Serie 13
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course. The
exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Let Q = {(x,5) € R? : y > 0}. Use the Fourier transform to solve the following initial
value problem
Au=0 (z,y) € Q,
82
limy oo u(z,y) =0 x€R.

u(z,0) = z €R,

Hint: Use that for w # 0 we have
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Solution: We begin with a formal derivation of the solution. In order to solve the PDE we will

take the Fourier transform with respect to z, i.e.

+o0 )
(€, y) = Fu(u)(&y) = /_ u(z, y)e” 7™ d.
Note that
Fo(O0zau)(€,y) = (2mi€)*a(€,y)  and Fa(Oyyu)(&, y) = Oyyti(&, y). (1)

Observe that formally, if we are allowed to exchange limit and integration by, say, dominated
convergence, then the third equation can be rewritten as

+oo .
lim 4(§,y) = lim u(x,y)e ™ dy = 0 (2)

Yy—00 y—oo J_ o




for all £ € R. Using (1)-(2), the PDE can now be rewritten as

—(2m)%a(E, y) + Dyy(&,y) =0 (&) €D,

(€, 0) = h(¢) {ER, 3)

limy 40 w(€,y) = £eR.

The first two equations are an ODE with respect to y and the solution is given by

(&) = h(©) cosh(2rlély) + 5 T sinb(2rely)

2lély 4 o—2ml€ly 2rlély _ o—2ml€ly
~ o€ +e v e e
=h
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where v does not depend on y. We need to determine the value of v such that the third equation

is satisfied; that is, we need to choose vy such that lim,_, - @(§,y) = 0 for all £ € R. Looking at

the equation just above, it follows that

v = —27[¢[h(€).

We get
(6. ) = h(E)eIew.

Now, in order to recover u, we compute the Fourier inversion. We observe that h(¢) = 4m(1 —
271|€|)e~2¢l by the hint and hence

1 1
) — 47(1 — 2 —2ml€l(y+1) _ 4 —9 —2r€l(y+1) 4 g1 — —2m|¢|(y+1)
W&, y) = 4m(l = 2m[¢])e (1, el e +4m )

zza(w+giwm>@+@ﬂ(ﬂ+éﬂm)@,

where we again used the two hints with w = 1 4+ y. Hence, taking the Fourier inversion, we

formally obtain that

too . 82 4
— 15 _ —27|€|y \2mixg _ Y
uley) = Fe (o) = /oo e TR e = 2+ 1t92? Aty ta?
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(2 + (1 +9)2)”

From this expression, it is now straightforward to verify that u € C?(2) satisfies all three equations
of the PDE.

Exercise 2.



(i) Let f € L'(0,27). Find, formally, the solution u = u(x,t) of the initial value problem

ur(z,t) = ugg(x,t)  (x,t) € (0,27m) x (0, 00),
u(0,t) = u(2m,t) t>0,

ug(0,t) = ugp(2m,t) ¢t >0,

u(z,0) = f(x) x € (0,2m).

(ii) Let f: R — R be 27m-periodic. Discuss under which additional assumptions on f , we have that

li iformly in x.
lim u(z,t) = f(xz) uniformly in z

Solution:

(i) We use separation of variables and make the ansatz that u is in the form u(x,t) = p(x)y(t).

The first equation then becomes

o) _ o)
b el

for a suitable A € R. We then obtain the two ODEs:

=\ V(z,t) € (0,2m) x (0,00)

O"(x) = Ap(z) =0 z € (0,2m)
90(0) = @(27[-)7 (4)
¢'(0) = ¢'(2m),

and

P(t) = Mp(t) =0 t>0. (5)
We know that the problem (4) admits non-trivial solutions only if A = —n? for n € N> and
the solutions are given by

3 if n =0,

en(z) =

an cos(nz) + by sin(nx)  otherwise |,

for some real coefficients {a,,} . For A = —n? the solution to (5) is given by

2

Yn(t) = cpe™ ¢,

Thus, since any superposition of solutions is also a solution, the general solution to the two
ODE’s is, formally, of the form

u(x,t) = agco an cos(nx) + by, sin(nz)|c,e” n’t,

||M8




For simplicity, we rewrite it as
_— i [an, cos(nx) + by sin(nz)]e” et
2 LT '

Now, in order to determine the coefficients a,, and b,, we use the initial condition. Indeed,

formally
1 2m 1 2
ar = / u(z,0) cos(kz) de = — f(x)cos(kx)dx, forall k>0.
T Jo T Jo
Similarly we find
1 2m
b, = — f(x)sin(kz)dz for all k > 1.
T Jo

With these choices for the coefficients a,, and b,,, u formally solves the initial value problem.

