Serie 11
Analysis IV, Spring semester
EPFL, Mathematics section, Prof. Dr. Maria Colombo

e The exercise series are published every Monday morning at 8am on the moodle page of the course. The
exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

e Starred exercises (x) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. Let —oo < a < b < 0o and a € (0,1]. For f € C%*([a,b]), we define || f||co.a(qp) =
[ flleofap) + [flcoa(ap) » where

[f]COaa([mb]) = sup M

a<z#y<b |$ - y|a
(i) Show that || - [|co.a(f,p)) is a norm on C%%([a, b]).
(i) Let f,g € C%([a,b]). Show that their product fg € C%*([a,b]).

(iii) Show that if 0 < a < 8 < 1, then

C([a,8]) € C**([a, b)) € C¥([a,b]) € C*([a,b]) € C°([a, ).

(iv) Let a € (0,1] and define f,: [0,1] — R by fu(z) := 2%. Show that f, € C%%(]0,1]).

(v) Show that the function f: [0,1/2] — R defined by

fa) = 0 if x =0,
T S jlogs iz e (0,12,

is continuous but not Hélder continuous for any « € (0, 1].

1 -t

W} and use it to deduce the result.

Hint: For (iv), compute the quantity sup;c (g 1) {

Solution:

(i) Let f,g € C%*([a,b]) and a € R. Since || - [|co(q4)) is @ norm on C%([a,b]), we have that
| fllco.e(jap)) = 0 implies f = 0. On the contrary, if f =0 then || f||co.« ([, = 0. Thus,

[ fllcoe(apy =0 if and only if f = 0.




Then, since both || - [[co((a,5) and [f]co.((ep)) are absolutely homogeneous, we have

lafllcoe(asy = lalllfllcoe(ap)-

It remains to prove that

1+ gllcoa(ap) < [Ifllcoa(ap + 1gllcoe(as)- (1)

We already have
1f + gllcoap) < I fllcoqas) + 9llco(ay)s

since || - ||co(fq,p)) is @ norm. Moreover, for any a < x # y < b, we have

I(f+9)@) = (f+9)W| _|f(x)+g(@)— fly) —9(y)l

|z —y|* B |z — y|o
§|ﬂw—fwn+mu»—mm|

|z — y|« |z — y|*

< [fleoa(ap) + [9lcoa(ap)-
Therefore, by taking the supremum over all x and y, we obtain
[f + glcoea(ap) < [flcoa(a) + [9]coe ()
which gives (1).

(i) It is clear that fg € C°([a,b]) and || fgllcoqae < IIfllcoqap) l9llco(a). In addition, for any
a <z #y<b, we have

[f(@)g(z) — fW)gW)| _ |f(x)g(x) — f(x)g(y) + f(x)g(y) — f(y)g(y)]

|z —yl a |z — gyl
g(x) —gly f(x) = fly
< ||f”CO([a,b])|(|$)_y|i)| + |gHCO([a,b])|(|x)_y|c(,)|

< [ flleoqaplglcoe(as) + lgllcogap) [flooe(ay)-

By taking the supremum over all x # y, we obtain

[f9lcoa(ap) < I1flleoqas glooe(ap) + 19llcoas) [ flooe (as)-
We therefore get that fg € C%%([a,b]) and
1 f9llco.e(ap) = I1fgllcoap) + [fglcoe(ap)

< I fllcoqapnlgllcogap) + 1 fllco(amlglcoeqap) + N9llcoas) [flooe (am)
< | fllco.e(faspllgllcoeiap)-




(iii) (a) We prove C%%([a,b]) C C°([a,b]): Assume that f € C%*([a,b]). We then have
[f(x) = W] < [fleoa(aplz —yl* Va,y € [a,b],
which implies that f is continuous. Thus, f € C%([a, b]).

(b) We prove C%8([a,b]) c C*([a,b]): For any f € C%5([a,b]), we have

wp (HEION_ o, (U0l s ")

a<z#y<b |$ - y|a a<z#y<b ’:L' - y|5

< [flcos (ap (b —a)’ e

From this it follows that f € C%%([a,b]) and

| fllcoeap)y = I fllcoap) + [fleoe(ap)
<N flleoqap) + [Fleos (apy @ — @)
< (L4 (b= a) ") fllcos (as)-

(c) We prove C%'([a,b]) € C%P([a,b]): This is a just special case of (b).

