Serie 12
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course. The
exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as
such they are non-examinable.

Exercise 1. Let 6 € [0,27). For r € (0,1) and N > 1 we define

r" cos(nh)

Mz

n=1

(i) Show that the sequence {Sy}nen converges pointwise to a function S in (0,1). Compute S
explicitly.

(ii) For r € (0,1) and n > 0, deduce, by means of Fourier series, the value of

m cos(nb)
I,(r) = de
(r) /0 1 —2rcos(8) + 12

Solution:

(i) Notice that [r™ cos(nf)| < r™ and that >, ;7" < +00 when r € (0,1). Therefore, the se-
quence of real numbers {Sy(r)} n converges for every r € (0, 1) (the series actually converges

absolutely), which means that we can define the function S as follows:

r) = Z r" cos(nf)
n=1

Recall that the real part operator & : C — R is linear and hence continuous. Therefore we

have :

Z rm m@ <Z(r6i9)n>

1 —19
L )
1—reif 1— 2r cos(0) + r2
1
2

_rceos(f)—r* 1 1—r?
1 —2rcos(f) +r2 21— 2rcos(f) + r2

_l’_




and thus
1—1r2

25(r) = —1
S(r) Ry cos(0) +r?

(ii) For r € (0,1), let us consider the 2w-periodic function given by

B 1—7r?
1 —2rcos(f) +r2’

f(0)

The previous question shows that this function is actually equal to :

oo
FO) =142 1" cos(nb).
n=1
which is actually the Fourier expansion in cosines of f (it makes sense since f is even). We
can identify the coefficients: ag = 2 and a,, = 2r™ for n > 1. and use the explicit formulae

for this coeflicients :

1 2m
an = / f(0) cos(nf)dh, Vn >0
T Jo
to obtain ) )
1 [ 1—r
— df = ag =2
T /0 1 —2rcos(f) + r? a0
and

2m .2
1/ (1 —7¢)cos(nh) 4= a, = 27"
wJo 1—2rcos(6)+r?

which yields

Exercise 2.

(i) Find formally, using Fourier series, the solution u = u(z,t) to the initial value problem

Up — Ugy = U (z,t) € (0,7) x (0,00),
u(z,0) = f(x) x € (0,m),
uz(0,t) = ug(m,t) =0 t>0.

(i) Show that if f € L!(0,7), then the function u obtained in (i) belongs to C°(]0,7[x]0, co]).
Actually, one can show that u € C*°(]0, 7[x]0, oo[) but we don’t prove it.

(iii) Let f : R — R be 2m-periodic and even. Discuss under which assumptions on f the function u
found in (i) satisfies

limu(z,t) = f(x) uniformly inx .
t—0

In particular, observe, recalling (ii), that these assumptions guarantee that v € C°(]0, 7[x[0, col).



Solution:

(i) Step 1:

The general way to find formally a solution of a PDE is to write u(z,t) = Y,z cr(t)e™®
(notice that every function u(x,t) can be written in this way, assuming for instance that
u(-,t) € L? for any t) where ¢; : R — R are functions depending on time to be determined
and f(z) = Y,z fre™™. Plugging into the equation u(z,t) and formally commuting the

sum with the derivatives (0; and d,x) we have

Z Dycr(t)e™ + k2c (1) e — cp(t)e™™ = 0
k

and the last is true if and only if ¢x(t) solves the following ODEs

%Ck = —k?QCk + Cck
cr(0) = fx

for any k € Z. And one can solves explicitly the ODE obtaining that cx(t) = e(l_kZ)tfk
for any k € Z. One can use the formula for ay,b; (the one for the basis with sinus and
cosinus) from ¢ or directly get the ODE for those coefficients from the PDE. If one would
rigorously justify that the solution found is a solution to the PDE one would have to verify
that u(z,t) =", e(@=Ft £, is such that

e due 00 9pu e C?and ue CY,

e we commute the derivative with the sum, namely
g2 .2
Oy = 0TI,
k k

and the same for 9, and O,

o lim; ,ou(t,z) = f(x) uniformly in x (which is the notion you gave in class to get the

initial datum)

e 0,u(0,t) = Oyu(m,t) for any ¢t > 0 (which in general is not possible in the sense that
the formal solution found does not have this property. For instance, in this example
you can verify formally that 9,u(0,t) = du(m,t) for any ¢ > 0 holds if f € L! and it is

even)

The other method is using the separation of variables. We ignore the initial condition:
u(z,0) = f(z),z €]0, ] and focus on the two other equations. We use separation of variables
and make the ansatz

u(x,t) = v(x)w(t).