If the Fourier series of f converges uniformly to f, we have that pointwise
a o0
f(z) = ?0 + z;)[an cos(nx) + by, sin(nz)].
n=

and hence,

u(x, Z ap, cos(nz) + by, sin(nx)](e” nt 1). (6)
n=1

Solution 1: f € C*(R).
The assumption guarantees uniform convergence of the Fourier series and moreover, there is

a constant such that

Y
|(In|, |bn| § m .
We can estimate therefore

> 2 > 2 =1

[ula, t) = f@)] = D _llan| +ball(1 =€) <y SqnPt =2ty  —
n=1 n=1 =1

N——

<0

We deduce that |u(z,t) — f(z)] — 0, uniformly in x as ¢ — oo, which proves that

li iformly in x.
lim u(z,t) = f(x) uniformly in x

Solution 2: f € CH¥(R).
The assumption f € CH*(R) (i.e. f € CH(R) and f' € C*(R)) guarantees uniform conver-

gence of the Fourier series and moreover, there is a constant such that

g
anl, Ibal < s (7)

To show the uniform convergence, we fix e > 0. We estimate using (6), (7) and the triangular




inequality, for a N > 1 yet to be chosen,

N [e)
_ N2 1 1
lu(z,t) — f(@)| <291 —e Nt)ZnMHWan- (8)
n=1 n=N

We now first choose N = N(e) > 1 large enough such that 4>~ n~—(+e) < 5 . Second,
we choose tg = to(/N) > 0 small enough, such that for all 0 < ¢ < tg, it holds that

N
_N2 1 €
29(1—e N> T <3

n=1

Hence, for all 0 < ¢ < ¢y and for all z € R, we have |u(z,t) — f(z)| < e, showing the claimed

uniform convergence.

Exercise 3. Let f € L'(R) and assume that f(z) = f(—x) for all z € R, f > 0 pointwise, and f is

continuous in a neighbourhood of 0.
(i) Show that f € L'(R).
(ii) Give an example showing that f doesn’t need to be in L'(R) if we drop the assumption f>o.

Hint: Choose ¢ € C*(R) to be a standard Gaussian and consider ¢.(z) = '¢ (£) . Use and prove
that lime_o(f * »2)(0) = f(0).

Solution:

(i) Let ¢ be a Gaussian, i.e. ¢(z) = (2r)~/2e72"/2 | with l¢llL1ry = 1 and define for € > 0,

the rescaling p.: R — R by
@) =2¢(9)
r)=-p|—].
Pe 6@ c

Note that by the positivity of ¢, and by a change of variables,
el = [ werde = [ otade=1.

Since ¢ is a Gaussian, $(§) = (27r)*1/26*52/2 is itself a Gaussian and hence ¢ > 0. Notice
that for every d > 0 fixed, we have

ggrg)‘itlg\soe(x)\:O and i [[e a5l 21 r) = 0. (9)

We claim (f % ¢c)(0) — f(0) as € — 0. Indeed, let 7 > 0 be arbitrary. Define M :=
|f(O)] + [If|l1 (). Since f is continuous in 0, there is v = v(7) > 0 such that

|f(xz) — f(0)] < % for any |z| <w.
Moreover, due to (9), there is & = (7, M, v) > 0 such that for all 0 < & < g,

T T
< — d 1 < —.
|§:1\1>pu‘%(x)‘ oaf o 02 Lzl L1 (m) Wi




Combining the three estimates and using that [ ¢.(y)dy = 1, we have for any 0 < ¢ < &
that

(% )(0) — ()] = ’ [ 1oty - f(O)‘

/ (=) — FO)oe(y) dy‘
R
< /| (=) — FO)l () dy + / (=) — FO)]e(y) dy

ly|>v

= 2/y|<y #=(v) dy+/yl>ylf(—y)\sos(y) dy + [ f(0)] P (y) dy

<4 </|y|2u 7l dy + |f(0)|> Thz=

Since 7 was arbitrary, this proves that (f * ¢:)(0) — f(0) as e — 0.

We now use the Fourier transform: since f, p. € L'(IR), we can use the properties the Fourier

transform with respect to convolution and dilations to obtain that for all £ € R

F(f % 0e)(€) = F(£)pe(€) = F(&)p(e€) > 0

Since f is bounded as Fourier transfom of an L!-function and ¢ is a Gaussian (in particular
¢ € L), we have that f¢. € L'(R). We can thus apply the Fourier inversion in order to get
for every x € R

FHUA©@E)) (@) = (f * pe) ().