(d) We prove C*([a,b]) € C%'([a,b]): Let f € Ct([a,b]). For any x,y € [a,b], we have

Fa) = 1) = [ G+ tla =) de
1
= /0 fly+t@—y)(z—y)dt.

Hence we have

|f(x) = fly)| < Jnax |F )z =yl < I fleraople = yl,

from which we deduce that f € C%'([a,b]) and [f]co(ja) < IIfllct(fap))- As a conse-

quence,

I fllcorqap) = I llcoqan) + ooty < 2l flle(ap)

1—t*
(iv) We begin by computing the quantity sup,¢ 1) {(1_15)0‘} . We claim that for all a € (0, 1],
we have
gt)=1—-t*—(1—-t)* <0 Vtelo,1]. (2)

Indeed, notice that g is convex (this can be shown by computing the second derivative and

noting that it is positive) and g(0) = ¢g(1) = 0 which implies (2), so that

sup {1—”}< sup {(1—t)°‘}_
te0) L(L =) 7 401y L(1—1)




From this we obtain

sup {MM}_ sup {|xa_ya|}

0<z#£y<l |z — y|® 1>e>y>0 (|2 —y[*

o {|xar|<1—<y/x>a>|}

1>2>y>0 lz|[1 — y /x|

= sup {1_ta }—1
te(0,1) (1_t)a

Thus, fo € C%%([a,b]).

(v) We easily see that f is continuous since logx — —oo as x — 0. Now assume for a contradic-
tion that there is a € (0,1] such that f € C%([0, 3]). In other words, there exists C, > 0

such that .
logx:|f(x)—f(0)|§0a:ca Va € (0,1/2).
But this implies that
-1
— >a2%logz  Vze(0,1/2),
Co

which is impossible since lim,_,g z%logx = 0.

Exercise 2. Suppose that f : R — C is periodic and of class C*. Show that

fn) = o(1/n]*),

that is |n]kf(n) goes to 0 as |n| — oo.

Solution: Let f € C* be L-periodic. We may assume without loss of generality that L = 1 (if
not, consider f (z) := f(Lx) ). Using integration by parts, we get

! b —1 om 1 o 2mi
—/ fiz)z——e=mn* dx] = — / fi(x)e ™ du.
0 0 2min 2min Jy

1
~ 4 1 .
f(n) _ /0 f(x)ef%mnz dr — |:f($) 27Tinef27rzn:v
More generally by integrating by parts k£ times

~ 1 —

1 ! .
_ (k) —2mine dr = (k) .
f(n) (27_[_7:71)]C /(; f (m)e €z (27Tin)kf (n)
Since f € C*, we may apply the Riemann-Lebesgue lemma to f*) and we deduce that

lim | (n)| = 0
|n|—o0

and therefore
lim |n|¥f(n) =0.

[n]—o0




Exercise 3. Let f be 2m-periodic and integrable on [—m,7]. We use the notation fn = cn =
ffﬂ f(z)e "o dx.

(i) Show that
fln) = —177/ flz 4 7m/n)e” ™ dg

—T

and hence .

J?(”) - L / [f(z) — f(z 4+ 7/n)]e” """ dz.

—T

(i) Now assume that f satisfies a Holder condition of order 0 < a < 1, namely that there exists
C > 0 such that
f@+h)— f@z)| <CIh® ¥a,h eR.

Use (i) to show that
f(n) = O/[n[*).
(iii) Prove that the result cannot be improved by showing that for 0 < a < 1 fixed, the function
flz) =) 27heei?', (3)
k=0
satisfies
f@+h) — f@)| < CIl® YheR
and f(N) = 1/N® whenever N = 2.

Hint: For (iii), break up the sum as follows

fath) —fl@)y= > + > .

2k<1/|n|  2k>1/|A|

To estimate the first sum use the fact that |1 — | < |§| whenever  is small. To estimate the second

sum, use the obvious inequality |e®* —e¥| < 2.

Solution:

(i) We have, after a change of variable and using the periodicity of f that

~ 1 [7 X 1 (7 o 1 [7 , .
f(n) = (x)e—zna: dr = — — f(l,>e—znxez7r dr — — — f(l,)ef'm(zfﬁ) dx
2m —T 2m —r 2 —r
_ _i ﬂi% f( _i_z)efinyd _ _1/# f(x—i-E) efinzdx
o o2r) = YT YT o o n ’




" 4r

Foy+ 5] =3 |55 [ sweran— o [
’ [f(x) — f(z —7/n)]e”™ dz.

f (ac + %) e ine dm]

(ii) With the rewriting of (i), we can use the Holder condition of order « to estimate

Thus, f(n)

1

= O(1/[n|*).