The first equation then rewrites as v(z)w'(t) — v"(x)w(t) = v(x)w(t) for all (z,t) € (0,7) X
(0, 4+00), which we can rewrite (provided that the denominator is non-zero) as

V" (z) _ w'(t) — w(t)
v(x) w(t)

V(x,t) € (0,7) x (0,+00) .




(i)

The latter can hold if and only if there exits A € R such that

=-A=—"—"—> V(z,t) € (0,m) x (0,+00).
This allows us to transform the first and third equations of our PDE in the two ODE’s

v"(x) + Mv(x) =0 forall z € (0,7),

v'(0) =o' (m) = 0, W

and
w'(t) = —(\—1Dw(t) forallt>0. (2)

Recall that the eigenvalues of (1) are A\, = n? and the eigenfunctions are v, (z) = cos(nz)
for n > 0. When A = \,,, (2) is solved by wy,(t) = e~ (?=1)t, Thus, for all n > 0

Un (2, 1) = vn()wn () = cos(nz)e™ 7"~V

solves the first and third equation of our original PDE. Since any linear combination of

solutions is also a solution as well, the general solution is given - formally - by
a = 2
u(z,t) = et + Z ay, cos(na)e” (W D (3)
2
n=1
where a,, are some constants. Observe that this solution is only a formal solution, since we

did not discuss the convergence of the infinite series.

Step 2: We extend f to an even function on (—m,7) by setting

. x if x s
S S @
f(=x) ifxe (—m0).

Observe that f(z) = f(z) for z € (0,7) and writing the Fourier series of f in cosinus, we

deduce that if we set o [
ap, = / f(x)cos(nz)dx, n>0,
T Jo

then formally, for ¢ = 0, u coincides with the Fourier series of f , which formally, coincides
with f pointwise and hence in particular with f(z) for = € (0, 7). Hence with this choice of

the coefficients, (3) formally solves our PDE.

If f € L'(0,7), then f € L'(—m,7) and by Riemann-Lebesgue there is a constant a such
that |a,| < « for all n > 0. Thus,

an cos(n:n)e_(”z_l)t <ae” Dt >0,

Let t9 > 0. Using the above bound, it is easy to see that when (z,t) € (0,7) X (tg, +00), the

series (3) converges uniformly and absolutely. In particular, u € C°(]0, 7[x]0, c0]) .




(iii) Since f is even, we have the Fourier series of f on [—m, 7| is given by

Ff(x):= % + Z ap, cos(nw)

for a,, = fo ) cos(nz) dz . Using the formal solution (3) found in (i), we have that
a = ( 2 )
_ t —(n“—=1)t
u(z,t) — f(z) = > (e"=1) + E_l ap, cos(nw) (e - 1) . (5)

Solution 1: f € C*(R).
If f € C*(R), we have that a, = O(n~*) and hence there exists a constant 7 such that

an Sl, n>1.
lan] < —
n

Recalling that 1 — e™™ < x for x > 0, we estimate

0§’*<n2*1 1’—1 et < (02 1) n>1.

We deduce

lu(z,t) — f(z)] <t

a
|°|+Z\an\ (n —1]

which proves lim;_,o u(z,t) = f(z) uniformly in x € [0, 7].

Solution 2: f € CH¥(R).

If f € CH*(R) for some 0 < a < 1 (that is f € C1(R) and f’ € C*(R) - this is for instance
guaranteed if f € C%(R)), then a, = O(n~+%)) and hence there exists a constant + such
that

Y
]an|§n1+a, n>1. (6)

In particular, the series

= +oo
—(n2-1)t _ _ Y
nz—:l ay, cos(nx) <€ 1) Z a, cos(nx) (1 e )

n=1

converges absolutely, uniformly in ¢ € [0,1]. Hence, we can exchange the limit and the

summation and we deduce that

2
lim — ) (1 —e —W) =0.
tlI% < (07%% COS(?’L.Z') € 0

Hence, recalling (5), we have the pointwise convergence

limu(z,t) = f(x).

