
Serie 1

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am, via moodle (with the exception of the first

exercise which can be handed in until Monday March 6). They will be marked with 0, 1 or 2 points.

• Starred exercises (⋆) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. We prove some identities from set theory.

(i) Let f : X → Y be a function. Show that

f−1(Ac) = (f−1 (A))c, f−1 (Y ) = X, f−1(∅) = ∅,

f−1 (
⋃∞

i=1Ai) =
∞⋃
i=1

f−1(Ai), f−1 (
⋂∞

i=1Ai) =
∞⋂
i=1

f−1(Ai),

[
A ∩ (B ∪ C)

]
∩ B = A ∩ B,

[
A ∩ (B ∪ C)

]
∩ Bc = A ∩ Bc ∩ C,

B ⊂ A ⇒ B = A \ (A \B) ,

∞⋃
i=1

Ai \
∞⋃
i=1

Bi ⊂
∞⋃
i=1

[Ai \Bi] ,
∞⋃
i=1

Ai =
∞⋃
i=1

[
i⋃

k=1

Ak \
i−1⋃
k=1

Ak

]
.

(ii) Prove that if A ⊂ Rn and E1, E2, ... ⊂ Rn a family of disjoint sets, then

A ∩
∞⋃
j=1

Ej =

∞⋃
j=1

[
A ∩ Ej

]
.

Solution:

(i) The eight first statements are trivial. Recall that if f : X → Y , then for any E ⊂ Y ,

f−1(E) := {x ∈ X : f(x) ∈ E}.

We prove the second last statement:
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x ∈
∞⋃
i=1

Ai \
∞⋃
i=1

Bi ⇒ ∃i ∈ N such that x ∈ Ai and x /∈ Bj for all j ∈ N

⇒ ∃i ∈ N such that x ∈ Ai \Bi

⇒ x ∈
∞⋃
i=1

[Ai \Bi] .

Now, for the last statement, it is clear that we have the inclusion

∞⋃
i=1

Ai ⊃
∞⋃
i=1

[
i⋃

k=1

Ak \
i−1⋃
k=1

Ak

]
.

We need to show the reverse inclusion. Note that

∞⋃
i=1

[
i⋃

k=1

Ak \
i−1⋃
k=1

Ak

]
⊃

1⋃
k=1

Ak \
0⋃

k=1

Ak = A1 \ ∅ = A1.

Let now x ∈
⋃∞

i=1Ai. If x ∈ A1, then from the inclusion above

x ∈
∞⋃
i=1

[
i⋃

k=1

Ak \
i−1⋃
k=1

Ak

]
.

More generally, if x ∈ [
⋃∞

i=1Ai] \A1, take the smallest j ≥ 2 such that x ∈ Aj (then x /∈ Ak,

for any 1 ≤ k < j). It follows that

x ∈ Aj \
j−1⋃
k=1

Ak ⊂
∞⋃
i=1

[
i⋃

k=1

Ak \
i−1⋃
k=1

Ak

]
.

(ii) We have the following equivalences which yield the final result:

x ∈ A ∩
∞⋃
j=1

Ej ⇔ x ∈ A and x ∈
∞⋃
j=1

Ej

⇔ x ∈ A and ∃i ∈ N such that x ∈ Ei

⇔ ∃i ∈ N such that x ∈ A ∩ Ei

⇔ x ∈
∞⋃
j=1

A ∩ Ej .

Exercise 2. Let Jn = ]cn, dn[ be open intervals covering an the closed interval [a, b], that is

]a, b[ ⊂ [a, b] ⊂
N⋃

n=1

Jn .

Show that

b− a ≤
N∑

n=1

length (Jn) .
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Hints:

• Assume without loss of generality (and justify it) that no Jn is contained in another Jm and

that Jn ∩ [a, b] ̸= ∅.

• Order the cn. Deduce an order for dn and show that cn+1 ≤ dn ∀n = 1, · · · , N − 1.

Solution: The solution is divided into 4 steps.

Step 1: We show that without loss of generality we can assume that no Jn is contained in another

Jm and that Jn ∩ [a, b] ̸= ∅ for all n = 1, . . . , N .

Indeed, assume that the statement is true under these additional assumptions and then consider

a case where Jn ⊂ Jm. Eliminate Jn and continue this process of eliminating intervals until no

interval is contained in another. By the assumption above, the statement is true in this modified

case and it is easily seen that it must therefore be true even in the initial more general case. The

same argument of eliminating intervals applies for the assumption that Jn ∩ [a, b] ̸= ∅.

