
Serie 13

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (?) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Let Ω = {(x, y) ∈ R2 : y > 0} . Use the Fourier transform to solve the following initial

value problem 
∆u = 0 (x, y) ∈ Ω,

u(x, 0) =
8x2

(1 + x2)2
x ∈ R,

limy→+∞ u(x, y) = 0 x ∈ R .

Hint: Use that for ω 6= 0 we have

f(x) =
1

x2 + ω2
⇒ f̂(ξ) = π

e−2π|ξω|

|ω|
,

g(x) =
4x2

(x2 + ω2)2
⇒ ĝ(ξ) = 2π(

1

|ω|
− 2π|ξ|)e−2π|ξω|.

Solution: We begin with a formal derivation of the solution. In order to solve the PDE we will

take the Fourier transform with respect to x, i.e.

û(ξ, y) = Fx(u)(ξ, y) =

∫ +∞

−∞
u(x, y)e−2πixξ dx.

Note that

Fx(∂xxu)(ξ, y) = (2πiξ)2û(ξ, y) and Fx(∂yyu)(ξ, y) = ∂yyû(ξ, y). (1)

Observe that formally, if we are allowed to exchange limit and integration by, say, dominated

convergence, then the third equation can be rewritten as

lim
y→∞

û(ξ, y) = lim
y→∞

∫ +∞

−∞
u(x, y)e−2πixξ dx = 0 (2)
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for all ξ ∈ R . Using (1)-(2), the PDE can now be rewritten as
−(2πξ)2û(ξ, y) + ∂yyû(ξ, y) = 0 (ξ, y) ∈ Ω,

û(ξ, 0) = ĥ(ξ) ξ ∈ R,

limy→+∞ û(ξ, y) = 0 ξ ∈ R .

(3)

The first two equations are an ODE with respect to y and the solution is given by

û(ξ, y) = ĥ(ξ) cosh(2π|ξ|y) +
γ

2π|ξ|
sinh(2π|ξ|y)

= ĥ(ξ)
e2π|ξ|y + e−2π|ξ|y

2
+

γ

2π|ξ|
e2π|ξ|y − e−2π|ξ|y

2

=

(
ĥ(ξ) +

γ

2π|ξ|

)
e2π|ξ|y

2
+

(
ĥ(ξ)− γ

2π|ξ|

)
e−2π|ξ|y

2

where γ does not depend on y. We need to determine the value of γ such that the third equation

is satisfied; that is, we need to choose γ such that limy→+∞ û(ξ, y) = 0 for all ξ ∈ R. Looking at

the equation just above, it follows that

γ = −2π|ξ|ĥ(ξ).

We get

û(ξ, y) = ĥ(ξ)e−2π|ξ|y.

Now, in order to recover u, we compute the Fourier inversion. We observe that ĥ(ξ) = 4π(1 −
2π|ξ|)e−2π|ξ| by the hint and hence

û(ξ, y) = 4π(1− 2π|ξ|)e−2π|ξ|(y+1) = 4π

(
1

1 + y
− 2π|ξ|

)
e−2π|ξ|(y+1) + 4π

(
1− 1

1 + y

)
e−2π|ξ|(y+1)

= 2Fx
(

4x2

(x2 + (1 + y)2)2

)
(ξ) + 4yFx

(
1

x2 + (1 + y)2

)
(ξ) ,

where we again used the two hints with ω = 1 + y . Hence, taking the Fourier inversion, we

formally obtain that

u(x, y) = F−1x (û)(x, y) =

∫ +∞

−∞
ĥ(ξ)e−2π|ξ|ye2πixξ dξ =

8x2

(x2 + (1 + y)2)2
+

4y

(1 + y)2 + x2

= 4
y(1 + y)2 + x2(2 + y)

(x2 + (1 + y)2)2
.

From this expression, it is now straightforward to verify that u ∈ C2(Ω) satisfies all three equations

of the PDE.

