
Serie 11

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (?) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Let −∞ < a < b < ∞ and α ∈ (0, 1] . For f ∈ C0,α([a, b]), we define ‖f‖C0,α([a,b]) :=

‖f‖C0([a,b]) + [f ]C0,α([a,b]) , where

[f ]C0,α([a,b]) := sup
a≤x 6=y≤b

|f(x)− f(y)|
|x− y|α

.

(i) Show that ‖ · ‖C0,α([a,b]) is a norm on C0,α([a, b]).

(ii) Let f, g ∈ C0,α([a, b]) . Show that their product fg ∈ C0,α([a, b]).

(iii) Show that if 0 < α ≤ β ≤ 1, then

C1([a, b]) ⊂ C0,1([a, b]) ⊆ C0,β([a, b]) ⊆ C0,α([a, b]) ⊂ C0([a, b]).

(iv) Let α ∈ (0, 1] and define fα : [0, 1]→ R by fα(x) := xα. Show that fα ∈ C0,α([0, 1]).

(v) Show that the function f : [0, 1/2]→ R defined by

f(x) :=

{
0 if x = 0,

−1/log x if x ∈ (0, 1/2] ,

is continuous but not Hölder continuous for any α ∈ (0, 1].

Hint: For (iv), compute the quantity supt∈(0,1)

{
1− tα

(1− t)α

}
and use it to deduce the result.

Solution:

(i) Let f, g ∈ C0,α([a, b]) and a ∈ R. Since ‖ · ‖C0([a,b]) is a norm on C0([a, b]), we have that

‖f‖C0,α([a,b]) = 0 implies f = 0. On the contrary, if f = 0 then ‖f‖C0,α([a,b]) = 0. Thus,

‖f‖C0,α([a,b]) = 0 if and only if f = 0.
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Then, since both ‖ · ‖C0([a,b]) and [f ]C0,α([a,b]) are absolutely homogeneous, we have

‖af‖C0,α([a,b]) = |a|‖f‖C0,α([a,b]).

It remains to prove that

‖f + g‖C0,α([a,b]) ≤ ‖f‖C0,α([a,b]) + ‖g‖C0,α([a,b]). (1)

We already have

‖f + g‖C0([a,b]) ≤ ‖f‖C0([a,b]) + ‖g‖C0([a,b]),

since ‖ · ‖C0([a,b]) is a norm. Moreover, for any a ≤ x 6= y ≤ b, we have

|(f + g)(x)− (f + g)(y)|
|x− y|α

=
|f(x) + g(x)− f(y)− g(y)|

|x− y|α

≤ |f(x)− f(y)|
|x− y|α

+
|g(x)− g(y)|
|x− y|α

≤ [f ]C0,α([a,b]) + [g]C0,α([a,b]).

Therefore, by taking the supremum over all x and y, we obtain

[f + g]C0,α([a,b]) ≤ [f ]C0,α([a,b]) + [g]C0,α([a,b]),

which gives (1).

(ii) It is clear that fg ∈ C0([a, b]) and ‖fg‖C0([a,b]) ≤ ‖f‖C0([a,b])‖g‖C0([a,b]). In addition, for any

a ≤ x 6= y ≤ b, we have

|f(x)g(x)− f(y)g(y)|
|x− y|α

=
|f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|

|x− y|α

≤ ‖f‖C0([a,b])
|g(x)− g(y)|
|x− y|α

+ ‖g‖C0([a,b])
|f(x)− f(y)|
|x− y|α

≤ ‖f‖C0([a,b])[g]C0,α([a,b]) + ‖g‖C0([a,b])[f ]C0,α([a,b]).

By taking the supremum over all x 6= y, we obtain

[fg]C0,α([a,b]) ≤ ‖f‖C0([a,b])[g]C0,α([a,b]) + ‖g‖C0([a,b])[f ]C0,α([a,b]).

We therefore get that fg ∈ C0,α([a, b]) and

‖fg‖C0,α([a,b]) = ‖fg‖C0([a,b]) + [fg]C0,α([a,b])

≤ ‖f‖C0([a,b])‖g‖C0([a,b]) + ‖f‖C0([a,b])[g]C0,α([a,b]) + ‖g‖C0([a,b])[f ]C0,α([a,b])

≤ ‖f‖C0,α([a,b])‖g‖C0,α([a,b]).
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(iii) (a) We prove C0,α([a, b]) ⊂ C0([a, b]): Assume that f ∈ C0,α([a, b]). We then have

|f(x)− f(y)| ≤ [f ]C0,α([a,b])|x− y|α ∀x, y ∈ [a, b],

which implies that f is continuous. Thus, f ∈ C0([a, b]).

