
Serie 12

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (?) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Let θ ∈ [0, 2π). For r ∈ (0, 1) and N ≥ 1 we define

SN (r) =
N∑
n=1

rn cos(nθ)

(i) Show that the sequence {SN}N∈N converges pointwise to a function S in (0, 1). Compute S

explicitly.

(ii) For r ∈ (0, 1) and n ≥ 0, deduce, by means of Fourier series, the value of

In(r) =

∫ 2π

0

cos(nθ)

1− 2r cos(θ) + r2
dθ

Solution:

(i) Notice that |rn cos(nθ)| ≤ rn and that
∑

n≥1 r
n < +∞ when r ∈ (0, 1) . Therefore, the se-

quence of real numbers {SN (r)}N converges for every r ∈ (0, 1) (the series actually converges

absolutely), which means that we can define the function S as follows:

S(r) =

∞∑
n=1

rn cos(nθ)

Recall that the real part operator < : C → R is linear and hence continuous. Therefore we

have :

S(r) =

∞∑
n=1

<(rneinθ) = <

( ∞∑
n=1

(reiθ)n

)

= <
(

1

1− reiθ
− 1

)
= <

(
reiθ(1− re−iθ)

1− 2r cos(θ) + r2

)
=

r cos(θ)− r2

1− 2r cos(θ) + r2
= −1

2
+

1

2

1− r2

1− 2r cos(θ) + r2
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and thus

2S(r) = −1 +
1− r2

1− 2r cos(θ) + r2

(ii) For r ∈ (0, 1), let us consider the 2π-periodic function given by

f(θ) =
1− r2

1− 2r cos(θ) + r2
.

The previous question shows that this function is actually equal to :

f(θ) = 1 + 2
∞∑
n=1

rn cos(nθ).

which is actually the Fourier expansion in cosines of f (it makes sense since f is even). We

can identify the coefficients: a0 = 2 and an = 2rn for n ≥ 1. and use the explicit formulae

for this coefficients :

an =
1

π

∫ 2π

0
f(θ) cos(nθ)dθ, ∀n ≥ 0

to obtain
1

π

∫ 2π

0

1− r2

1− 2r cos(θ) + r2
dθ = a0 = 2

and
1

π

∫ 2π

0

(1− r2) cos(nθ)

1− 2r cos(θ) + r2
dθ = an = 2rn

which yields

In(r) =
2πrn

1− r2
, ∀n ≥ 0

Exercise 2. .

(i) Find formally, using Fourier series, the solution u = u(x, t) to the initial value problem
ut − uxx = u (x, t) ∈ (0, π)× (0,∞),

u(x, 0) = f(x) x ∈ (0, π),

ux(0, t) = ux(π, t) = 0 t > 0.

(ii) Show that if f ∈ L1(0, π), then the function u obtained in (i) belongs to C0(]0, π[×]0,∞[).

Actually, one can show that u ∈ C∞(]0, π[×]0,∞[) but we don’t prove it.

(iii) Let f : R → R be 2π-periodic and even. Discuss under which assumptions on f the function u

found in (i) satisfies

lim
t→0

u(x, t) = f(x) uniformly inx .

In particular, observe, recalling (ii), that these assumptions guarantee that u ∈ C0(]0, π[×[0,∞[).
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Solution:

(i) Step 1:

The general way to find formally a solution of a PDE is to write u(x, t) =
∑

k∈Z ck(t)e
ikx

(notice that every function u(x, t) can be written in this way, assuming for instance that

u(·, t) ∈ L2 for any t) where ck : R → R are functions depending on time to be determined

and f(x) =
∑

k∈Z fke
ikx. Plugging into the equation u(x, t) and formally commuting the

sum with the derivatives (∂t and ∂xx) we have∑
k

∂tck(t)e
ikx + k2ck(t)e

ikx − ck(t)eikx = 0

and the last is true if and only if ck(t) solves the following ODEs d
dtck = −k2ck + ck

ck(0) = fk

for any k ∈ Z. And one can solves explicitly the ODE obtaining that ck(t) = e(1−k
2)tfk

for any k ∈ Z. One can use the formula for ak, bk (the one for the basis with sinus and

cosinus) from ck or directly get the ODE for those coefficients from the PDE. If one would

rigorously justify that the solution found is a solution to the PDE one would have to verify

that u(x, t) =
∑

k e
(1−k2)tfk is such that

• ∂tu ∈ C0, ∂xxu ∈ C0 and u ∈ C0,

• we commute the derivative with the sum, namely

∂t
∑
k

e(1−k
2)tfk =

∑
k

∂te
(1−k2)tfk

and the same for ∂x and ∂xx

• limt→0 u(t, x) = f(x) uniformly in x (which is the notion you gave in class to get the

initial datum)

• ∂xu(0, t) = ∂xu(π, t) for any t > 0 (which in general is not possible in the sense that

the formal solution found does not have this property. For instance, in this example

you can verify formally that ∂xu(0, t) = ∂xu(π, t) for any t > 0 holds if f ∈ L1 and it is

even)

The other method is using the separation of variables. We ignore the initial condition:

u(x, 0) = f(x), x ∈]0, π[ and focus on the two other equations. We use separation of variables

and make the ansatz

u(x, t) = v(x)w(t).