Exercise 2. .
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(i) Let f ∈ L1(0, 2π). Find, formally, the solution u = u(x, t) of the initial value problem

ut(x, t) = uxx(x, t) (x, t) ∈ (0, 2π)× (0,∞),

u(0, t) = u(2π, t) t > 0,

ux(0, t) = ux(2π, t) t > 0,

u(x, 0) = f(x) x ∈ (0, 2π) .

(ii) Let f : R→ R be 2π-periodic. Discuss under which additional assumptions on f , we have that

lim
t→0

u(x, t) = f(x) uniformly in x.

Solution:

(i) We use separation of variables and make the ansatz that u is in the form u(x, t) = ϕ(x)ψ(t).

The first equation then becomes

φ′(t)

ψ(t)
=
ϕ′′(x)

ϕ(x)
= λ ∀(x, t) ∈ (0, 2π)× (0,∞)

for a suitable λ ∈ R. We then obtain the two ODEs:
ϕ′′(x)− λϕ(x) = 0 x ∈ (0, 2π)

ϕ(0) = ϕ(2π),

ϕ′(0) = ϕ′(2π),

(4)

and

ψ′(t)− λψ(t) = 0 t > 0 . (5)

We know that the problem (4) admits non-trivial solutions only if λ = −n2 for n ∈ N≥0 and

the solutions are given by

ϕn(x) =

a0
2 if n = 0,

an cos(nx) + bn sin(nx) otherwise ,

for some real coefficients {an} . For λ = −n2 the solution to (5) is given by

ψn(t) = cne−n
2t.

Thus, since any superposition of solutions is also a solution, the general solution to the two

ODE’s is, formally, of the form

u(x, t) =
a0c0

2
+
∞∑
n=1

[an cos(nx) + bn sin(nx)]cne−n
2t.
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For simplicity, we rewrite it as

u(x, t) =
a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)]e−n
2t.

Now, in order to determine the coefficients an and bn we use the initial condition. Indeed,

formally

ak =
1

π

∫ 2π

0
u(x, 0) cos(kx) dx =

1

π

∫ 2π

0
f(x) cos(kx) dx, for all k ≥ 0 .

Similarly we find

bk =
1

π

∫ 2π

0
f(x) sin(kx) dx for all k ≥ 1 .

With these choices for the coefficients an and bn, u formally solves the initial value problem.

(ii) If the Fourier series of f converges uniformly to f , we have that pointwise

f(x) =
a0
2

+

∞∑
n=0

[an cos(nx) + bn sin(nx)].

and hence,

u(x, t)− f(x) =

∞∑
n=1

[an cos(nx) + bn sin(nx)](e−n
2t − 1) . (6)

Solution 1: f ∈ C4(R) .

The assumption guarantees uniform convergence of the Fourier series and moreover, there is

a constant such that

|an|, |bn| ≤
γ

n4
.

We can estimate therefore

|u(x, t)− f(x)| =
∞∑
n=1

[|an|+ |bn|](1− e−n
2t) ≤

∞∑
n=1

2γ

n4
n2t = 2γt

∞∑
n=1

1

n2︸ ︷︷ ︸
<∞

.

We deduce that |u(x, t)− f(x)| → 0, uniformly in x as t→∞, which proves that

lim
t→0

u(x, t) = f(x) uniformly in x.

Solution 2: f ∈ C1,α(R) .

The assumption f ∈ C1,α(R) (i.e. f ∈ C1(R) and f ′ ∈ Cα(R)) guarantees uniform conver-

gence of the Fourier series and moreover, there is a constant such that

|an|, |bn| ≤
γ

n1+α
. (7)

To show the uniform convergence, we fix ε > 0 . We estimate using (6), (7) and the triangular
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inequality, for a N ≥ 1 yet to be chosen,

|u(x, t)− f(x)| ≤ 2γ(1− e−N2t)
N∑
n=1

1

n1+α
+ 4γ

∞∑
n=N

1

n1+α
. (8)

We now first choose N = N(ε) ≥ 1 large enough such that 4γ
∑∞

n=N n
−(1+α) ≤ ε

2 . Second,

we choose t0 = t0(N) > 0 small enough, such that for all 0 < t < t0, it holds that

2γ(1− e−N2t)

N∑
n=1

1

n1+α
<
ε

2
.

