Serie 1
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course. The
exercises can be handed in until the following Monday at 8am, via moodle (with the exception of the first

exercise which can be handed in until Monday March 6). They will be marked with 0, 1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. We prove some identities from set theory.

(i) Let f: X — Y be a function. Show that
A =@y iy =x i) =0,

Uz 1‘4 Uf ﬂz 1‘4 m-f

[An(BUuC)]nB=ANB, [AnBUC)]NB*=AnNB°NC,

BCcA = B=A\(A\B),
EjA,-\EjBicfj [Ai \ Bi], GA@:G [CJAk\iUlAk]-
i=1 i=1 =1 =1 i=1 Lk=1 k=1

(ii) Prove that if A C R™ and Ej, Ea,... C R™ a family of disjoint sets, then

AmUE _U [ANE;].
7j=1

Solution:

(i) The eight first statements are trivial. Recall that if f: X — Y, then for any £ C Y,

fUB) ={zc X : f(z) € E}.

We prove the second last statement:




re|JA\|JB = 3JieNsuchthatzeA;jandz ¢ B; forall jeN
=1 =1
= i € N such that z € A; \ B;

o
i=1
Now, for the last statement, it is clear that we have the inclusion
00 A i—1
UaU| U U
k=1

k=1
We need to show the reverse inclusion. Note that
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Let now z € ;2 A;. If 2 € Ay, then from the inclusion above

xEU

i=1

UAk\UAk:

k=1

More generally, if 2 € [|J;2; A;] \ A1, take the smallest j > 2 such that x € A; (then « ¢ Ay,
for any 1 < k < j). It follows that

meAJ\UAkCU

=1

UAk\UAk

k=1

(ii) We have the following equivalences which yield the final result:

oo o0
reAn|JE & zeAandze | E,
j=1 j=1
& x € A and di € N such that z € E;

< di € Nsuch that r € ANE;

00
& T e UAQE]'.
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Exercise 2. Let J, = ]cy, d,[ be open intervals covering an the closed interval [a, b, that is

N
Ja,b[ C [a,b] C | ] J

n=1

Show that
N

b—a< Z length (J,,) .

n=1



Hints:

e Assume without loss of generality (and justify it) that no J,, is contained in another .J,, and
that J, N [a,b] # 0.

e Order the ¢,. Deduce an order for d,, and show that ¢,41 <d, VYn=1,--- N —1.

Solution: The solution is divided into 4 steps.

Step 1: We show that without loss of generality we can assume that no J, is contained in another
Jm and that J, N [a,b] # 0 for alln=1,...,N.

Indeed, assume that the statement is true under these additional assumptions and then consider
a case where J, C J,,. Eliminate J,, and continue this process of eliminating intervals until no
interval is contained in another. By the assumption above, the statement is true in this modified
case and it is easily seen that it must therefore be true even in the initial more general case. The

same argument of eliminating intervals applies for the assumption that J, N [a, b] # 0.

Step 2: We order the ¢, and deduce an order of the d,.
Order the ¢, such that ¢; < --- < ¢y < cpy1 < --- < ey . Note that then

di < <dp <dpy1 <---<dn.
Indeed if d,, < dj, for some k < n, then
Ck<cn<dn§dk

and thus J, C Ji, which contradicts our assumption.

Step 3: We show the inequality cn11 < dp, .

By contraction, assume that for some n we have ¢, < d,, < ¢p11 < dpy1. This implies that

N
U dn, Cn+1[ @

However [a,b] C JY_, J,,, and therefore [a,b] N ]dy, cny1[= 0. Then either
a<b<d,<cp1<dpy1 = Jpr1Nla,b =10
which is a contradiction, or
<d,<cpy1<a<b = J,N[a,b =10

which is also a contradiction.

Step 4: Conclusion.

We conclude

N
Z length (J, Z —¢n)

n=1

i

(dyp —cpn) — (dn —cpt1) =dy —c1 > b—a.
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Exercise 3. We show that open sets in R™ are countable unions of open boxes which can be asked

to be disjoint if n = 1.

(i) Show that if
{Ia}aeA

is a family of open intervals, then there is a countable subfamily {/}}3° such that

o0
U= L
k=1

a€cA

(ii) Let © C R be an open set. Show that {2 can be written as a countable union of open disjoint

intervals.

(iii) Prove that every open set 2 C R™ can be written as a countable union of open boxes.