(b) We prove C0,β([a, b]) ⊂ C0,α([a, b]): For any f ∈ C0,β([a, b]), we have

sup
a≤x 6=y≤b

{
|f(x)− f(y)|
|x− y|α

}
= sup

a≤x 6=y≤b

{
|f(x)− f(y)||x− y|β−α

|x− y|β

}
≤ [f ]C0,β([a,b])(b− a)β−α.

From this it follows that f ∈ C0,α([a, b]) and

‖f‖C0,α([a,b]) = ‖f‖C0([a,b]) + [f ]C0,α([a,b])

≤ ‖f‖C0([a,b]) + [f ]C0,β([a,b])(b− a)β−α

≤ (1 + (b− a)β−α)‖f‖C0,β([a,b]).

(c) We prove C0,1([a, b]) ⊂ C0,β([a, b]): This is a just special case of (b).

(d) We prove C1([a, b]) ⊂ C0,1([a, b]): Let f ∈ C1([a, b]). For any x, y ∈ [a, b], we have

f(x)− f(y) =

∫ 1

0

d

dt
[f(y + t(x− y))] dt

=

∫ 1

0
f ′(y + t(x− y))(x− y) dt.

Hence we have

|f(x)− f(y)| ≤ max
z∈[x,y]

|f ′(z)||x− y| ≤ ‖f‖C1([a,b])|x− y|,

from which we deduce that f ∈ C0,1([a, b]) and [f ]C0,1([a,b]) ≤ ‖f‖C1([a,b]). As a conse-

quence,

‖f‖C0,1([a,b]) = ‖f‖C0([a,b]) + [f ]C0,1([a,b]) ≤ 2‖f‖C1([a,b]).

(iv) We begin by computing the quantity supt∈(0,1)

{
1− tα

(1− t)α

}
. We claim that for all α ∈ (0, 1],

we have

g(t) = 1− tα − (1− t)α ≤ 0 ∀t ∈ [0, 1]. (2)

Indeed, notice that g is convex (this can be shown by computing the second derivative and

noting that it is positive) and g(0) = g(1) = 0 which implies (2), so that

sup
t∈(0,1)

{
1− tα

(1− t)α

}
≤ sup

t∈(0,1)

{
(1− t)α

(1− t)α

}
= 1.
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From this we obtain

sup
0≤x 6=y≤1

{
|fα(x)− fα(y)|
|x− y|α

}
= sup

1≥x>y≥0

{
|xα − yα|
|x− y|α

}
= sup

1≥x>y≥0

{
|xα||(1− (y/x)α)|
|xα||1− y/x|α

}
= sup

t∈(0,1)

{
1− tα

(1− t)α

}
= 1.

Thus, fα ∈ C0,α([a, b]).

(v) We easily see that f is continuous since log x→ −∞ as x→ 0. Now assume for a contradic-

tion that there is α ∈ (0, 1] such that f ∈ C0,α([0, 12 ]). In other words, there exists Cα > 0

such that
−1

log x
= |f(x)− f(0)| ≤ Cαxα ∀x ∈ (0, 1/2) .

But this implies that
−1

Cα
≥ xα log x ∀x ∈ (0, 1/2) ,

which is impossible since limx→0 x
α log x = 0.

Exercise 2. Suppose that f : R→ C is periodic and of class Ck. Show that

f̂(n) = o(1/|n|k),

that is |n|kf̂(n) goes to 0 as |n| → ∞.

Solution: Let f ∈ Ck be L-periodic. We may assume without loss of generality that L = 1 (if

not, consider f̃(x) := f(Lx) ). Using integration by parts, we get

f̂(n) =

∫ 1

0
f(x)e−2πinx dx =

[
f(x)

−1

2πin
e−2πinx

∣∣∣1
0
−
∫ 1

0
f ′(x)

−1

2πin
e−2πinx dx

]
=

1

2πin

∫ 1

0
f ′(x)e−2πinx dx.

More generally by integrating by parts k times

f̂(n) =
1

(2πin)k

∫ 1

0
f (k)(x)e−2πinx dx =

1

(2πin)k
f̂ (k)(n).