Hence, for all 0 < t < t0 and for all x ∈ R , we have |u(x, t)−f(x)| ≤ ε , showing the claimed

uniform convergence.

Exercise 3. Let f ∈ L1(R) and assume that f(x) = f(−x) for all x ∈ R, f̂ ≥ 0 pointwise, and f is

continuous in a neighbourhood of 0.

(i) Show that f̂ ∈ L1(R).

(ii) Give an example showing that f̂ doesn’t need to be in L1(R) if we drop the assumption f̂ ≥ 0.

Hint: Choose ϕ ∈ C∞(R) to be a standard Gaussian and consider ϕε(x) = ε−1ϕ
(
x
ε

)
. Use and prove

that limε→0(f ∗ ϕε)(0) = f(0) .

Solution:

(i) Let ϕ be a Gaussian, i.e. ϕ(x) = (2π)−1/2e−x
2/2 , with ‖ϕ‖L1(R) = 1 and define for ε > 0,

the rescaling ϕε : R→ R by

ϕε(x) =
1

ε
ϕ
(x
ε

)
.

Note that by the positivity of ϕε and by a change of variables,

‖ϕε‖L1(R) =

∫
R
ϕε(x) dx =

∫
R
ϕ(x) dx = 1.

Since ϕ is a Gaussian, ϕ̂(ξ) = (2π)−1/2e−ξ
2/2 is itself a Gaussian and hence ϕ̂ ≥ 0 . Notice

that for every δ > 0 fixed, we have

lim
ε→0

sup
|x|>δ

|ϕε(x)| = 0 and lim
ε→0
‖ϕε1[|x|>δ]‖L1(R) = 0. (9)

We claim (f ∗ ϕε)(0) → f(0) as ε → 0. Indeed, let τ > 0 be arbitrary. Define M :=

|f(0)|+ ‖f‖L1(R). Since f is continuous in 0, there is ν = ν(τ) > 0 such that

|f(x)− f(0)| < τ

2
for any |x| < ν.

Moreover, due to (9), there is ε̄ = ε̄(τ,M, ν) > 0 such that for all 0 < ε ≤ ε̄,

sup
|x|>ν

|ϕε(x)| < τ

2M
and ‖ϕε1[|x|>ν]‖L1(R) <

τ

2M
.
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Combining the three estimates and using that
∫
ϕε(y) dy = 1, we have for any 0 < ε ≤ ε̄

that

|(f ∗ ϕε)(0)− f(0)| =
∣∣∣∣∫

R
f(−y)ϕε(y) dy − f(0)

∣∣∣∣
=

∣∣∣∣∫
R

[f(−y)− f(0)]ϕε(y) dy

∣∣∣∣
≤
∫
|y|<ν

|f(−y)− f(0)|ϕε(y) dy +

∫
|y|≥ν

|f(−y)− f(0)|ϕε(y) dy

≤ τ

2

∫
|y|<ν

ϕε(y) dy +

∫
|y|≥ν

|f(−y)|ϕε(y) dy + |f(0)|
∫
|y|≥ν

ϕε(y) dy

≤ τ

2
+

τ

2M

(∫
|y|≥ν

|f(−y)| dy + |f(0)|

)
≤ τ

2
+
τ

2
= τ

Since τ was arbitrary, this proves that (f ∗ ϕε)(0)→ f(0) as ε→ 0.

We now use the Fourier transform: since f, ϕε ∈ L1(R), we can use the properties the Fourier

transform with respect to convolution and dilations to obtain that for all ξ ∈ R

F(f ∗ ϕε)(ξ) = f̂(ξ)ϕ̂ε(ξ) = f̂(ξ)ϕ̂(εξ) ≥ 0.