Step 2: We order the cn and deduce an order of the dn.

Order the cn such that c1 < · · · < cn < cn+1 < · · · < cN . Note that then

d1 < · · · < dn < dn+1 < · · · < dN .

Indeed if dn ≤ dk for some k < n, then

ck < cn < dn ≤ dk

and thus Jn ⊂ Jk, which contradicts our assumption.

Step 3: We show the inequality cn+1 < dn .

By contraction, assume that for some n we have cn < dn ≤ cn+1 < dn+1. This implies that

N⋃
n=1

Jn ∩ ]dn, cn+1[ = ∅.

However [a, b] ⊂
⋃N

n=1 Jn, and therefore [a, b] ∩ ]dn, cn+1[= ∅. Then either

a < b < dn ≤ cn+1 < dn+1 ⇒ Jn+1 ∩ [a, b] = ∅

which is a contradiction, or

cn < dn ≤ cn+1 < a < b ⇒ Jn ∩ [a, b] = ∅

which is also a contradiction.

Step 4: Conclusion.

We conclude

N∑
n=1

length (Jn) =

N∑
n=1

(dn − cn) ≥
N∑

n=1

(dn − cn)−
N−1∑
n=1

(dn − cn+1) = dN − c1 ≥ b− a.
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Exercise 3. We show that open sets in Rn are countable unions of open boxes which can be asked

to be disjoint if n = 1 .

(i) Show that if

{Iα}α∈A

is a family of open intervals, then there is a countable subfamily {Ik}∞k=1 such that

∞⋃
k=1

Ik =
⋃
α∈A

Iα.

(ii) Let Ω ⊂ R be an open set. Show that Ω can be written as a countable union of open disjoint

intervals.

(iii) Prove that every open set Ω ⊂ Rn can be written as a countable union of open boxes.

Hints:

• For (i) use the fact that Q is dense in R. Prove that every x ∈
⋃

α∈A Iα belongs to an interval

with rational extrema which is contained in some Iα.

• In order to prove (ii), define the equivalence relation (and show that it is an equivalence relation)

∼ given by

a ∼ b ⇐⇒ [a, b] ⊂ Ω or [b, a] ⊂ Ω,

and then use (i).

• For (iii) recall that since Ω is open, ∀x ∈ Ω, ∃rx > 0 such that B(x, rx) ⊂ Ω. In addition, prove

and use the following claim:

Claim: For any ball B(x, r) there exists a rational box (i.e a box
∏n

i=1(ai, bi) with a1, . . . , an

and b1, . . . , bn in Q) contained in B(x, r) and containing x.

Solution:

(i) Put

B :=
⋃
α∈A

Iα.

For any x ∈ B, define the set

Ix = {(a, b, α) ∈ Q×Q×A | a < x < b and ]a, b[⊂ Iα} .

Then, for all x ∈ B, Ix is non-empty. Indeed, if x ∈ B, then there is α ∈ A such that x ∈ Iα.

Moreover, since Iα is open, there is ε > 0 such that

x ∈]x− ε, x+ ε[⊂ Iα.

By density of Q in R, there is a ∈]x − ε, x[∩Q and b ∈]x, x + ε[∩Q. We get (a, b, α) ∈ Ix
which is therefore non-empty. Then applying the axiom of choice to the family {Ix}x∈B, we
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get for all x ∈ B, ax, bx ∈ Q and αx ∈ A such that (ax, bx, αx) ∈ Ix, i.e.,

x ∈ Jx :=]ax, bx[⊂ Iαx

By construction, we have ⋃
α∈A

Iα =
⋃
x∈B

Jx.

The family {Jx}x∈B is countable since it is a subset of the family of intervals with rational

extrema which is countable (because there is a bijection with Q × Q which is countable).

Thus, there is a family {Jxi}∞i=1 ⊂ {Jx}x∈B such that

⋃
α∈A

Iα =
∞⋃
i=1

Jxi .

It follows that ⋃
α∈A

Iα =
∞⋃
i=1

Jxi ⊂
∞⋃
i=1

Iαxi
⊂

⋃
α∈A

Iα,

hence the result.

(ii) We define the following equivalence relation ∼:

a ∼ b ⇐⇒ [a, b] ⊂ Ω or [b, a] ⊂ Ω.