Evaluating in z = 0 gives
[ H©s de = (0.

R

It now follows from Fatou’s lemma (using that ¢(0) = [ ¢(y ) that
1l = | F€)de < tmint [ F©)2(c€)ds = timipt(f + )(0) = 70},

hence f € L'(R).

(ii) Just take the indicator function of [-1,1]. Its Fourier transform is % which is not

Lebesgue integrable.

Exercise 4. Consider the 1-dimensional wave equation

U (2, 1) — Ugg(x,t) =0 (x,t) € R x (0,00)
u(z,0) = g(z), du(x,0) = h(z) zeR.

with g,h € L3(R).

(i) Find, formally, a representation formula for u .



(i) Assume that u € C?(R x (0,00)) such that u(-,t) has compact support in space for every fixed
time ¢t > 0 and that g € C}(R) and that h € C.(R). Define the total energy at time ¢, that is

the sum of the kinetic energy and the potential energy,

E(t) := ;/R(ut(ﬂv,t))Q + (ug(z, 1)) dx
for t > 0. Show that E(t) = E(0) for ¢t > 0.

(iii) (%) Under the assumptions of (ii), show that asymptotically as t — oo, the total energy splits

equally into its kinetic and potential parts; that is

lim | (ug(x,t))?dz = lim [ (u(z,t))* de = E(0).

t—o00 t—o0

Hint: Show that for every f € C°(R), it holds

lim [ cos(t2w|¢|)sin(t2m|€|) f(§)dE = 0. (10)

t—o00 R

Solution:

(i) We have already seen in class that

T+t

u(w.t) = 5 (gta+ )+ gle— )+ [

5 » h(y)dy)

Let’s use a different technique than the one from class to derive this formula.

We begin with a formal derivation of the representation formula. In order to solve the PDE;,
we will apply the Fourier transform with respect to x, denoted by F, and we treat t as

parameter, i.e.

W, t) = Fp(u)(&,t) = / u(x, t)e 28 dy.

R
Notice that if we assume smoothness and decay at infinity of the second derivatives, we have
that

Fu(Oau) (&, 1) = (2mi) 2 F (u)(&, 1) = —(2m€) (€, t)

Moreover, by dominated convergence we also have that
Fr(Onu)(§,t) = Outu(§,t).
Thus, when applying the Fourier transform to the equation, we formally get

att(fv t) + (27‘-5)2@(67 t) =0 (57 t) € R x (07 OO),
a(€,0) = g(€), (€, t) = h(§) EER.

Note that the PDE above only depends on derivatives in ¢t. Thus, for each £ the first PDE




above is actually an ODE with respect to ¢ and the solution is given by

a6, 1) = 4(6) cos(e2ale) + 5oL sime2re),

Applying the Fourier inversion, we formally get

h()
2r(¢]

u(x,t) = }"_,E_l [g(g) cos(t27|&|) + sin(t27r]§|)] (x,t).

which one can check gives

T+t

u(w.t) = 5 (gta+ )+ oo —0)+ [

r—t

hly)dy).

(ii) e Assuming that u € C?(R? x (0,00)), we can differentiate E with respect to ¢ : exchang-
ing the order of integration and differentiation (see below), using the equation that
u solves and integrating by parts (boundary terms vanishes because of the compact

support)

d 1

@E(t) = 2/ 2upug(z,t) + 2ug (2, t)Orug (z,t) do

= / (@, ) uge (2, 1) + ug (2, t)Opug (z,t) do
= / —O0pui(, t)ug(x,t) + ug(z,t)Oug(x,t) de = 0.

Thus, E(t) = E(0) for t > 0.
e Why can we exchange the order of differentiation and integration?

We want to show that for all t > 0,

d oo o
- F(z,t)dx :/ OcF (z,t)dx
dt —0o0 —0o0
where F(z,t) = (Qu(z,t))? + (Opu(z,t))?.
Fix ¢t > 0. Note that it is enough to show:
(*) There is a compact set K C R such that the function x — F(z,7) is supported in
K for all 7 € (t/2,3t/2).
We can then apply the dominated convergence theorem.