Since f̂ is bounded as Fourier transfom of an L1-function and ϕ̂ is a Gaussian (in particular

ϕ̂ ∈ L1), we have that f̂ ϕ̂ε ∈ L1(R) . We can thus apply the Fourier inversion in order to get

for every x ∈ R
F−1(f̂(ξ)ϕ̂(εξ))(x) = (f ∗ ϕε)(x).

Evaluating in x = 0 gives ∫
R
f̂(ξ)ϕ̂(εξ) dξ = (f ∗ ϕε)(0).

It now follows from Fatou’s lemma (using that ϕ̂(0) =
∫
ϕ(y) dy = 1) that

||f̂ ||L1(R) =

∫
R
f̂(ξ) dξ ≤ lim inf

ε→0

∫
R
f̂(ξ)ϕ̂(εξ) dξ = lim inf

ε→0
(f ∗ ϕε)(0) = f(0),

hence f̂ ∈ L1(R).

(ii) Just take the indicator function of [-1,1]. Its Fourier transform is sin(2πξ)
πξ which is not

Lebesgue integrable.

Exercise 4. Consider the 1-dimensional wave equationutt(x, t)− uxx(x, t) = 0 (x, t) ∈ R× (0,∞)

u(x, 0) = g(x), ∂tu(x, 0) = h(x) x ∈ R .

with g, h ∈ L2(R).

(i) Find, formally, a representation formula for u .
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(ii) Assume that u ∈ C2(R× (0,∞)) such that u(·, t) has compact support in space for every fixed

time t > 0 and that g ∈ C1
c (R) and that h ∈ Cc(R) . Define the total energy at time t, that is

the sum of the kinetic energy and the potential energy,

E(t) :=
1

2

∫
R

(ut(x, t))
2 + (ux(x, t))2 dx

for t ≥ 0. Show that E(t) = E(0) for t > 0.

(iii) (?) Under the assumptions of (ii), show that asymptotically as t → ∞, the total energy splits

equally into its kinetic and potential parts; that is

lim
t→∞

∫
(ux(x, t))2 dx = lim

t→∞

∫
(ut(x, t))

2 dx = E(0).

Hint: Show that for every f ∈ C∞c (R) , it holds

lim
t→∞

∫
R

cos(t2π|ξ|) sin(t2π|ξ|)f(ξ) dξ = 0 . (10)

Solution:

(i) We have already seen in class that

u(x, t) =
1

2

(
g(x+ t) + g(x− t) +

∫ x+t

x−t
h(y)dy

)
.

Let’s use a different technique than the one from class to derive this formula.

We begin with a formal derivation of the representation formula. In order to solve the PDE,

we will apply the Fourier transform with respect to x, denoted by Fx and we treat t as

parameter, i.e.

û(ξ, t) = Fx(u)(ξ, t) =

∫
R
u(x, t)e−2πixξ dx.

Notice that if we assume smoothness and decay at infinity of the second derivatives, we have

that

Fx(∂xxu)(ξ, t) = (2πi)2ξ2F(u)(ξ, t) = −(2πξ)2û(ξ, t)

Moreover, by dominated convergence we also have that

Fx(∂ttu)(ξ, t) = ∂ttû(ξ, t).

Thus, when applying the Fourier transform to the equation, we formally getûtt(ξ, t) + (2πξ)2û(ξ, t) = 0 (ξ, t) ∈ R× (0,∞),

û(ξ, 0) = ĝ(ξ), ût(ξ, t) = ĥ(ξ) ξ ∈ R.

Note that the PDE above only depends on derivatives in t. Thus, for each ξ the first PDE
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above is actually an ODE with respect to t and the solution is given by

û(ξ, t) = ĝ(ξ) cos(t2π|ξ|) +
ĥ(ξ)

2π|ξ|
sin(t2π|ξ|).

Applying the Fourier inversion, we formally get

u(x, t) = F−1x

[
ĝ(ξ) cos(t2π|ξ|) +

ĥ(ξ)

2π|ξ|
sin(t2π|ξ|)

]
(x, t).

which one can check gives

u(x, t) =
1

2

(
g(x+ t) + g(x− t) +

∫ x+t

x−t
h(y)dy

)
.