Hints:

e For (i) use the fact that Q is dense in R. Prove that every x € |J

with rational extrema which is contained in some I,.

aca la belongs to an interval

e In order to prove (ii), define the equivalence relation (and show that it is an equivalence relation)
~ given by
a~b <<= [a,b]CQ or [ba]CQ,

and then use (i).

e For (iii) recall that since Q2 is open, Vz € Q, Ir, > 0 such that B(x,r,) C Q. In addition, prove

and use the following claim:

Claim: For any ball B(xz,r) there exists a rational box (i.e a box [[;,(a;,b;) with a1,...,ap
and by,...,b, in Q) contained in B(x,r) and containing x.
Solution:
(i) Put

B := U 1.
acA
For any = € B, define the set

I, ={(a,b,0) e QxQ x A|a<xz<band |a,b[C I,}.

Then, for all x € B, Z,, is non-empty. Indeed, if x € B, then there is a € A such that x € I,,.

Moreover, since I, is open, there is € > 0 such that
x €lr —e,x+€[C I,.

By density of Q in R, there is a €]z — &,2[NQ and b €]z, x + £[NQ. We get (a,b,a) € I,

which is therefore non-empty. Then applying the axiom of choice to the family {Z,}.cn, we




(iii)

get for all x € B, a;,b, € Q and a, € A such that (a,b,, ;) € Z,, i.e.,
x € Jy i=|ag, by[C La,

By construction, we have

Un=U 7%

acA zEB

The family {J;}zep is countable since it is a subset of the family of intervals with rational
extrema which is countable (because there is a bijection with Q x Q which is countable).
Thus, there is a family {Jg, }2°; C {Jz}zep such that

UI:G%.
=1

a€A

It follows that - -
UL=U%cUL., c U L.
acA =1 =1 acA

hence the result.

We define the following equivalence relation ~:
a~b << [a,b]CQ or [ba]C

It is easily shown that it is an equivalence relation, i.e. it is reflexive, symmetric and
transitive. We show that the equivalence classes form partition of € in disjoint (this is
obvious) open intervals. Indeed, let a € €2, and C(a) be its equivalence class. Let z,y € C(a),
implying that = ~ y, which means that [x,y] C Q or [y,z] C Q. As a consequence, C(a)
is convex and therefore an interval. To show that C'(a) is open, let again x € C(a) C Q.
Since € is open there is € such that |z — e,z + ¢[C Q and by transitivity it is clear that any
y €|x — e,z + €[ satisfies y € C(a). Finally, |z — ¢,2 4+ ¢[C C(a) proving that C(a) is open.
Until now, we have proved that ~ partions €2 into equivalence classes that are open intervals

so that we get a family of open disjoint intervals {I,}oca such that

Q:UQ

acA
Now using (i), there is a countable subfamily {I;}72 such that
o0
U L=k
acA k=1

But since the intervals are all disjoint, this implies {In}aca = {Ix}32, hence {I,}aeca is

countable which finishes the proof.

As mentioned in the exercise, a box H?Zl(ai, b;) is called rational if all the components a;, b;
are rational numbers. Notice that the family of all rational boxes is countable (there is a

bijection between this family and Q2" which is countable). We first prove the claim. For




each 1 <17 < n, let a;, b; be rational numbers such that
r r
T —<a <z <b<x;+—.
n n

Then it is clear that the box [ [, (a;, b;) is rational and contains z. The triangular inequality
allows us to prove that this box is contained in B(x,r). This proves the claim. Finally, let

Q C R” and let X be the family of rational cubes contained in Q2. We will prove

o= J B,

BeX

which gives the desired result. The fact that the union over ¥ is contained in €2 is obvious
because every element in ¥ is contained in €2. On the other hand, since {2 is open, for any
x € Q there is r, > 0 such that B(z,r,) C Q. Then, by the claim, there is rational a box
B such that x € B C B(z,r;). In particular, B € ¥ and thus we get * € UgexB. Since
this is true for any x € €2, 2 is contained in the union over ¥. Hence, we deduce the desired
equality. Note that ¥ is countable since it is a subset of the family of all rational boxes,

which is countable.

We provide here a simple example of a sequence of functions which does not converge uniformly, but
nonetheless their integral converges to the integral of the pointwise limit. Lebesgue integration will

cover such (and much more general) situations with a non-uniform convergence of integrands.

Exercise 4. Let f,,:]0,1[— R defined by f,(z) = ™. Prove that for any compact set K CJ0, 1]
fn converges uniformly on ]0, 1[NK

but f,, does not converge uniformly on ]0,1[. Show that fol fn(x)dx converges to the integral of the
pointwise limit of f, as n — oo.
Hint: Show that for any compact set K C|0, 1[, there is § > 0 such that x <1 — 4.