It is easily shown that it is an equivalence relation, i.e. it is reflexive, symmetric and

transitive. We show that the equivalence classes form partition of Ω in disjoint (this is

obvious) open intervals. Indeed, let a ∈ Ω, and C(a) be its equivalence class. Let x, y ∈ C(a),

implying that x ∼ y, which means that [x, y] ⊂ Ω or [y, x] ⊂ Ω. As a consequence, C(a)

is convex and therefore an interval. To show that C(a) is open, let again x ∈ C(a) ⊂ Ω.

Since Ω is open there is ε such that ]x− ε, x+ ε[⊂ Ω and by transitivity it is clear that any

y ∈]x− ε, x+ ε[ satisfies y ∈ C(a). Finally, ]x− ε, x+ ε[⊂ C(a) proving that C(a) is open.

Until now, we have proved that ∼ partions Ω into equivalence classes that are open intervals

so that we get a family of open disjoint intervals {Iα}α∈A such that

Ω =
⋃
α∈A

Iα.

Now using (i), there is a countable subfamily {Ik}∞k=1 such that

⋃
α∈A

Iα =

∞⋃
k=1

Ik.

But since the intervals are all disjoint, this implies {Iα}α∈A = {Ik}∞k=1, hence {Iα}α∈A is

countable which finishes the proof.

(iii) As mentioned in the exercise, a box
∏n

i=1(ai, bi) is called rational if all the components ai, bi

are rational numbers. Notice that the family of all rational boxes is countable (there is a

bijection between this family and Q2n which is countable). We first prove the claim. For
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each 1 ≤ i ≤ n, let ai, bi be rational numbers such that

xi −
r

n
< ai < xi < bi < xi +

r

n
.

Then it is clear that the box
∏n

i=1(ai, bi) is rational and contains x. The triangular inequality

allows us to prove that this box is contained in B(x, r). This proves the claim. Finally, let

Ω ⊂ Rn and let Σ be the family of rational cubes contained in Ω. We will prove

Ω =
⋃
B∈Σ

B,

which gives the desired result. The fact that the union over Σ is contained in Ω is obvious

because every element in Σ is contained in Ω. On the other hand, since Ω is open, for any

x ∈ Ω there is rx > 0 such that B(x, rx) ⊂ Ω. Then, by the claim, there is rational a box

B such that x ∈ B ⊂ B(x, rx). In particular, B ∈ Σ and thus we get x ∈ ∪B∈ΣB. Since

this is true for any x ∈ Ω, Ω is contained in the union over Σ. Hence, we deduce the desired

equality. Note that Σ is countable since it is a subset of the family of all rational boxes,

which is countable.

We provide here a simple example of a sequence of functions which does not converge uniformly, but

nonetheless their integral converges to the integral of the pointwise limit. Lebesgue integration will

cover such (and much more general) situations with a non-uniform convergence of integrands.

Exercise 4. Let fn : ]0, 1[→ R defined by fn(x) = xn. Prove that for any compact set K ⊂]0, 1[

fn converges uniformly on ]0, 1[∩K

but fn does not converge uniformly on ]0, 1[. Show that
∫ 1
0 fn(x) dx converges to the integral of the

pointwise limit of fn as n → ∞.

Hint: Show that for any compact set K ⊂]0, 1[, there is δ > 0 such that x ≤ 1− δ.

Solution: Let K ⊂]0, 1[ be a compact set. Then, since K is compact and R\]0, 1[ is closed, with
empty intersection, there is

γ = min
x∈K,y∈R\]0,1[

|x− y| > 0.

Thus, by defining δ = γ/2, we have x < 1−δ for any x ∈ K. As a consequence, we getK ⊂]0, 1−δ[.

We know that (1− δ)n → 0 and

sup
x∈K

|xn| ≤ sup
0≤x≤1−δ

xn = (1− δ)n.

Thus, for any ε > 0, there exists N sufficiently large such that for any n ≥ N , we have

sup
x∈K

|xn| ≤ ε.

This proves uniform convergence on K. From this, we deduce the local uniform convergence.
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Next, we prove that fn does not converge uniformly on ]0, 1[. Indeed, fn(x) → 0 as n → ∞, for

any x ∈]0, 1[. Assume for a contradiction that fn → 0 uniformly on ]0, 1[. Then for any ε > 0,

there exists N such that for all n ≥ N ,

sup
x∈]0,1[

|fn| ≤ ε.