(ii) • Assuming that u ∈ C2(R2× (0,∞)) , we can differentiate E with respect to t : exchang-

ing the order of integration and differentiation (see below), using the equation that

u solves and integrating by parts (boundary terms vanishes because of the compact

support)

d

dt
E(t) =

1

2

∫
Rn

2ututt(x, t) + 2ux(x, t)∂tux(x, t) dx

=

∫
Rn

ut(x, t)uxx(x, t) + ux(x, t)∂tux(x, t) dx

=

∫
Rn

−∂xut(x, t)ux(x, t) + ux(x, t)∂tux(x, t) dx = 0.

Thus, E(t) = E(0) for t > 0.

• Why can we exchange the order of differentiation and integration?

We want to show that for all t > 0,

d

dt

∫ ∞
−∞

F (x, t)dx =

∫ ∞
−∞

∂tF (x, t)dx

where F (x, t) = (∂tu(x, t))2 + (∂xu(x, t))2.

Fix t > 0. Note that it is enough to show:

(*) There is a compact set K ⊂ R such that the function x 7→ F (x, τ) is supported in

K for all τ ∈ (t/2, 3t/2).

We can then apply the dominated convergence theorem.

Now let’s show (*). For this, we use that the general solution to the wave equation is

u(x, t) =
1

2

(
g(x+ t) + g(x− t) +

∫ x+t

x−t
h(y)dy

)
and we assume g, h are compactly supported in say [−R,R]. We have

∂tu(x, t) =
1

2

(
g′(x+ t)− g′(x− t) + h(x+ t) + h(x− t)

)
.

Therefore, ∂tu(·, τ) is supported in [−R−3t/2, R+3t/2] for all τ ∈ (t/2, 3t/2). Similarly,
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we can make the same claim for ∂xu.

• For an alternative proof, one could use the representation formula derived formally in (i)

and observe that under our assumptions, the representation formula holds pointwise.

The conservation of the total energy can then be proven using this representation

formula and Plancherel. Indeed,∫
R

(ux(x, t))2 + (ut(x, t))
2 dx =

∫
R

(2πξ)2(û(ξ, t))2 + (∂tû(ξ, t))2 dξ

=

∫
R

(2πξ)2(ĝ(ξ))2[cos2(t2π|ξ|) + sin2(t2π|ξ|)]

+

∫
R

(ĥ(ξ))2[sin2(t2π|ξ|) + cos2(t2π|ξ|)] dξ

=

∫
R

[
(2πξ)2(ĝ(ξ))2 + (ĥ(ξ))2

]
dξ

=

∫
R

[(gx(x))2 + (h(x))2] dx

= E(0) .

(iii) By (ii), it is enough to prove that

lim
t→∞

∫
(ux(x, t))2 dx = E(0) .

First of all, notice that by Plancharel and by the representation formula found in (i), we

have ∫
R

(ux(x, t))2 dx =

∫
R

(2πξ)2(û(ξ))2 dξ

=

∫
R

(2πξ)2(ĝ(ξ))2 cos2(t2π|ξ|) + (ĥ(ξ))2 sin2(t2π|ξ|) dξ

+

∫
R

2π|ξ| cos(t2π|ξ|) sin(t2π|ξ|)(ĥ(ξ)¯̂g(ξ) + ĝ(ξ)
¯̂
h(ξ)) dξ .

We claim that

lim
t→∞

∫
R

cos(t2π|ξ|) sin(t2π|ξ|)(2π|ξ|)(ĥ(ξ)¯̂g(ξ) + ĝ(ξ)
¯̂
h(ξ)) dξ = 0 , (11)

lim
t→∞

∫
R

(2πξ)2(ĝ(ξ))2 cos2(t2π|ξ|) dx =
1

2

∫
R

(2πξ)2(ĝ(ξ))2 dξ , (12)

lim
t→∞

∫
R

(ĥ(ξ))2 sin2(t2π|ξ|) dξ =
1

2

∫
R

(ĥ(ξ))2 dξ . (13)