t—0




To show that the convergence is uniform in = € [0, 7], we fix ¢ > 0. Using the triangular

inequality, (5) and (6), we estimate, for a NV > 1 yet to be chosen,

N-1 oo
|ao| N 1 1
fue,t) = f@)] < T = D) (1= eV BTy 3
n=1 n=N

We now choose N = N(g,v) > 1 large enough such that
=1 €
20) <3
n=N

Now, we choose tg = to(N, ) > 0 small enough, such that for all 0 < ¢ < ¢y

laol , C(N2-1)t =
ol — 1y 41— ey 3 L
n=1

| ™

2

In particular, we have shown that for all 0 < ¢t < tg, it holds |u(x,t) — f(x)| < e for all

x € [0, 7], hence the convergence is uniform on [0, 7] .

Exercise 3. We define the Schwartz space S (R) to be set of functions f € C* (R) such that for all
k,l e N
sup {‘mk’ ‘f(l) (x)’} < 00.
z€R
(i) Show that the function f(z) = e~ belongs to S (R).
(ii) Show that C2° (R) C S(R) C LP(R) for 1 < p < 0.

(iii) Show that if f € S (R), then f € S (R).

Solution:

(i) One can show easily by induction that any derivative f()(z) takes the form

2

Fi(z)e™
where P} is a polynomial of degree [. Thus, in order to conclude we need to prove that

> (12 £ ()]} = sup{la* Alx)e ]} < o

z€R

To do this, it suffices to show that the function z — z¥Pj(z)e™*" goes to 0 as |z| = co. One

can use de I’Hopital’s rule to do this.
(ii) The first inclusion C° (R) C S (R) is obvious because for any function f € C° (R), f® is

bounded by some C) and the support of f is contained in some ball of radius R. Thus,

suﬁ{‘xk‘ ‘f(l) (x)‘} < OR* < .
ze




It is also trivial that S (R) C L*° (R). It only remains to prove S(R) C LP(R) for p € [1, 00).
If f € S(R), we know that there is a constant C' such that

sup(1 +2?)| f(z)| < C.
z€R

It follows that

P (1+2?)|f ()] [ 1 acor [ gc
/|f )|P da /R 11 dzx < C /IR(1+x2)pd <C /R(lJFxQ)d < 0.

(iii) For k,l € N, using the properties of the Fourier transform with respect to differentiation and

multiplication (see for instance Exercise 5), we get

¢ (4 Fo =t

with

1 (d\" .
o) = e (52 ) [(-2nio)' o))

Since f € S(R), we also have g € S (R) C L*(R). Finally,

sup {‘5 (&) 7o ‘} — gl < lglos < o

and therefore f € S (R).

Exercise 4. The inequalities of Wirtinger and Poincaré establish a relationship between the L?-norm

of a function and the one of its derivative.

(i) If f is T-periodic, continuous and piecewise C with fOT f(t)dt =0, show that

2 12 I 2
/0 ’ ()| = 92 0 ’ ()| )

with equality if and only if f(t) = Acos(27t/T) + Bsin(2nt/T).

(i) If f is as above and g is just C' and T-periodic, prove that

[Frsoa] < 5 ([Crora) ([[dora).

(iii) For any compact interval [a, b] and any continuously differentiable function f with f(a) = f(b) =

0, show that
/f oRa < /f (t)P dt.

Discuss the case of equality, and prove that the constant (b — a)?/7? cannot be improved.

Hints:



e For (i), apply Parseval’s identity.

e For (iii), extend f to be odd with respect to a and periodic of period T' = 2(b — a) so that its

integral over an interval of length 7" is 0. Apply (i) to get the inequality and conclude that the

equality holds if and only if

F(t) = Asin G(;:Z)) .

Solution:

(i) Observe that it is enough to prove the claim for T' = 1 (otherwise, consider f(x) := f(x/T)).