Since f ∈ Ck , we may apply the Riemann-Lebesgue lemma to f (k) and we deduce that

lim
|n|→∞

|f̂ (k)(n)| = 0

and therefore

lim
|n|→∞

|n|kf̂(n) = 0.
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Exercise 3. Let f be 2π-periodic and integrable on [−π, π]. We use the notation f̂n = cn =∫ π
−π f(x)e−inxdx.

(i) Show that

f̂(n) = − 1

2π

∫ π

−π
f(x+ π/n)e−inx dx

and hence

f̂(n) =
1

4π

∫ π

−π
[f(x)− f(x+ π/n)]e−inx dx.

(ii) Now assume that f satisfies a Hölder condition of order 0 < α < 1, namely that there exists

C > 0 such that

|f(x+ h)− f(x)| ≤ C|h|α ∀x, h ∈ R .

Use (i) to show that

f̂(n) = O(1/|n|α).

(iii) Prove that the result cannot be improved by showing that for 0 < α < 1 fixed, the function

f(x) =
∞∑
k=0

2−kαei2
kx, (3)

satisfies

|f(x+ h)− f(x)| ≤ C|h|α ∀h ∈ R

and f̂(N) = 1/Nα whenever N = 2k.

Hint: For (iii), break up the sum as follows

f(x+ h)− f(x) =
∑

2k≤1/|h|

+
∑

2k>1/|h|

.

To estimate the first sum use the fact that |1− eiθ| ≤ |θ| whenever θ is small. To estimate the second

sum, use the obvious inequality |eix − eiy| ≤ 2.

Solution:

(i) We have, after a change of variable and using the periodicity of f that

f̂(n) =
1

2π

∫ π

−π
f(x)e−inx dx = − 1

2π

∫ π

−π
f(x)e−inxeiπ dx = − 1

2π

∫ π

−π
f(x)e−in(x−

π
n) dx

= − 1

2π

∫ π−π
n

−π−π
n

f(y +
π

n
)e−iny dy = − 1

2π

∫ π

−π
f
(
x+

π

n

)
e−inx dx.
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Thus,

f̂(n) =
1

2

[
f̂(n) + f̂(n)

]
=

1

2

[
1

2π

∫ π

−π
f(x)e−inx dx− 1

2π

∫ π

−π
f
(
x+

π

n

)
e−inx dx

]
=

1

4π

∫ π

−π
[f(x)− f(x− π/n)] e−inx dx.

(ii) With the rewriting of (i), we can use the Hölder condition of order α to estimate

|f̂(n)| ≤ 1

4π

∫ π

−π
|f(x)− f(x+ π/n)| dx ≤ 1

4π

∫ π

−π
C
πα

|n|α
dx =

1

2
C
πα

|n|α
≤ Cπα

2

1

|n|α
.

Thus, f̂(n) = O(1/|n|α).

(iii) Fix 0 < α < 1 and consider f defined in (3). We easily see that f̂(N) = 1/Nα whenever

N = 2k. We are left to show that f satisfies a Hölder condition of order α . We write

f(x+ h)− f(x) =
∞∑
k=0

2−kα(ei2
k(x+h) − ei2

kx) =
∞∑
k=0

2−kαei2
kx(ei2

kh − 1)

=
∑

2k≤1/|h|

2−kαei2
kx(ei2

kh − 1) +
∑

2k>1/|h|

2−kαei2
kx(ei2

kh − 1).

More precisely, let j be the smallest integer such that 2j > 1/|h|, i.e. 2j−1 ≤ 1/|h|. Then,

using the geometric series,

|f(x+ h)− f(x)| =
j−1∑
k=0

2−kα|ei2kx| |ei2kh − 1|︸ ︷︷ ︸
≤2k|h|

+
∞∑
k=j

2−kα|ei2kx| |ei2kh − 1|︸ ︷︷ ︸
≤2

≤
j−1∑
k=0

2−kα2k|h|+ 2
∞∑
k=j

2−kα

≤ 21−j
j−1∑
k=0

2(1−α)k︸ ︷︷ ︸
2j(1−α) − 1

21−α − 1

+2−jα 2
∞∑
k=0

2−kα︸ ︷︷ ︸
=

2

1− 2−α

= 2−jα
(

2

21−α − 1
+

21+α

2α − 1

)
≤ C|h| ,

where we set

C = C(α) :=
2

21−α − 1
+

21+α

2α − 1
> 0 .

Since C is independent of h and x this proves that f satisfies a Hölder condition of order α .

Exercise 4. .