However,

sup
x∈]0,1[

|fn| = sup
x∈]0,1[

|xn| = 1,

which gives the desired contradiction. Finally,∫ 1

0
fn(x) dx =

xn+1

n+ 1

∣∣∣1
0
=

1

n+ 1

such that limn→∞
∫ 1
0 fn(x) dx = 0 and since fn → 0 pointwise, this shows the second claim.

Exercise 5. Let f ∈ C1(Rd) and ⟨·, ·⟩ denotes the scalar product in Rd. Show that all the following

statements are equivalent.

(i) f is convex.

(ii) For any x, y ∈ Rd,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩.

(iii) For any x, y ∈ R,
⟨∇f(y)−∇f(x), y − x⟩ ≥ 0.

If, in addition, f ∈ C2(Rd), then (i)-(iii) are equivalent to

(iv) For any x, v ∈ Rd,

⟨∇2f(x)v, v⟩ ≥ 0.

where ∇2f(x) denotes the Hessian matrix ∇2f(x) =


∂2f

∂2x1
· · · ∂2f

∂x1∂xd
...

. . .
...

∂2f

∂xd∂x1
· · · ∂2f

∂2xd


Hint: For this last part, recall that for g ∈ C1

∫ t1

t0

g′(t) dt = g(t1)− g(t0).

Solution: We will prove: (i) ⇔ (ii) ⇔ (iii)
f∈C2(Rd)⇐======⇒ (iv).
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We begin with (i) ⇒ (ii): For any λ ∈]0, 1[ and every x, y ∈ Rd by convexity of f ,

λ(f(x)− f(y)) + f(y) = λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y),

which implies,

f(x)− f(y) ≥ 1

λ
[f(λx+ (1− λ)y)− f(y)].

Letting λ → 0 (observe: λx+ (1− λ)y = y + λ(x− y)), we get,

f(x)− f(y) ≥ ⟨∇f(y), x− y⟩.

Now for (ii) ⇒ (i): We have using (ii) that

f(x) ≥ f(λx+ (1− λ)y) + (1− λ)⟨∇f(λx+ (1− λ)y), x− y⟩ (1)

f(y) ≥ f(λx+ (1− λ)y)− λ⟨∇f(λx+ (1− λ)y), x− y⟩. (2)

Multiplying (1) by λ, (2) by (1− λ) and summing them, yield convexity.

Then for (ii) ⇒ (iii): We have using (ii) that

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ (3)

f(y) ≥ f(x)− ⟨∇f(x), x− y⟩. (4)

Summing (3) and (4) yields the desired result.

In addition, for (iii) ⇒ (ii): Let λ ∈]0, 1[, x, y ∈ Rd and define

z =
x− y

λ
+ y

and a function ϕ : Rd → R by ϕ(µ) = f(y+ µ(z− y)). Note that ϕ(λ) = f(x) and ϕ(0) = f(y). In

addition,

ϕ′(µ) = ⟨∇f(y + µ(z − y)), z − y⟩

and therefore by (iii)

ϕ′(µ)− ϕ′(0) =
1

µ
⟨∇f(y + µ(z − y))−∇f(y), (y + µ(z − y))− y⟩ ≥ 0.

Integrating this ineqality from 0 to λ gives∫ λ

0
(ϕ′(µ)− ϕ′(0)) dµ = ϕ(λ)− ϕ(0)− λϕ′(0) ≥ 0,

which implies, using λ(z − y) = x− y,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩.

From now on, assume f ∈ C2(Rd). We show (iii) ⇒ (iv): Indeed, by (iii) it holds for every

v ∈ Rd 〈
∇f(x+ εv)−∇f(x)

ε
, v

〉
≥ 0.
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Letting ε → 0, gives ⟨∇2f(x)v, v⟩ ≥ 0.

Finally (iv) ⇒ (iii): Use the hint with the function g(t) = ⟨∇f(y + t(x − y)), x − y⟩, t0 = 0

and t1 = 1. This yields

⟨∇f(x)−∇f(y), x− y⟩ =
∫ 1

0

〈
d

dt
∇f(y + t(x− y)), x− y

〉
dt

=

∫ 1

0

〈
∇2f(y + t(x− y))(x− y), x− y

〉
dt ≥ 0

due to (iv).
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