Since fo t)dt =0, ap = 0 and hence the Fourier series of f is of the form
o
Z ay, cos(2mkt) + by sin(27kt)] .
k=1
Using Parseval’s identity, we get
1 00
2 [ IO =Y (at + 1) 7
0 k=1
The Fourier series of f’ is given by
o
Z 2mkby, cos(2mkt) + 2mkay, sin(2wkt)] .
k=1

Note that the coeffcients of this Fourier series were not obtained by differentiating the Fourier

series of f. Indeed, to find the Fourier series of f’ as above we integrate the quantities

/ f'(z) cos(2mz) d / f'(z) sin(27rz) da

by parts. Again, by Parseval’s identity,

1 00
2 [0 = Y (emkR el + ). (8)
k=1

We conclude

1 1

)2 2( P

[ e = Z Zk =gz [ IF0FE )
It is obvious that the previous inequality is an equality if and only if a = by = 0 for all
k > 2, i.e there is A(=a1) and B(= by) such that f(¢) = Acos(27t) + B sin(27t).

Again, it suffices to prove the claim for T = 1 (otherwise consider f(z) := f(x/T) and
g(x) := g(x/T) .Define the function go: [0,1] — R by




(iii)

so that gg is continuous, C! and 1-periodic (since g is) and moreover

1
/0 o)t =0 and  gh(t) = g'(t).

From (i), we have

1 1
|go(t)|2d75§/| (02 dt = /\g (1) dt.
/0 472 0

From Hoélder’s inequality, we have

[ 7m0 = ([ ) ([ )= & ([ o) ([ o)

In addition, by construction of gy and by the hypothesis on f

/olf(t)g(t) dt = /Olf(t) <go(t) +/019(s) ds) = /Olf(t)gO(t) dH/olf(t)dt/olg(s) *

=0
= /Olf(t)go(t) dt
We deduce ) ) )
<oz ([ ropa) ([wopa) .
Define h: [~ (b — a), (b — a)] = R by

(10)

W) = fla+t) if t € [0, (b —a)],
—fla—1t) ifte[—(b—a),0].

Observe that h is a continuous and odd function with respect to 0 because f is continuous
with f(a) = f(b) = 0. We can extend it to a 2(b — a)-periodic function on R (which we
identify with h). Since h is an2(b — a)-periodic and odd function, we have

2(b—a) (b—a)
/ h(t) dt = / h(t) dt = 0
0

—(b=a)

so that from (i) we deduce

2(b—a) N2 r2(b—a)
[ e <SS [T wopa. (11)
0 ™ 0

It is easy to see that this equivalent to

b 2 b
/f(t)|2dt§( @) /f’(t)]th.

Finally, we show that the constant cannot be improved. We know from (i) that the inequality




(11) is an equality if and only if i takes the form

h(t) = Acos <(b7ita)> + Bsin (&) .

However, by construction, the function h is odd with respect to 0 which implies that A = 0.

f(t) = Bsin <W<Z:Z>>

for some B. In particular, the constant cannot be improved.

Therefore,

Exercise 5. Let f,g € L'(R) and consider the Fourier transform of f given by

—~ ‘ N .
F(f)E) = f(&) = /Rf(x)e_QMEI dr = lim /_Nf(m)e—%l&l’ dz.

N—oo

Notice that the last equality holds due to the dominated convergence theorem. We already know from

previous series that
° J?iS well-defined,
o [Ifllzee <[ fllLrs

~

o limg o0 [f(§)] =0 and

e f: R — C is continuous.

Prove the following properties:
(i) Linearity. For any a,b € R we have F(af + bg) = aF(f) + bF(g).

(ii) Translation. If a € R and h(x) := f(z + a), then
F(h)(€) = T F(f)(€) VEER.

(iii) Scaling. If a > 0 and h(x) := f(ax), then

Fy© = 70 (£) veer

(iv) Fourier transform of the derivative. If, in addition, f € C'(R) and f’ € L*(R), we have
F(f)(€) = 2misF(f)(§) VEER.
More generally, if f € C™(R) and f*) € L'(R) for all k = 1,...,n, then

F(FM)(€) = @mi&)"F(f)(&) VEER.

Hint: Use without proving it the following fact : for any function f € C' N L' such that f’ € L',

we have limg_,o |f(2)] =0.

10



(v) Derivative of the Fourier transform. If, in addition h(z) := zf(z) belongs to L'(R), then
the Fourier transform F(f) of f is differentiable and

F(f)(€) = —2miF(h)(§) VEER.
More generally, if h;(z) := ! f(x) belongs to L'(R) for some [, then
F(HVE) = (=2mi) F(lu)(€) VEER.