The first equation then rewrites as v(x)w′(t)− v′′(x)w(t) = v(x)w(t) for all (x, t) ∈ (0, π)×
(0,+∞), which we can rewrite (provided that the denominator is non-zero) as

v′′(x)

v(x)
=
w′(t)− w(t)

w(t)
∀(x, t) ∈ (0, π)× (0,+∞) .
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The latter can hold if and only if there exits λ ∈ R such that

v′′(x)

v(x)
≡ −λ ≡ w′(t)− w(t)

w(t)
∀(x, t) ∈ (0, π)× (0,+∞) .

This allows us to transform the first and third equations of our PDE in the two ODE’sv′′(x) + λv(x) = 0 for all x ∈ (0, π),

v′(0) = v′(π) = 0,
(1)

and

w′(t) = −(λ− 1)w(t) for all t > 0 . (2)

Recall that the eigenvalues of (1) are λn = n2 and the eigenfunctions are vn(x) = cos(nx)

for n ≥ 0. When λ = λn, (2) is solved by wn(t) = e−(n
2−1)t. Thus, for all n ≥ 0

un(x, t) = vn(x)wn(t) = cos(nx)e−(n
2−1)t

solves the first and third equation of our original PDE. Since any linear combination of

solutions is also a solution as well, the general solution is given - formally - by

u(x, t) =
a0
2

et +
+∞∑
n=1

an cos(nx)e−(n
2−1)t, (3)

where an are some constants. Observe that this solution is only a formal solution, since we

did not discuss the convergence of the infinite series.

Step 2: We extend f to an even function on (−π, π) by setting

f̃(x) :=

f(x) if x ∈ (0, π),

f(−x) if x ∈ (−π, 0) .
(4)

Observe that f̃(x) = f(x) for x ∈ (0, π) and writing the Fourier series of f̃ in cosinus, we

deduce that if we set

an =
2

π

∫ π

0
f(x) cos(nx) dx, n ≥ 0 ,

then formally, for t = 0, u coincides with the Fourier series of f̃ , which formally, coincides

with f̃ pointwise and hence in particular with f(x) for x ∈ (0, π) . Hence with this choice of

the coefficients, (3) formally solves our PDE.

(ii) If f ∈ L1(0, π), then f̃ ∈ L1(−π, π) and by Riemann-Lebesgue there is a constant α such

that |an| ≤ α for all n ≥ 0. Thus,∣∣∣an cos(nx)e−(n
2−1)t

∣∣∣ ≤ αe−(n
2−1)t n ≥ 0 .

Let t0 > 0. Using the above bound, it is easy to see that when (x, t) ∈ (0, π)× (t0,+∞), the

series (3) converges uniformly and absolutely. In particular, u ∈ C0(]0, π[×]0,∞[) .
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(iii) Since f is even, we have the Fourier series of f on [−π, π] is given by

Ff(x) :=
a0
2

+

∞∑
n=1

an cos(nx)

for an = 2
π

∫ π
0 f(x) cos(nx) dx . Using the formal solution (3) found in (i), we have that

u(x, t)− f(x) =
a0
2

(
et − 1

)
+

+∞∑
n=1

an cos(nx)
(

e−(n
2−1)t − 1

)
. (5)

Solution 1: f ∈ C4(R) .

If f ∈ C4(R) , we have that an = O(n−4) and hence there exists a constant γ such that

|an| ≤
γ

n4
, n ≥ 1 .

Recalling that 1− e−x ≤ x for x > 0, we estimate

0 ≤
∣∣∣e−(n2−1)t − 1

∣∣∣ = 1− e−(n
2−1)t ≤ (n2 − 1)t, n ≥ 1 .

We deduce

|u(x, t)− f(x)| ≤ t

[
|a0|
2

+
+∞∑
n=1

|an|
(
n2 − 1

)]
≤ t

[
|a0|
2

+ γ
+∞∑
n=1

(n2 − 1)

n4

]
︸ ︷︷ ︸

<∞

,

which proves limt→0 u(x, t) = f(x) uniformly in x ∈ [0, π].

Solution 2: f ∈ C1,α(R) .

If f ∈ C1,α(R) for some 0 < α < 1 (that is f ∈ C1(R) and f ′ ∈ Cα(R) - this is for instance

guaranteed if f ∈ C2(R)), then an = O(n−(1+α)) and hence there exists a constant γ such

that

|an| ≤
γ

n1+α
, n ≥ 1 . (6)

In particular, the series

+∞∑
n=1

an cos(nx)
(

e−(n
2−1)t − 1

)
= −

+∞∑
n=1

an cos(nx)
(

1− e−(n
2−1)t

)
converges absolutely, uniformly in t ∈ [0, 1] . Hence, we can exchange the limit and the

summation and we deduce that

lim
t→0
−

+∞∑
n=1

an cos(nx)
(

1− e−(n
2−1)t

)
= 0 .