(i) Compute the Fourier series of the 2π-periodic odd function f defined by f(x) = x(π − x) on

[0, π].
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(ii) Using (i) and Parseval’s identity, deduce the value of the series

∞∑
k=1

1

(2k − 1)6
.

Solution:

(i) First, since f is odd, an = 0 for all n ≥ 0. Integrating by parts several times, we get

bn =
1

π

∫ π

−π
f(x) sin(nx) dx =

2

π

∫ π

0
x(π − x) sin(nx) dx

=
2

π

[− 1

n
x(π − x) cos(nx)

]π
0︸ ︷︷ ︸

=0

+

∫ π

0

1

n
(π − 2x) cos(nx) dx



=
2

π

[ 1

n2
(π − 2x) sin(nx)

]π
0︸ ︷︷ ︸

=0

+

∫ π

0

2

n2
sin(nx) dx


=

2

π

[
− 2

n3
cos(nx)

]π
0

=
2

π

(
− 2

n3
(−1)n +

2

n3

)
.

Thus,

bn =
4

πn3
(1− (−1)n) =

0 if n is even,
8

πn3
if n is odd .

The Fourier series is therefore given by

Ff(x) =
8

π

∞∑
n=1

1

(2k − 1)3
sin((2k − 1)x).

(ii) From Parseval’s identity and the fact that f2 is even, we deduce that

64

π2

∞∑
k=1

1

(2k − 1)6
=
∞∑
k=1

b2k =
1

π

∫ π

−π
f(x)2 dx =

2

π

∫ π

0
(x(π − x))2 dx

=
2

π

∫ π

0
(π2x2 − 2πx3 + x4) dx =

1

15
π4.

Thus,
∞∑
k=1

1

(2k − 1)6
=

π6

960
.
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Exercise 5. Let f ∈ C0([0, 1]) be a 1-periodic function and τ an irrational number. Show that

lim
N→∞

1

N

N∑
n=1

f(nτ) =

∫ 1

0
f(x) dx

and that this result does not hold when τ is rational.

Hint: Begin by showing the result for functions of the form f(x) = e2πikx for some k ∈ Z and

conclude by approximation.

Solution: As a counterexample with τ rational we can take

f(x) = sin2(2πx) and τ = 1.

Now we prove the result in several steps.

Step 1: We begin by showing the result for functions of the form f(x) = e2πikx for k ∈ Z.
If f = 1 the result is trivial. With f(x) = e2πikx where k 6= 0, we have∫ 1

0
e2πikx dx = 0

and since τ is irrational e2πikτ 6= 1 so that by the geometric series

1

N

N∑
n=1

f(nτ) =
1

N

N∑
n=1

e2πiknτ =
1

N

(
1− e2πikτ(N+1)

1− e2πikτ
− 1

)
=

e2πikτ

N

1− e2πikNτ

1− e2πikτ
.

Since ∣∣∣∣e2πikτN

∣∣∣∣ ≤ 1

N
and

∣∣∣∣1− e2πikNτ

1− e2πikτ

∣∣∣∣ ≤ 2

|1− e2πikτ |

we deduce that

lim
N→∞

1

N

N∑
n=1

f(nτ) = 0.

Step 2: We now show the result for trigonometric polynomials.

Let f be a trigonometric polynomial, that is f is of the form

f(x) =
∑
|k|≤M

ake
2πikx where ak ∈ C for all k.

That the result holds for f is an immediate consequence of the previous step and linearity of the
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sum and integral. In other words, using the previous Step, we have

lim
N→∞

1

N

N∑
n=1

f(nτ) = lim
N→∞

1

N

N∑
n=1

∑
|k|≤M

ake
2πikx

=
∑
|k|≤M

ak lim
N→∞

1

N

N∑
n=1

e2πikx

=
∑
|k|≤M

ak

∫ 1

0
e2πikx dx

=

∫ 1

0

∑
|k|≤M

ake
2πikx dx

=

∫ 1

0
f(x) dx.

Step 3: We now show the result for general continuous functions.