(vi) Product. We have that
| Falga)de = [ @) ds.
R R

Solution:

(i) The linearity follows from the linearity of the integral. Indeed,

Flaf +bg)(§) = /R(af(x) + bg(z))e ™ dz = a /R f(x)e 2™ dg + b/IR{g(x)e_%m£ dx
= aF(f)(§) +bF(9)(E).

(ii) First notice that for any ¢ € L'(R) we have

/go(:v)dx:/gp(m—i—a)dx Va € R. (12)
R R

Indeed, the equality above is easy to prove for step functions. Subsequently, one can consider
a general non-negative measurable function, approximate it by step functions and conclude
with the monotone convergence theorem. For a general integrable function, we split into into
positive and negative parts and we conclude (12) by applying the result for non-negative

measurable functions to the positive and negative part. We obtain,
—2milx (12) —2mif(z—a Tia
FE) = [ fa+a)e = dn @ [ flape e ap = SR ().

(iii) Proceeding as in (ii), we can prove that for any ¢ € L!(R)

1
/Rgo(a;c) dx = /Rgo(ac) dx Va > 0. (13)

a

We then obtain

F) = [ flam)e i dn @ 2 | pa)etnih do = SF()e/a).

(iv) By the hint, limz_,o | f(z)| = 0. In particular, for any € > 0 there exists N such that for all
x > N, we have |f(z)| < e. Thus, integrating by parts, we obtain, for all N > N,

/ f/(;p)e_%rz&v dr = (f(x)e—Qmﬁzv)‘J_VN + / 27Ti§f(m)e_2m£$ do .

11



Therefore, we obtain

N . N .
'/ fl(x)e 2™ dg — 27m'§/ f(2)e 2™ dx| < 2. (14)
-N —-N

Since f, f’ € L'(R), we get, due to the dominated convergence theorem,

N—oo

N
F(HE) = /Rf(x)ez’”fm dr = lim /_N F@)e2™E g,
N

FUN© = [ f@esar= tm [ s i

N—o0 —N

Therefore, letting N — oo in (14), we have

< 2e.

/ f’(x)e_%”fx dx — 27m'§/ f(x)e_%”fx dx
R R

Since € > 0 was arbitrary, we conclude F(f’)(§) = 2mi&F(f)(&).

Now, we prove the general result by induction. Assume it holds for some n and prove it for
n+1. Let f € C""(R) and f*) € LY(R) for all k = 1,...,n + 1. Then, since the result
holds for n,

F(F)(€) = 2mie)"F(f)(€) = (2mi&)" ' F(£)(£),
where the last equality follows from the case n = 1 which we already proved.

We will prove that for every £ € R we have

~ ~

This proves both the differentiability of f and the claimed formula for its derivative. Let
€ > 0 be arbitrary. We have

~ ~

fE+¢e) = 1)

e

R . —2miex __
+ 2mih(€) = / f(z)e2mice [eg + 2mix| dx.
R

Notice that

—2miex
e -1
‘ < 27|z|
€
and .
e—2max _
lim [ — 277@'56] =0
e—0 g

pointwise. In order to be able to apply the dominated convergence theorem, notice that by

assumption

o e 2miex _ q
‘f(x)e 2rita [ < drlaf(2)] = dlh(a)] € L\(R).

+ 2711'3:}
€

12




By the dominated convergence theorem, we get,

672771‘53: -1

lim [ f(x)e 2 [ + 2miz | dx =0,
e—0 R g

which proves the result.

Now, in order to prove the formula for higher order derivatives, we use an induction argument.
Assume by induction that the formula holds for some [ and prove it for [+1. We assume that
hiy1 € LY(R). In order to apply the formula for I, we need to make sure that h; € L!(R).
Indeed,

l _ [ l
LMAMM—AQMWMM+AMMW@M
[+1
gﬁmwmm+ﬁmm (@) da < o

Thus, using the induction hypothesis and the case [ = 1 that we already proved, we have

d

-HN“@—%FWWQ—QN%WHMQ](%Q

= (=2mi) TV F (hy ) (€).

1 d

e

(vi) First of all, notice that both integrals are finite and well-defined because f,g € L' and
]?, g € L. More precisely, we have

/ f(x)g(z) dz = /R < /R fly)e 2™y dy> g(x)dx
[ rwawan= [ 1) ( [ atwre>vac) ay.