Hence, recalling (5), we have the pointwise convergence

lim
t→0

u(x, t) = f(x) .
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To show that the convergence is uniform in x ∈ [0, π], we fix ε > 0 . Using the triangular

inequality, (5) and (6), we estimate, for a N ≥ 1 yet to be chosen,

|u(x, t)− f(x)| ≤ |a0|
2

(et − 1) + γ(1− e−(N2−1)t)
N−1∑
n=1

1

n1+α
+ 2γ

∞∑
n=N

1

n1+α
.

We now choose N = N(ε, γ) ≥ 1 large enough such that

2C

∞∑
n=N

1

n1+α
≤ ε

2
.

Now, we choose t0 = t0(N, γ) > 0 small enough, such that for all 0 < t < t0

|a0|
2

(et − 1) + γ(1− e−(N2−1)t)
N−1∑
n=1

1

n1+α
≤ ε

2
.

In particular, we have shown that for all 0 < t < t0, it holds |u(x, t) − f(x)| ≤ ε for all

x ∈ [0, π] , hence the convergence is uniform on [0, π] .

Exercise 3. We define the Schwartz space S (R) to be set of functions f ∈ C∞ (R) such that for all

k, l ∈ N
sup
x∈R

{∣∣∣xk∣∣∣ ∣∣∣f (l) (x)
∣∣∣} <∞ .

(i) Show that the function f(x) = e−x
2

belongs to S (R) .

(ii) Show that C∞c (R) ⊆ S (R) ⊆ Lp (R) for 1 ≤ p ≤ ∞.

(iii) Show that if f ∈ S (R), then f̂ ∈ S (R).

Solution:

(i) One can show easily by induction that any derivative f (l)(x) takes the form

Pl(x)e−x
2

where Pl is a polynomial of degree l. Thus, in order to conclude we need to prove that∑
x∈R
{|xkf (l)(x)|} = sup

x∈R
{|xkPl(x)e−x

2 |} <∞.

To do this, it suffices to show that the function x 7→ xkPl(x)e−x
2

goes to 0 as |x| → ∞. One

can use de l’Hopital’s rule to do this.

(ii) The first inclusion C∞c (R) ⊆ S (R) is obvious because for any function f ∈ C∞c (R), f (l) is

bounded by some Cl and the support of f is contained in some ball of radius R. Thus,

sup
x∈R

{∣∣∣xk∣∣∣ ∣∣∣f (l) (x)
∣∣∣} ≤ ClRk <∞.
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It is also trivial that S (R) ⊆ L∞ (R). It only remains to prove S(R) ⊆ Lp(R) for p ∈ [1,∞).

If f ∈ S(R), we know that there is a constant C such that

sup
x∈R

(1 + x2)|f(x)| ≤ C.

It follows that∫
R
|f(x)|p dx =

∫
R

(1 + x2)|f(x)|p

(1 + x2)
dx ≤ Cp

∫
R

1

(1 + x2)p
dx ≤ Cp

∫
R

1

(1 + x2)
dx <∞.

(iii) For k, l ∈ N, using the properties of the Fourier transform with respect to differentiation and

multiplication (see for instance Exercise 5), we get

ξk
(
d

dξ

)l
f̂(ξ) = ĝ(ξ),

with

g(x) =
1

(2πi)k

(
d

dx

)k
[(−2πix)lf(x)].

Since f ∈ S (R), we also have g ∈ S (R) ⊆ L1(R). Finally,

sup
ξ∈R

{∣∣∣∣∣ξk
(
d

dξ

)l
f̂(ξ)

∣∣∣∣∣
}

= ‖ĝ‖L∞ ≤ ‖g‖L1 <∞,

and therefore f̂ ∈ S (R).

Exercise 4. The inequalities of Wirtinger and Poincaré establish a relationship between the L2-norm

of a function and the one of its derivative.

(i) If f is T -periodic, continuous and piecewise C1 with
∫ T
0 f(t) dt = 0 , show that

∫ T

0
|f(t)|2 dt ≤ T 2

4π2

∫ T

0
|f ′(t)|2 dt,

with equality if and only if f(t) = A cos(2πt/T ) +B sin(2πt/T ).

(ii) If f is as above and g is just C1 and T -periodic, prove that∣∣∣∣ ∫ T

0
f(t)g(t) dt

∣∣∣∣2 ≤ T 2

4π2

(∫ T

0
|f(t)|2 dt

)(∫ T

0
|g′(t)|2 dt

)
.