Solution: Let K CJ0,1[ be a compact set. Then, since K is compact and R\]0, 1] is closed, with
empty intersection, there is

= min xz—y| > 0.
7 :EEK,yEIR\}O,l[| y|

Thus, by defining § = /2, we have x < 1—¢ for any z € K. As a consequence, we get K C|0,1—4].
We know that (1 —4)" — 0 and

sup |[z"] < sup z" = (1-9)".
zeK 0<z<1-4

Thus, for any € > 0, there exists N sufficiently large such that for any n > N, we have

sup |z"| < e.
zeK

This proves uniform convergence on K. From this, we deduce the local uniform convergence.




Next, we prove that f,, does not converge uniformly on |0, 1[. Indeed, f,(x) — 0 as n — oo, for
any = €]0,1[. Assume for a contradiction that f,, — 0 uniformly on ]0,1[. Then for any ¢ > 0,
there exists N such that for all n > N,

sup |fn] <e.
z€]0,1]

However,

sup |fn|= sup [2"| =1,
z€]0,1] z€]0,1]

which gives the desired contradiction. Finally,

1 xn+1 1 1
d p— p—
/Of”(x) T il n+1

such that lim,,_ .~ fol fn(x)dx = 0 and since f,, — 0 pointwise, this shows the second claim.

Exercise 5. Let f € C'(R%) and (,-) denotes the scalar product in RY. Show that all the following

statements are equivalent.
(i) f is convex.

(ii) For any z,y € RY,
f@) = f(y) +(Vf(y)z —y).

(iii) For any z,y € R,
(Vf(y) = Vf(x),y —xz) >0.

If, in addition, f € C?(R), then (i)-(iii) are equivalent to

(iv) For any z,v € RY,
(V2 f(x)v,v) > 0.

0% f 0% f
82$1 8331(95601
where V2 f(z) denotes the Hessian matrix V2 f(z) = :
0% f 0% f
8276[8.1‘1 82$d

Hint: For this last part, recall that for g € C*

/t1 g'(t)dt = g(t1) — g(to).

to

. . . .. o L JECPRY)
Solution: We will prove: (i) & (ii) < (iii) <——== (iv).




We begin with (i) = (ii): For any X €]0, 1[ and every z,y € R? by convexity of f,

AMf(z) = f(y) + fly) = (@) + (1 =N fy) = fAz+ (1= N)y),

which implies,
£) = F9) 2 §1FOw + (1= 29) — f(w)]

Letting A — 0 (observe: Az + (1 = Ny =y + Az —y)), we get,
f@) = fly) =2 (VI(y)z—y).

Now for (ii) = (i): We have using (ii) that
f@) = fQz+ (1= Ny)+ 1 = A)(VFz+ (1= Ny),z —y) (1)
> fAz+ (1 =XNy) = MVFQz+ (1= Ny),z —y). (2)

f(y)
Multiplying (1) by A, (2) by (1 — A) and summing them, yield convexity.
Then for (i) = (iii): We have using (ii) that
f)+ (Vi) =z —y)
f@) =(Vf(@),z—y). (4)

=
&
Vv

Summing (3) and (4) yields the desired result.
In addition, for (iii) = (ii): Let A €]0,1[, z,y € R? and define

_*r~Yy
z= h +y

and a function ¢: R? — R by ¢(u) = f(y + pu(z — y)). Note that ¢(\) = f(z) and ¢(0) = f(y). In

addition,
¢'(1) = (Vfly+plz—y)2—y)

and therefore by (iii)
(1) — 6(0) = ~(V(y+ p(z — 1)) — V@), (0 + plz — ) —9) > 0

Integrating this ineqality from 0 to A gives

A
/0 (& (1) — #(0)) du = S(X) — $(0) — A/ (0) > 0,

which implies, using \(z —y) = x — v,

f(x) = fy) +(Vf(y),z —y).

From now on, assume f € C2(R%). We show (iii) = (iv): Indeed, by (iii) it holds for every

veR?
<Vf(iv+€1;) - Vf(:r)’v> 0.




Letting ¢ — 0, gives (V2f(x)v,v) > 0.
Finally (iv) = (iii): Use the hint with the function g(t) = (Vf(y + t(x — y)),z — y), to = 0
and t; = 1. This yields

1
AR :/0 <jtvf<y +t(e —y))x y> dt
1
_/0 <V2f(y+t(x—y))(x_y)’x_y> dt >0

due to (iv).