In order to prove the result we will use Fubini’s theorem. However, we first need to show
that the function

and

(z,y) = f(y)g(z)e > Y

is integrable on R2. Indeed, by Tonelli’s theorem

st aw = [ 1wl = ( [11olar) ([ 1rolse) )

= £l @llgllrg) < oo

13




Thus, using Fubini’s theorem, we obtain

[ i (s

— / f(w)e 2™y () d(z, y)
RQ

- /R f(w) ( /R g()e2mioy dm) dy

- / F)3) dy.
R

Exercise 6. Let f € C'(R) N LY(R) such that f' € L'(R) and Vz € R, f/(z + 1) = f(x). Prove that
f(z) =0,Vz € R.

Solution: Using the point (iv) of previous exercise, we know that f! (&) = 2mi& f (&) . Moreover,

using the point (ii) of previous exercise, we also know that f(&) = 2™ f/(¢) . Therefore you have

F(€) = 2mice®™ € f(£),VE € R
— f(&) =0, ae.
— f(x) =0, a.e. because f € L' so we can apply inverse Fourier transform
— f(x) =0, Vz € R, because f is continuous

Note : The second to last implication shows that the Fourier transform is actually an injective
linear map from L!(R) to L}(R).

Exercise 7. The following exercise illustrates the principle that the decay of f is related to the
continuity properties of f. You have already seen similar results for Fourier coefficients.

We define a function of moderate decrease as a function f : R — R such that Vo € R |f(z)| < A

1422
for some consant A.

A~

(i) Suppose that f : R — R is a function of moderate decrease whose Fourier transform f is

continuous and satisfies :

fe)=o0 (K,L) as |€] = o0

for some 0 < o < 1. Prove that f satisfies a Hlder condition of order «;, i.e.

|f(z+h)— f(x)] < M|h|*, for some M > 0 and Vz,h € R

(ii) Let f: R — R be a continuous function which vanishes for |z| > 1, with f(0) = 0, and which is
equal to 1/log(1/|x|) for all z in a neighborhood of 0. Prove that there is no o > 0 such that

£(&) = O(1/|¢]M) as |¢] = .

14



Solution:

(i) Since a > 0, f € L' and we can apply the Fourier inversion formula to get

/ f 271'1{:(; df, Vo —> f(x—i—h / f 27rz§x 27rz§h )d& Vo

Let’s further notice that 7" — 1 = emith(emith _ e=mith) = 9jemith gin(néh) = |e?mith —
1| = 2| sin(w&h)| so

fx+h)— ‘ / Ale?migh 1 gt
he TRl o T
4A [ |sin(m&h)]
< d
<y T
4A [ |sin(u)]
S LS
v 0 \h\l"'a—i-ul"‘o‘ v
sin(u)
A [ (YT © 1
< — —du d
- ue +/1 plto u
4A 1
§7T(/ du—l—/ u1+adu>
< o0
(ii) We have Va > 0 fixed :
[f(h) — FO)] _ 1
e T ZJhlog [A] i >

so f is not a-Hlder continuous for any o > 0. Since f is of moderate decrease (it is
continuous on R and vanishes at oo), f cannot verify the stated condition, or otherwise it

would contradict the first question.

Exercise 8. Prove that if f : R — R is continuous, of moderate decrease, and such that
o0 2
/ f(x)e ™ 2™ dx =0
—0o0
for all y € R, then f=0.

Hint : Think of convolutions and gaussian kernels

Solution: Let g(z) = e~". Then Vx € R:
0= [ s s e [ et o

This implies that m@) = f(6)§(€) = f(&)/me ™ =0, V¢ € R which in turn implies that

f =0 ¢ L'. By Fourier inversion formula, we can conclude that f = 0.
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Exercise 9 (x). Whereas it is easy to construct a continuous function which is not differentiable on
a finite or even countable set, the question of whether or not there exists a nowhere differentiable, yet
continuous function is much harder. The first example of such a function was given by Weierstrass in
1872.

Let’s discuss here a slightly different example. The crucial feature of both examples is that the

Fourier series skips many terms, we call such Fourier series lacunary. Let 0 < o < 1 and define

[eS)
_ § :2—no¢ei2":c
n=0

It is clear that f, is l-periodic, continuous (since the series converges absolutely) and recall from
Exercise 2 of Serie 11 that f, € C“. Prove that f, is differentiable nowhere.