(iii) For any compact interval [a, b] and any continuously differentiable function f with f(a) = f(b) =

0, show that ∫ b

a
|f(t)|2 dt ≤ (b− a)2

π2

∫ b

a
|f ′(t)|2 dt.

Discuss the case of equality, and prove that the constant (b− a)2/π2 cannot be improved.

Hints:
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• For (i), apply Parseval’s identity.

• For (iii), extend f to be odd with respect to a and periodic of period T = 2(b − a) so that its

integral over an interval of length T is 0. Apply (i) to get the inequality and conclude that the

equality holds if and only if

f(t) = A sin

(
π

(
t− a
b− a

))
.

Solution:

(i) Observe that it is enough to prove the claim for T = 1 (otherwise, consider f̃(x) := f(x/T )).

Since
∫ 1
0 f(t) dt = 0, a0 = 0 and hence the Fourier series of f is of the form

Ff(x) :=
∞∑
k=1

[ak cos(2πkt) + bk sin(2πkt)] .

Using Parseval’s identity, we get

2

∫ 1

0
|f(t)|2 dt =

∞∑
k=1

(a2k + b2k). (7)

The Fourier series of f ′ is given by

∞∑
k=1

[2πkbk cos(2πkt) + 2πkak sin(2πkt)] .

Note that the coeffcients of this Fourier series were not obtained by differentiating the Fourier

series of f . Indeed, to find the Fourier series of f ′ as above we integrate the quantities∫ 1

0
f ′(x) cos(2πx) dx and

∫ 1

0
f ′(x) sin(2πx) dx

by parts. Again, by Parseval’s identity,

2

∫ 1

0
|f ′(t)|2 dt =

∞∑
k=1

(2πk)2(a2k + b2k). (8)

We conclude∫ 1

0
|f(t)|2 dt =

1

2

∞∑
k=1

(a2k + b2k) ≤
1

2

∞∑
k=1

k2(a2k + b2k) =
1

4π2

∫ 1

0
|f ′(t)|2 dt. (9)

It is obvious that the previous inequality is an equality if and only if ak = bk = 0 for all

k ≥ 2, i.e there is A(= a1) and B(= b1) such that f(t) = A cos(2πt) +B sin(2πt).

(ii) Again, it suffices to prove the claim for T = 1 (otherwise consider f̃(x) := f(x/T ) and

g̃(x) := g(x/T ) .Define the function g0 : [0, 1]→ R by

g0(t) = g(t)−
∫ 1

0
g(t) dt,
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so that g0 is continuous, C1 and 1-periodic (since g is) and moreover∫ 1

0
g0(t) dt = 0 and g′0(t) = g′(t).

From (i), we have ∫ 1

0
|g0(t)|2 dt ≤

1

4π2

∫ 1

0
|g′0(t)|2 dt =

1

4π2

∫ 1

0
|g′(t)|2 dt.

From Hölder’s inequality, we have∣∣∣∣∫ 1

0
f(t)g0(t) dt

∣∣∣∣2 ≤ (∫ 1

0
|f(t)|2 dt

)(∫ 1

0
|g0(t)|2 dt

)
≤ 1

4π2

(∫ 1

0
|f(t)|2 dt

)(∫ 1

0
|g′(t)|2 dt

)
.

In addition, by construction of g0 and by the hypothesis on f∫ 1

0
f(t)g(t) dt =

∫ 1

0
f(t)

(
g0(t) +

∫ 1

0
g(s) ds

)
=

∫ 1

0
f(t)g0(t) dt+

∫ 1

0
f(t) dt︸ ︷︷ ︸
=0

∫ 1

0
g(s) ds

=

∫ 1

0
f(t)g0(t) dt.

We deduce ∣∣∣∣ ∫ 1

0
f(t)g(t) dt

∣∣∣∣2 ≤ 1

4π2

(∫ 1

0
|f(t)|2 dt

)(∫ 1

0
|g′(t)|2 dt

)
.

(iii) Define h : [−(b− a), (b− a)]→ R by

h(t) =

f(a+ t) if t ∈ [0, (b− a)],

−f(a− t) if t ∈ [−(b− a), 0].
(10)

Observe that h is a continuous and odd function with respect to 0 because f is continuous

with f(a) = f(b) = 0 . We can extend it to a 2(b − a)-periodic function on R (which we

identify with h). Since h is an2(b− a)-periodic and odd function, we have∫ 2(b−a)

0
h(t) dt =

∫ (b−a)

−(b−a)
h(t) dt = 0

so that from (i) we deduce∫ 2(b−a)

0
|h(t)|2 dt ≤ (b− a)2

π2

∫ 2(b−a)

0
|h′(t)|2 dt . (11)

It is easy to see that this equivalent to∫ b

a
|f(t)|2 dt ≤ (b− a)2

π2

∫ b

a
|f ′(t)|2 dt.

Finally, we show that the constant cannot be improved. We know from (i) that the inequality
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(11) is an equality if and only if h takes the form

h(t) = A cos

(
πt

(b− a)

)
+B sin

(
πt

(b− a)

)
.