From the Weierstrass’ Theorem, we know that the trigonometric polynomials are dense in the space

C0([0, 1]), so for any f ∈ C0([0, 1]) and ε > 0 arbitrary, we know that there exists a trigonometric

polynomial P such that ‖f − P‖C0 < ε. As a consequence, we have thta∣∣∣∣∫ 1

0
f(x) dx−

∫ 1

0
P (x) dx

∣∣∣∣ < ε

and that for all n ≥ 1 |f(nτ)− P (nτ)| < ε . The latter implies that for all N ≥ 1 , we have∣∣∣∣∣ 1

N

N∑
k=1

f(nτ)− 1

N

N∑
k=1

P (nτ)

∣∣∣∣∣ < ε

Since

lim
N→∞

1

N

N∑
n=1

P (nτ) =

∫ 1

0
P (x) dx,

there is Nε ≥ 0 such that for all N ≥ Nε∣∣∣∣∣ 1

N

N∑
n=1

P (nτ)−
∫ 1

0
P (x) dx

∣∣∣∣∣ < ε.

Finally, we deduce that for all N ≥ Nε∣∣∣∣∣ 1

N

N∑
k=1

f(nτ)−
∫ 1

0
f(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
k=1

f(nτ)− 1

N

N∑
k=1

P (nτ)

∣∣∣∣∣+

∣∣∣∣∣ 1

N

N∑
n=1

P (nτ)−
∫ 1

0
P (x) dx

∣∣∣∣∣+

∣∣∣∣∫ 1

0
f(x) dx−

∫ 1

0
P (x) dx

∣∣∣∣ < 3ε.

Since ε was arbitrary, we deduce that

lim
N→∞

1

N

N∑
k=1

f(nτ) =

∫ 1

0
f(x) dx .
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Exercise 6 (?). Construct a continuous function whose Fourier series diverges at some point.

Hint: You may work on [−π, π] . For N ∈ N, we define ψN (x) := sgn(x) sin((N + 1
2)x) and choose the

ansatz f(x) :=
∑∞

k=1 akψNk(x) for a sequence {ak}∞k=1 of positive real numbers (what assumption on

{ak} do you need? ) and sequence {Nk}∞k=1 of integers. Choose the sequence Nk carefully, depending

on {ak}k, such that the Fourier series diverges in some point.

Solution: Let {ak} be a sequence of positive real numbers with
∑∞

k=1 ak < +∞ . For N ∈ N we

define ψN (x) := sgn(x) sin((N + 1
2)x) . We make the ansatz

f(x) =
∞∑
k=1

akψNk(x)

for some sequence {Nk}∞k=1 in N yet to be chosen. Observe that since ψNk is bounded by 1 and

continuous for every Nk ∈ N and since
∑∞

k=1 ak < ∞ , we have that limN→∞
∑N

k=1 akψNk(x)

converges uniformly. In particular, it follows that f is continuous. We know claim that there

exists a choice of the sequence {Nk}∞k=1 such that the Fourier series diverges in 0. More precisely,

we will prove that with an appropriate choice of {Nk}∞k=1 , that

lim
N→∞

SNf(0) = +∞ ,

where SNf(x) :=
∑
|n|≤N f̂(n)einx denotes the Nth partial Fourier sum. Recall from the lecture

(or observe) that that for a continuous, 2π-periodic function f , we have that

SNf(x) =

∫ π

−π
DN (x− y)f(y) dy (4)

where DN (x) :=
sin((N+ 1

2
)x)

2π sin(x
2
) is the Dirichlet kernel. Indeed, (4) just follows from observing that

from the geometric series

∑
|n|≤N

einx =
N∑
n=0

einx +
N∑
n=1

e−inx =
1− ei(N+1)x

1− eix
+

1− e−i(N+1)x

1− e−ix
− 1 =

e−iNx − ei(N+1)x

1− eix

=
e−i(N+ 1

2
)x

e−ix/2 − eix/2
=

sin((N + 1
2)x)

sin(x2 )
.

Hence it suffices to prove that with an appropriate choice of {Nk}∞k=1 (notice that DN (−y) =

DN (y))

lim
N→∞

SNf(0) = lim
N→∞

∫ π

−π
DN (y)f(y) dy = lim

N→∞

∫ π

−π

sin((N + 1
2)y)

2π sin(y2 )
f(y) dy = +∞ . (5)

Step 1: We prove that for all N ∈ N, we have the lower bound∫ π

−π
DN (y)ψN (y) dy =

1

2π

∫ π

−π

sin2[(N + 1
2)y]

| sin(y2 )|
dy ≥ log(N + 1)

π
. (6)
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Observe that by definition and since the integrand is even, we have∫ π

−π
DN (y)ψN (y) dy =

1

2π

∫ π

−π

sin2[(N + 1
2)y]

| sin(y2 )|
dy =

1

π

∫ π

0

sin2[(N + 1
2)y]

sin(y2 )
dy .

