . .

with the expansion

0.a1 · · · (ak−1 + 1)0 · · · 0 . . .

Prove by contradiction that, modulo this identification, the ternary expansion of a number

a ∈ [0, 1] is unique.

Hint: For (iii), recall that 1 = 0.9999 . . .
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Solution:

(i) The solution is divided into 3 steps. Let a ∈ [0, 1] and let {ai}i∈N be the sequence defined

in the exercise.

Step 1: We show that for all i ≥ 1 we have

0 ≤ a− ãi ≤
1

3i
. (4)

.

We know that for all x ≥ 0,

x− ⌊x⌋ ∈ [0, 1].

For i = 1, we have

a− ã1 = a− ⌊3a⌋
3

=
1

3
(3a− ⌊3a⌋) ∈ [0, 1/3].

For i ≥ 2, we compute

3i(a− ãi) = 3i
(
a− ãi−1 −

ai
3i

)
= 3i(a− ãi−1)− ⌊3i(a− ãi−1)⌋ ∈ [0, 1] .

Step 2: We show that ai ∈ {0, 1, 2}.

Indeed, since 0 ≤ a ≤ 1, we have 0 ≤ 3a ≤ 3 and thus a1 = ⌊3a⌋ ∈ {0, 1, 2}. For i > 1 we

use (4) to obtain 0 ≤ 3i(a− ãi) ≤ 1 and thus

0 ≤ 3i+1(a− ãi) ≤ 3, which implies ai+1 = ⌊3i+1(a− ãi)⌋ ∈ {0, 1, 2}.

Step 3: Finally, we show that a = 0.a1a2a3 . . ..

Again, using (4), we get

0 ≤ a− ãi = a−
i∑

n=1

an
3n

≤ 1

3i
→ 0 as i → ∞.

Hence a = limi→∞ ãi, or in other words, a =
∑∞

n=1
an
3n .

(ii) If ai ∈ {0, 1, 2}, then

0.a1a2a3 . . . ≤
∞∑
n=1

2

3n
= 1.

(iii) We have 1/3 = 0.1000 . . . = 0.0222 . . ..

(iv) Let a ∈ [0, 1] and assume that a admits two tenary expansions, i.e.

a = 0.a1a2 · · · = 0.b1b2 · · · .

Assume that the expansions differ, i.e that there exists k ≥ 1 such that

ai = bi for all i ≤ k and ak+1 ̸= bk+1.
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Without loss of generality, we may assume that ak+1 < bk+1. If we show that the only

possibility is bk+1 = ak+1 + 1;

ai = 2 and bi = 0, ∀ i ≥ k + 2 ,
(5)

we can conclude that the proposed identification makes the ternary expansion unique. To

this end, observe that for a sequence ci ∈ {0, 1, 2}, we have

∞∑
i=k+2

ci
3i

≤ 1

3k+1
with equality if and only if ci = 2 for all i ≥ k + 2. (6)

Now show (5) by contradiction:

• if ak+1 = 0 and bk+1 = 2, then using (6)

0 = (0.b1 · · · )− (0.a1 · · · ) ≥
2

3k+1
−

∞∑
i=k+2

ai
3i

≥ 2

3k+1
− 1

3k+1
> 0,

contradiction.

• if ak+1 + 1 = bk+1 and there is i ≥ k + 2 such that ai ̸= 2 or bi ̸= 0, then by (6)

0 = (0.b1 · · · )− (0.a1 · · · ) =
1

3k+1
−

∞∑
i=k+2

ai − bi
3i

>
1

3k+1
− 1

3k+1
= 0,

contradiction.
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