However, by construction, the function h is odd with respect to 0 which implies that A = 0 .

Therefore,

f(t) = B sin

(
π

(
t− a
b− a

))
for some B . In particular, the constant cannot be improved.

Exercise 5. Let f, g ∈ L1(R) and consider the Fourier transform of f given by

F(f)(ξ) = f̂(ξ) :=

∫
R
f(x)e−2πiξx dx = lim

N→∞

∫ N

−N
f(x)e−2πiξx dx.

Notice that the last equality holds due to the dominated convergence theorem. We already know from

previous series that

• f̂ is well-defined,

• ‖f̂‖L∞ ≤ ‖f‖L1 ,

• lim|ξ|→∞ |f̂(ξ)| = 0 and

• f̂ : R→ C is continuous.

Prove the following properties:

(i) Linearity. For any a, b ∈ R we have F(af + bg) = aF(f) + bF(g).

(ii) Translation. If a ∈ R and h(x) := f(x+ a), then

F(h)(ξ) = e2πiaξF(f)(ξ) ∀ξ ∈ R.

(iii) Scaling. If a > 0 and h(x) := f(ax), then

F(h)(ξ) =
1

a
F(f)

(
ξ

a

)
∀ξ ∈ R.

(iv) Fourier transform of the derivative. If, in addition, f ∈ C1(R) and f ′ ∈ L1(R) , we have

F(f ′)(ξ) = 2πiξF(f)(ξ) ∀ξ ∈ R.

More generally, if f ∈ Cn(R) and f (k) ∈ L1(R) for all k = 1, . . . , n, then

F(f (n))(ξ) = (2πiξ)nF(f)(ξ) ∀ ξ ∈ R.

Hint : Use without proving it the following fact : for any function f ∈ C1 ∩L1 such that f ′ ∈ L1,

we have limx→∞ |f(x)| = 0 .
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(v) Derivative of the Fourier transform. If, in addition h(x) := xf(x) belongs to L1(R), then

the Fourier transform F(f) of f is differentiable and

F(f)′(ξ) = −2πiF(h)(ξ) ∀ ξ ∈ R.

More generally, if hl(x) := xlf(x) belongs to L1(R) for some l, then

F(f)(l)(ξ) = (−2πi)lF(hl)(ξ) ∀ξ ∈ R.

(vi) Product. We have that ∫
R
f̂(x)g(x) dx =

∫
R
f(x)ĝ(x) dx .

Solution:

(i) The linearity follows from the linearity of the integral. Indeed,

F(af + bg)(ξ) =

∫
R

(af(x) + bg(x))e−2πixξ dx = a

∫
R
f(x)e−2πixξ dx+ b

∫
R
g(x)e−2πixξ dx

= aF(f)(ξ) + bF(g)(ξ) .

(ii) First notice that for any ϕ ∈ L1(R) we have∫
R
ϕ(x) dx =

∫
R
ϕ(x+ a) dx ∀a ∈ R. (12)

Indeed, the equality above is easy to prove for step functions. Subsequently, one can consider

a general non-negative measurable function, approximate it by step functions and conclude

with the monotone convergence theorem. For a general integrable function, we split into into

positive and negative parts and we conclude (12) by applying the result for non-negative

measurable functions to the positive and negative part. We obtain,

F(h)(ξ) =

∫
R
f(x+ a)e−2πiξx dx

(12)
=

∫
R
f(x)e−2πiξ(x−a) dx = e2πiaξF(f)(ξ) .

(iii) Proceeding as in (ii), we can prove that for any ϕ ∈ L1(R)∫
R
ϕ(ax) dx =

1

a

∫
R
ϕ(x) dx ∀a > 0. (13)

We then obtain

F(h)(ξ) =

∫
R
f(ax)e−2πiξx dx

(13)
=

1

a

∫
R
f(x)e−2πiξx/a dx =

1

a
F(f)(ξ/a) .

(iv) By the hint, limx→∞ |f(x)| = 0. In particular, for any ε > 0 there exists Nε such that for all

x ≥ Nε we have |f(x)| ≤ ε. Thus, integrating by parts, we obtain, for all N ≥ Nε∫ N

−N
f ′(x)e−2πiξx dx = (f(x)e−2πiξx)|N−N +

∫ N

−N
2πiξf(x)e−2πiξx dx .

11



Therefore, we obtain∣∣∣∣∫ N

−N
f ′(x)e−2πiξx dx− 2πiξ

∫ N

−N
f(x)e−2πiξx dx

∣∣∣∣ ≤ 2ε. (14)

Since f, f ′ ∈ L1(R), we get, due to the dominated convergence theorem,

F(f)(ξ) =

∫
R
f(x)e2πiξx dx = lim

N→∞

∫ N

−N
f(x)e2πiξx dx,

F(f ′)(ξ) =

∫
R
f ′(x)e2πiξx dx = lim

N→∞

∫ N

−N
f ′(x)e2πiξx dx.