The claim of (iii) then follows from (11)–(13) and Plancherel. We first prove (11). We prove

in fact that for every f ∈ C∞c (R) , it holds

lim
t→∞

∫
R

cos(t2π|ξ|) sin(t2π|ξ|)f(ξ) dξ = 0 . (14)

Observe however that

(2π|ξ|)(ĥ(ξ)¯̂g(ξ) + ĝ(ξ)
¯̂
h(ξ)) ∈ L1(R) . (15)
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Indeed, note that due to Plancherel’s identity, (2πξ)ĝ ∈ L2(R) (since ∂xg ∈ Cc(R) and hence

∂xg ∈ L2(R)) and ĥ ∈ L2(R) (since h ∈ Cc(R) and hence h ∈ L2(R)), and thus we can easily

deduce (15) from Hölder’s inequality. We now deduce (11) from (14) by approximating the

L1 function (2πξ)(ĥ(ξ)¯̂g(ξ) + ĝ(ξ)
¯̂
h(ξ)) by C∞c -functions (recall that C∞c is dense in L1!).

Indeed, assuming (14) and using the density, we have that for any ε > 0, there is f ∈ C∞0 (R)

such that ‖(2π|ξ|)(ĥ¯̂g + ĝ
¯̂
h)− f‖L1(R) < ε. Then∣∣∣∣∫

R
cos(t2π|ξ|) sin(t|2πξ|)2π|ξ|(ĥ¯̂g + ĝ

¯̂
h) dξ

∣∣∣∣
≤
∫
R
| cos(t|2πξ|) sin(t|2πξ|)|2πξ|(ĥ¯̂g + ĝ

¯̂
h)− f | dξ +

∫
R

cos(t|2πξ|) sin(t|2πξ|)f dξ

≤ ‖(ĥ¯̂g + ĝ
¯̂
h)− f‖L1(R) +

∫
R

cos(t|2πξ|) sin(t|2πξ|)f dξ

Since the last term goes to 0 as t→∞, we deduce

lim sup
t→∞

∣∣∣∣∫
Rn

cos(t|2πξ|) sin(t|2πξ|)|2πξ|(ĥ¯̂g + ĝ
¯̂
h) dξ

∣∣∣∣ ≤ ε
and since ε > 0 was arbitrary, we conclude (11) assuming (14). Finally, we prove (14). For

f ∈ C∞c (R),∫
R

cos(t2π|ξ|) sin(t2π|ξ|)f(ξ) dξ =
1

2

∫
R

sin(2t(2π|ξ|))f(ξ) dξ

=
1

2

∫ ∞
0

sin(4πtξ)(f(ξ) + f(−ξ)) dξ

= − 1

8πt

∫ ∞
0

d

dξ
(cos(4tπξ))(f(ξ) + f(−ξ)) dξ

=
1

8πt

∫ ∞
0

(cos(4tπξ))(f ′(ξ)− f ′(−ξ))dξ.

where the last equality follows from integration by parts. Since f ∈ C∞c , there is a constant

C such that ∣∣∣∣∫
R

cos(t|2πξ|) sin(t|2πξ|)f(ξ) dξ

∣∣∣∣ ≤ C

t
.

Thus, we deduce (14).

As for the claim (12), it follows from trigonometric identities that

cos2(t2π|ξ|) =
1

2
[cos(2t(2π|ξ|)) + 1]

and therefore∫
R

(2πξ)2(ĝ(ξ))2 cos2(t2π|ξ|) dξ =
1

2

∫
R

(2πξ)2(ĝ(ξ))2 [cos(2t(2π|ξ|)) + 1] dξ .

Proceeding exactly as before, we show that the t-dependent contribution in the integral

10



vanishes as t→∞ and we find

lim
t→∞

∫
R

(2πξ)2(ĝ(ξ))2 cos2(t2π|ξ|) =
1

2

∫
R

(2πξ)2(ĝ(ξ))2 dξ

as claimed. We proceed analogously to prove (13).
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