Hint: Find an expression of Sy f(z) in terms of the Cesaro means for N = 2"~! and find a lower
bound on |(Senf) (z0) — (Snf)'(z0)|. Show that this lower bound is not compatible with f being

differentiable in x.

Solution: By contradiction, assume that f is differentiable in zg. For N € N we denote by

1

Oy f(r) = N

the Nth Cesaro mean. We proceed in 3 steps.
Step 1: For N = 2"~ we can write Sx f(z) = 2®an f(z) — Pnf(2).
Indeed, observe that Sy f(z) = Son-1f(x) = Sp.f(z) Yk € [N,2" — 1] due to the lacunary Fourier

series. Thus,

2N—-1

Snf(a Z Sif(x

2N-1 N—
Z Sif (@ Z

2N—-1

1 fv
N Z Skf(x N Z
=20yn f(x) — PN f(2).
Step 2: For N = 2"~ Sonf(z) — Sy f(z) = 27"%2"* and hence
|(Son f) (20) — (SN f) (z0)] = 27172 > eN'™  for some ¢ = ¢(a) > 0. (15)

Observe due to the lacunary Fourier series that Sax f(z) — Sy f(z) = 2"%?"® and the righthand

side is differentiable in zg with derivative
(S ) (20) = (S f) (o) = 2"1-e'e = Ni-agi-a)ei’s,

Thus, taking ¢ = 217 gives the result.
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Step 3: Using Step 1 and the differentiability of f in xo, we find a contradiction with Step 2.

From the equality we established in step 1, we have

SQNf(x) — SNf($) = 2‘1>4Nf(x) - 3‘I>QNf(CL") + @Nf($). (16)

Recall from Exercise 1 of Serie 9 that

s

(@ N f)(0) Z/ Fn(xo —1t)f(t)dt,

—T
where F)y is the 27-periodic version of the Fejer kernel. In particular, this means that

T s

@) = [ Fila— 050 dt = [ Fic (o -ty

—Tr —Tr

Since Fly is 2m-periodic
/ Fy(t)dt =0
—T

and therefore .

(®nf) (2z0) = / FA () (f(zo —t) — f(x0)) dt.

-
Now, we prove that there is C' > 0 such that

[(@nf)(z0)l <C [ |[Fy(B)l]t] dt. (17)
Since we assume f to be differentiable in xq, there is £,0 > 0 such that |f(zo —t) — f(xo)| < elt]
for all ¢ such that |t| < §. For any ¢ such that [t| > 9,

2[| fll e
0

|f(zo —t) — f(wo)] < 2| fllLe < It].

Taking C' = max{e, 2||f||ze/d}, gives (17). Now we prove that there is A such that

A
|FA (1) < AN?  and  |Fi(t)] < B Vt € -7, 7).
For the first inequality, recall that Fiy is a trigonometric polynomial of degree IV whose coefficients
are less than 1. Thus the derivative F'}; is trigonometric polynomial whose coefficients are less than
N. Thus, |[F4(t)] < (2N + 1)N < 3N?. For the second inequality, let us compute the derivative

of the Fejer kernel. We have

sin(Nt/2) cos(Nt/2) 1 cos(t/2)sin?(Nt/2)

BNO=—0wm TN )

Note that |sin(x)| < |z| for all  and |sin(z)| > |z|/2 for all x € [-7/2,7/2]. Therefore,

<L LINY2 16 82 82
NEZ o) TN L2 R (2P e
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so that taking A = 32 we have the desired result. Using these inequalities, we get

(@Yo <C [ [Fyt)ltdt

—Tr

<C |Fn (8|t dt + C | (t)|[t] dt
t>1/N t/<1/N
1
§CA/ —dt+ CAN 1dt
w>lt>1/N |t t|<1/N
2

= 2CA(log(N) + log(m)) + CANN

< Cilog(N) for some Cy when N is large enough.

Finally, differentiating (16) and evaluating in = = z( gives

|[(San f) (o) — (SN f) (z0)| = [2(Pan f)'(x0) — 3(Pan f) (z0) + (Pn)' f (o)
< 2C1og(4N) + 3C1 1log(2N) + Cq log(N)
< Cylog(N)  for some Cy when N is large enough.

This contradicts (15) and proves that f is not differentiable in z¢ and since xy was arbitrary, f is

differentiable nowhere.
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