Therefore, letting N →∞ in (14), we have∣∣∣∣∫
R
f ′(x)e−2πiξx dx− 2πiξ

∫
R
f(x)e−2πiξx dx

∣∣∣∣ ≤ 2ε.

Since ε > 0 was arbitrary, we conclude F(f ′)(ξ) = 2πiξF(f)(ξ).

Now, we prove the general result by induction. Assume it holds for some n and prove it for

n + 1. Let f ∈ Cn+1(R) and f (k) ∈ L1(R) for all k = 1, . . . , n + 1. Then, since the result

holds for n,

F(f (n+1))(ξ) = (2πiξ)nF(f ′)(ξ) = (2πiξ)n+1F(f)(ξ),

where the last equality follows from the case n = 1 which we already proved.

(v) We will prove that for every ξ ∈ R we have

lim
ε→0

f̂(ξ + ε)− f̂(ξ)

ε
+ 2πiĥ(ξ) = 0.

This proves both the differentiability of f̂ and the claimed formula for its derivative. Let

ε > 0 be arbitrary. We have

f̂(ξ + ε)− f̂(ξ)

ε
+ 2πiĥ(ξ) =

∫
R
f(x)e−2πiξx

[
e−2πiεx − 1

ε
+ 2πix

]
dx.

Notice that ∣∣∣∣e−2πiεx − 1

ε

∣∣∣∣ ≤ 2π|x|

and

lim
ε→0

[
e−2πiεx − 1

ε
− 2πix

]
= 0

pointwise. In order to be able to apply the dominated convergence theorem, notice that by

assumption ∣∣∣∣f(x)e−2πiξx
[

e−2πiεx − 1

ε
+ 2πix

]∣∣∣∣ ≤ 4π|xf(x)| = 4π|h(x)| ∈ L1(R) .
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By the dominated convergence theorem, we get,

lim
ε→0

∫
R
f(x)e−2πiξx

[
e−2πiεx − 1

ε
+ 2πix

]
dx = 0,

which proves the result.

Now, in order to prove the formula for higher order derivatives, we use an induction argument.

Assume by induction that the formula holds for some l and prove it for l+1. We assume that

hl+1 ∈ L1(R). In order to apply the formula for l, we need to make sure that hl ∈ L1(R).

Indeed, ∫
R
|xlf(x)| dx =

∫
|x|≤1

|x|l|f(x)| dx+

∫
|x|>1

|x|l|f(x)| dx

≤
∫
|x|≤1

|f(x)| dx+

∫
|x|>1

|x|l+1|f(x)| dx <∞

Thus, using the induction hypothesis and the case l = 1 that we already proved, we have

F(f)(l+1)(ξ) =
d

dξ
[F(f)(l)(ξ)] =

d

dξ
[(−2πi)lF(hl)(ξ)] = (−2πi)l

d

dξ
[F(hl)(ξ)]

= (−2πi)(l+1)F(hl+1)(ξ).

(vi) First of all, notice that both integrals are finite and well-defined because f, g ∈ L1 and

f̂ , ĝ ∈ L∞. More precisely, we have∫
R
f̂(x)g(x) dx =

∫
R

(∫
R
f(y)e−2πixy dy

)
g(x) dx

and ∫
R
f(y)ĝ(y) dy =

∫
R
f(y)

(∫
R
g(x)e−2πixy dx

)
dy.

In order to prove the result we will use Fubini’s theorem. However, we first need to show

that the function

(x, y) 7→ f(y)g(x)e−2πixy

is integrable on R2. Indeed, by Tonelli’s theorem∫
R2

|f(y)g(x)e−2πixy| d(x, y) =

∫
R2

|f(y)||g(x)| d(x, y) =

(∫
R
|f(y)| dy

)(∫
R
|f(y)||g(x)| dx

)
= ‖f‖L1(R)‖g‖L1(R) <∞.
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Thus, using Fubini’s theorem, we obtain∫ +∞

−∞
f̂(x)g(x) dx =

∫
R

(∫
R
f(y)e−2πixy dy

)
g(x) dx

=

∫
R2

f(y)e−2πixyg(x) d(x, y)

=

∫
R
f(y)

(∫
R
g(x)e−2πixy dx

)
dy

=

∫
R
f(y)ĝ(y) dy.

Exercise 6. Let f ∈ C1(R) ∩ L1(R) such that f ′ ∈ L1(R) and ∀x ∈ R, f ′(x+ 1) = f(x) . Prove that

f(x) = 0,∀x ∈ R .

Solution: Using the point (iv) of previous exercise, we know that f̂ ′(ξ) = 2πiξf̂(ξ) . Moreover,

using the point (ii) of previous exercise, we also know that f̂(ξ) = e2πiξ f̂ ′(ξ) . Therefore you have

f̂(ξ) = 2πiξe2πiξ f̂(ξ), ∀ξ ∈ R

=⇒ f̂(ξ) = 0, a.e.