Now let’s show (*). For this, we use that the general solution to the wave equation is

T+t

u(w,t) = 5 (gta+ )+ glo— 1)+ [

5 - h(y)dy)

and we assume g, h are compactly supported in say [—R, R]. We have
1
Ou(x,t) = 5 (g’(ac +t)—g(x—t)+h(x+t)+h(z— t))

Therefore, dyu(-, 7) is supported in [-R—3t/2, R+3t/2] for all T € (t/2,3t/2). Similarly,




we can make the same claim for 0 u.

e For an alternative proof, one could use the representation formula derived formally in (i)
and observe that under our assumptions, the representation formula holds pointwise.
The conservation of the total energy can then be proven using this representation

formula and Plancherel. Indeed,

/(ux(ﬂwt))2 + (ur(w, 1)) do = /(27%)2(11(5%))2 + (€, 1))* de
R

R

- /R (20€)2(3(€))?[cos? (12 [€]) + sin? (£2n[€])]
" / (h(£))? sin®(12r[€]) + cos? (12 €])] de

R
- /R [(206)2(5(6))? + (h(€))?) de

- / (g0 ()% + (h(x))?) dx
— E(0).

(iii) By (ii), it is enough to prove that

tli)rglo (ug(z,t))*de = E(0).
First of all, notice that by Plancharel and by the representation formula found in (i), we

have

U (2 2dx = 7€) (4 2
/R< S, 1)?d /<2 €)2(a(6))? de

R

=:tA;(2ﬂ£)2(§(£))2COSQ(t2ﬂ1£|)+—(5(5))281n2(t2ﬂ%€|)d§

~

+ /R (€] cos(t2n(€]) sin(t2r £]) (H(€)F(E) + FENR(E)) de

We claim that

Jim [ coste2mle]) sin(e2mlél) g (HE)3E) + §©RE) dE =0, (1)
Jim [ roR(a(©)F cot2nlel) dn = 5 [ 2re2(0(©) de. (12)

R R
tim [ ()2 sint(eanlehds = 5 [ (@)Pas.  (3)

R R

The claim of (iii) then follows from (11)—(13) and Plancherel. We first prove (11). We prove
in fact that for every f € C°(R), it holds

tli)m /cos(t27r\§|) sin(t27[€|) f(§) d¢ = 0. (14)
o Jr
Observe however that B

(21€]) (R(€)3(€) + §(E)h(€)) € L'(R). (15)




Indeed, note that due to Plancherel’s identity, (27¢)g € L?(R) (since 0,9 € C.(R) and hence
drg € L2(R)) and h € L(R) (since h € C,(R) and hence h € L2(R)), and thus we can easily
deduce (15) from Holder’s inequality. We now deduce (11) from (14) by approximating the
L' function (27&)(h(£)§(€) + g(g)ﬁ(g)) by C°-functions (recall that CS° is dense in L1!).
Indeed, assuming (14) and using the density, we have that for any ¢ > 0, there is f € C§°(R)
such that [|(27(¢[)(h§ + Gh) — fll 1) < . Then

‘/Rcos(tzﬂa)sin(tm\)zﬂgy(i@ gh) d&'

~

S/!COS(tl%il)Sin(t!%f\)!?ﬂ&!(ﬁﬁ h)—f|d§+/COS(tl27f§|)Sin(ﬂ%&!)fdé
R R

< |I(hg + gh) — Fllae + A cos(t|2m¢|) sin(t[2E]) f d€

Since the last term goes to 0 as ¢ — co, we deduce

limsup/ cos(t|27r§|)sin(t|27r§])|27r§|(i1§—i—f}ﬁ)df <e

t—o00

and since € > 0 was arbitrary, we conclude (11) assuming (14). Finally, we prove (14). For
feCE®),

/Rcos(t27r\§|)sin(t27r|§])f(§) de = ;/Rsin(%(%Ié))f(f) dg

-1 /O " Sin(4rte) (£(6) + F(—€)) de
_ w / E CosUIm(F(€) + F(-6)) de
- /0 (cos(4tmE))(f'(€) — f'(—€))de.

where the last equality follows from integration by parts. Since f € C¢°, there is a constant
C such that

‘/ cos(t|2m€|) sin(t|27&|) f d{’ < —

Thus, we deduce (14).

As for the claim (12), it follows from trigonometric identities that
cos?(12r€]) = 5 [cos(2t(2r[e])) + 1]
and therefore
[ rer(ae)? cosezlely de = 5 [ re*@(E) os(at(2rleD) +1) de.

Proceeding exactly as before, we show that the t-dependent contribution in the integral

10




vanishes as ¢ — oo and we find

tim [ (2r€)2(0(9)2 cost(e2rle) = 5 [ 2n%(

t—o00 R

as claimed. We proceed analogously to prove (13).

g

(£))* d¢
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