Notice that sin(y2 ) ≤ y
2 for y ∈ [0, π] , so that we can estimate from below

∫ π

0

sin2[(N + 1
2)x]

| sin(x2 )|
dx ≥ 2

∫ π

0

sin2[(N + 1
2)x]

x
dx

= 2

∫ (N+ 1
2
)π

0

sin2(y)

y
dy

=

N∑
l=1

2

∫ lπ

(l−1)π

sin2(y)

y
dy +

∫ (N+ 1
2
)π

Nπ

sin2(y)

y
dy.

Notice that ∫ lπ

(l−1)π

sin2(y)

y
dy ≥ 1

lπ

∫ lπ

(l−1)π
sin2(y) dy︸ ︷︷ ︸

=π/2

=
1

2l
.

Thus,

∫ π

0

sin2[(N + 1
2)x]

sin(x2 )
dx ≥

N∑
l=1

1

l
=

N∑
l=1

∫ l+1

l

1

l
dy ≥

N∑
l=1

∫ l+1

l

dy

y
=

∫ N+1

1

dy

y
= log(N + 1).

We conclude (6).

Step 2: We prove that for all N ∈ N and ε > 0, there is M0 ∈ N such that for all M ≥M0∣∣∣∣∫ π

−π
DM (y)ψN (y) dy

∣∣∣∣ =

∣∣∣∣∣ 1

2π

∫ π

−π

sin[(M + 1
2)y]

sin(y2 )
ψN (y) dy

∣∣∣∣∣ ≤ ε.
The claim follows from the Riemann-Lebesgue lemma if we manage to prove that

x 7→ ψN (x)

sin(x2 )

is a function in L1(−π, π). It is sufficient to show that this function is bounded. Note that it is

continuous on (−∞, 0) ∪ (0,+∞) and using De L’Hopital’s rule we can show that the function is

bounded by 2N + 1. Thus, the claim follows.

Step 3: We recursively choose the sequence {Nk}∞k=1 such that (5) holds.

Let us select the sequence {Nk}∞k=1 recursively. Indeed, assume that we’ve already selected

N1, . . . , Nk−1 . We then choose Nk such that

(i) ak
log(Nk + 1)

2
> k ,

(ii) for all l < k, it holds that ∣∣∣∣∣ 1

2π

∫ π

−π

sin[(Nk + 1
2)x]

sin(x2 )
ψNl dx

∣∣∣∣∣ ≤ 1.
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The fact that we can select an Nk ∈ N satisfying (i) and (ii) follows from Step 2. Moreover, with

this choice we have, recalling (4), that

SNjf(0) =
1

2π

∫ π

−π

sin[(Nj + 1
2)x]

sin(x2 )
f(x) dx

=

j−1∑
k=1

ak
1

2π

∫ π

−π

sin[(Nj + 1
2)x]

sin(x2 )
ψNk(x) dx

+ aj
1

2π

∫ π

−π

sin[(Nj + 1
2)x]

sin(x2 )
ψNj (x) dx

+
∞∑

k=j+1

ak
1

2π

∫ π

−π

sin[(Nj + 1
2)x]

sin(x2 )
ψNk(x) dx.

Note that the permutation of the sum and the integral above was permitted because of the uniform

convergence. Now we have

• for k < j due to the requirement (ii) that∣∣∣∣∣ 1

2π

∫ π

−π

sin[(Nj + 1
2)x]

sin(x2 )
ψNk(x) dx

∣∣∣∣∣ ≤ 1,

• for k = j due to Step 1 that

1

2π

∫ π

−π

sin[(Nj + 1
2)x]

sin(x2 )
ψNj (x) dx ≥ log(Nj + 1)

π
;

• for k > j again due to requirement (ii) that∣∣∣∣∣ 1

2π

∫ π

−π

sin[(Nj + 1
2)x]

sin(x2 )
ψNk(x) dx

∣∣∣∣∣ =

∣∣∣∣∣ 1

2π

∫ π

−π

sin[(Nk + 1
2)x]

sin(x2 )
ψNj (x) dx

∣∣∣∣∣ ≤ 1.

Thus, finally, we get using (i) that

SNjf(0) ≥ −
j−1∑
k=1

ak + aj
log(Nj + 1)

π
−

∞∑
k=j+1

ak ≥
j

π
−
∞∑
k=1

ak → +∞

as j →∞ as desired.
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