=⇒ f(x) = 0, a.e. because f̂ ∈ L1 so we can apply inverse Fourier transform

=⇒ f(x) = 0, ∀x ∈ R, because f is continuous

Note : The second to last implication shows that the Fourier transform is actually an injective

linear map from L1(R) to L1(R) .

Exercise 7. The following exercise illustrates the principle that the decay of f̂ is related to the

continuity properties of f . You have already seen similar results for Fourier coefficients.

We define a function of moderate decrease as a function f : R→ R such that ∀x ∈ R |f(x)| ≤ A
1+x2

for some consant A.

(i) Suppose that f : R → R is a function of moderate decrease whose Fourier transform f̂ is

continuous and satisfies :

f̂(ξ) = O

(
1

|ξ|1+α

)
, as |ξ| → ∞

for some 0 < α < 1. Prove that f satisfies a Hlder condition of order α, i.e.

|f(x+ h)− f(x)| ≤M |h|α, for some M > 0 and ∀x, h ∈ R

(ii) Let f : R→ R be a continuous function which vanishes for |x| ≥ 1, with f(0) = 0, and which is

equal to 1/ log(1/|x|) for all x in a neighborhood of 0. Prove that there is no α > 0 such that

f̂(ξ) = O(1/|ξ|1+α) as |ξ| → ∞.

14



Solution:

(i) Since α > 0, f̂ ∈ L1 and we can apply the Fourier inversion formula to get

f(x) =

∫ ∞
∞

f̂(ξ)e2πiξx dξ, ∀x =⇒ f(x+ h)− f(x) =

∫ ∞
∞

f̂(ξ)e2πiξx(e2πiξh − 1) dξ, ∀x

Let’s further notice that e2πiξh − 1 = eπiξh(eπiξh − e−πiξh) = 2ieπiξh sin(πξh) =⇒ |e2πiξh −
1| = 2| sin(πξh)| so :

∣∣∣f(x+ h)− f(x)

hα

∣∣∣ ≤ 1

|h|α

∫ ∞
−∞

A|e2πiξh − 1|
1 + |ξ|1+α

dξ

≤ 4A

|h|α

∫ ∞
0

| sin(πξh)|
1 + |ξ|1+α

dξ

=
4A

π

∫ ∞
0

| sin(u)|
|h|1+α + u1+α

du

≤ 4A

π

∫ 1

0

∣∣∣ sin(u)u

∣∣∣
uα

du+

∫ ∞
1

1

u1+α
du


≤ 4A

π

(∫ 1

0

1

uα
du+

∫ ∞
1

1

u1+α
du

)
<∞

(ii) We have ∀α > 0 fixed :
|f(h)− f(0)|
|h|α

=
1

−|h|α log |h|
−→
h→0
∞

so f is not α-Hlder continuous for any α > 0 . Since f is of moderate decrease (it is

continuous on R and vanishes at ∞), f̂ cannot verify the stated condition, or otherwise it

would contradict the first question.

Exercise 8. Prove that if f : R→ R is continuous, of moderate decrease, and such that∫ ∞
−∞

f(x)e−x
2
e2xy dx = 0

for all y ∈ R, then f = 0 .

Hint : Think of convolutions and gaussian kernels

Solution: Let g(x) = e−x
2
. Then ∀x ∈ R:

(f ∗ g)(x) =

∫ ∞
−∞

f(y)e−(x−y)
2
dx = e−x

2

∫ ∞
−∞

f(x)e−y
2
e2xy dx = 0

This implies that f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ) = f̂(ξ)
√
πe−π

2ξ2 = 0, ∀ξ ∈ R which in turn implies that

f̂ = 0 ∈ L1 . By Fourier inversion formula, we can conclude that f = 0 .
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Exercise 9 (?). Whereas it is easy to construct a continuous function which is not differentiable on

a finite or even countable set, the question of whether or not there exists a nowhere differentiable, yet

continuous function is much harder. The first example of such a function was given by Weierstrass in

1872.

Let’s discuss here a slightly different example. The crucial feature of both examples is that the

Fourier series skips many terms, we call such Fourier series lacunary. Let 0 < α < 1 and define

fα(x) =
∞∑
n=0

2−nαei2
nx.

It is clear that fα is 1-periodic, continuous (since the series converges absolutely) and recall from

Exercise 2 of Serie 11 that fα ∈ Cα. Prove that fα is differentiable nowhere.

Hint: Find an expression of SNf(x) in terms of the Cesaro means for N = 2n−1 and find a lower

bound on |(S2Nf)′(x0) − (SNf)′(x0)|. Show that this lower bound is not compatible with f being

differentiable in x0.

Solution: By contradiction, assume that f is differentiable in x0. For N ∈ N we denote by

ΦNf(x) =
1

N

N−1∑
k=0

Skf(x)

the Nth Cesaro mean. We proceed in 3 steps.

Step 1: For N = 2n−1, we can write SNf(x) = 2Φ2Nf(x)− ΦNf(x) .

Indeed, observe that SNf(x) = S2n−1f(x) = Skf(x) ∀k ∈ [N, 2n − 1] due to the lacunary Fourier

series. Thus,

SNf(x) =
1

N

2N−1∑
k=N

Skf(x)

=
1

N

2N−1∑
k=0

Skf(x)− 1

N

N−1∑
k=0

Skf(x)

= 2
1

2N

2N−1∑
k=0

Skf(x)− 1

N

N−1∑
k=0

Skf(x)

= 2Φ2Nf(x)− ΦNf(x).

Step 2: For N = 2n−1, S2Nf(x)− SNf(x) = 2−nαei2
nx and hence

|(S2Nf)′(x0)− (SNf)′(x0)| = 2n(1−α ≥ cN1−α for some c = c(α) > 0. (15)

Observe due to the lacunary Fourier series that S2Nf(x)−SNf(x) = 2nαei2
nx and the righthand

side is differentiable in x0 with derivative

(S2Nf)′(x0)− (SNf)′(x0) = 2n(1−α)ei2
nx = N1−α2(1−α)ei2

nx.

Thus, taking c = 21−α gives the result.
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Step 3: Using Step 1 and the differentiability of f in x0, we find a contradiction with Step 2.

From the equality we established in step 1, we have

S2Nf(x)− SNf(x) = 2Φ4Nf(x)− 3Φ2Nf(x) + ΦNf(x). (16)

Recall from Exercise 1 of Serie 9 that

(ΦNf)(x0) =

∫ π

−π
FN (x0 − t)f(t) dt ,

where FN is the 2π-periodic version of the Fejer kernel. In particular, this means that

(ΦNf)′(x0) =

∫ π

−π
F ′N (x0 − t)f(t) dt =

∫ π

−π
F ′N (t)f(x0 − t) dt.

Since FN is 2π-periodic ∫ π

−π
F ′N (t) dt = 0

and therefore

(ΦNf)′(x0) =

∫ π

−π
F ′N (t)(f(x0 − t)− f(x0)) dt.

Now, we prove that there is C > 0 such that

|(ΦNf)′(x0)| ≤ C
∫ π

−π
|F ′N (t)||t| dt. (17)

Since we assume f to be differentiable in x0, there is ε, δ > 0 such that |f(x0 − t)− f(x0)| ≤ ε|t|
for all t such that |t| ≤ δ. For any t such that |t| > δ,

|f(x0 − t)− f(x0)| ≤ 2‖f‖L∞ ≤
2‖f‖L∞

δ
|t|.

Taking C = max{ε, 2‖f‖L∞/δ}, gives (17). Now we prove that there is A such that

|F ′N (t)| ≤ AN2 and |F ′N (t)| ≤ A

|t|2
∀t ∈ [−π, π].

For the first inequality, recall that FN is a trigonometric polynomial of degree N whose coefficients

are less than 1. Thus the derivative F ′N is trigonometric polynomial whose coefficients are less than

N . Thus, |F ′N (t)| ≤ (2N + 1)N ≤ 3N2. For the second inequality, let us compute the derivative

of the Fejer kernel. We have

F ′N (t) =
sin(Nt/2) cos(Nt/2)

sin2(t/2)
− 1

N

cos(t/2) sin2(Nt/2)

sin3(t/2)
.

Note that | sin(x)| ≤ |x| for all x and | sin(x)| ≥ |x|/2 for all x ∈ [−π/2, π/2]. Therefore,

F ′N (t) ≤ 1
1
4 |t/2|

+
1

N

|Nt/2|
1
8 |t/2|3

=
16

|t|2
+

8|t/2|
|t/2|3

=
32

|t|2
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so that taking A = 32 we have the desired result. Using these inequalities, we get

|(ΦNf)′(x0)| ≤ C
∫ π

−π
|F ′N (t)||t| dt

≤ C
∫
|t|≥1/N

|F ′N (t)||t| dt+ C

∫
|t|≤1/N

|F ′N (t)||t| dt

≤ CA
∫
π≥|t|≥1/N

1

|t|
dt+ CAN

∫
|t|≤1/N

1 dt

= 2CA(log(N) + log(π)) + CAN
2

N

≤ C1 log(N) for some C1 when N is large enough.

Finally, differentiating (16) and evaluating in x = x0 gives

|(S2Nf)′(x0)− (SNf)′(x0)| = |2(Φ4Nf)′(x0)− 3(Φ2Nf)′(x0) + (ΦN )′f(x0)|

≤ 2C1 log(4N) + 3C1 log(2N) + C1 log(N)

≤ C2 log(N) for some C2 when N is large enough.

This contradicts (15) and proves that f is not differentiable in x0 and since x0 was arbitrary, f is

differentiable nowhere.
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