(67

T 1

Cr®

Fool < - [ U@ = f@emmlde < o [ of e = 5o

We easily see that f(N

nf* = 2 |n|

) = 1/N® whenever

(iii) Fix 0 < a < 1 and consider f defined in (3).
N = 2%, We are left to show that f satisfies a Holder condition of order a. We write

22 k:a 12’“ (z+h) 22 ka 12k
Z 2—ka 2k Z 9- ka 12k

26<1/|h| 2k>1/|h

fla+h) — f(z) D)

2’%

~1).

More precisely, let j be the smallest integer such that 2/ > 1/|h|, i.e. 2771 < 1/|h|. Then,

using the geometric series,

]71 o0
[fl@+h) — fla)] =Y 27hajei?e] |2 1] 4§ okeei2te| 2" |
— —_———

k=0 <2k k=j <2

-1
< Z Q_ka2k’h‘ +2 i 2—ka

k=0 k=j

7—1 0
<2179y " plmelk omjag N gmhe

k=0 k=0

N — N —

9i(1—a) _ 1 2
21704 -1 _1 — 2«

_ 2—ja D) 21+a
2l-a 1

2 21+a
pima 1 Ta 1

Since C'is independent of h and x this proves that f satisfies a Holder condition of order «.

<.

+20é_

1) — ‘ ’7
where we set

C=Ca):= >0.

Exercise 4.

(i) Compute the Fourier series of the 27m-periodic odd function f defined by f(z) = (7 — x) on

[0, 7.



(ii) Using (i) and Parseval’s identity, deduce the value of the series

Z 2k—1

k:l

Solution:

(i) First, since f is odd, a, = 0 for all n > 0. Integrating by parts several times, we get

bn:1/qunmm@dx:szﬂn—xnmm@dx

T ) T

= % :—1x(7r — ) cos(nx)} ' + /07r l(TF — 2x) cos(nz) dz

n 0 n
=0
2| 25|+ [ 2 sinire)
== 7 — 2z) sin(nx — sin(nz) dz
7| [n2 o Jo n?
=0
2 2 2 2
e A (O AV RV S
- 3cos(nx)]0 7r( n3< ) +n3>
Thus,
; 4 ( 1™ 0 if n is even,
= 1—— —
" S ifnisodd.
™m

The Fourier series is therefore given by
Ff(z) =2 EOO: b n((2k - 1))
w2k - 1)° ‘

(ii) From Parseval’s identity and the fact that f? is even, we deduce that

f(z)?dx = 2 /Oﬁ(sc(w —z))%dx

™

64 >
(% Z
k=1

2 1 4

Thus,
6

i 1 o
9L _ 16 960"
P (2k —1) 960




Exercise 5. Let f € C°([0,1]) be a 1-periodic function and 7 an irrational number. Show that

1 [
lim z::lf(m')—/o f(x)dx

N—oo N
n

and that this result does not hold when 7 is rational.
Hint:  Begin by showing the result for functions of the form f(z) = €™ for some k € Z and

conclude by approximation.

Solution: As a counterexample with 7 rational we can take
f(z) =sin?(2rz) and 7 =1.

Now we prove the result in several steps.
Step 1: We begin by showing the result for functions of the form f(x) = e*™* for k € 7Z.
If f =1 the result is trivial. With f(x) = 2™ where k # 0, we have

1
/ ekax dr =0
0

and since 7 is irrational e2™*7 =£ 1 so that by the geometric series

1 N 1 N N A e2mikT(N+1) B o2mikT | _ o2mikNT
N2 =g T =g e Y =y e

n=1 n=1
Since , '
e27rzk7' 1 1— eQWZkNT 2
N < N and 1 — e2mikT < ‘1 _ e27rik:7"
we deduce that
1 N
1 — =

Step 2: We now show the result for trigonometric polynomials.

Let f be a trigonometric polynomial, that is f is of the form

f(z) = Z are®™*®  wwhere ay, € C for all k.
|k|<M

That the result holds for f is an immediate consequence of the previous step and linearity of the




sum and integral. In other words, using the previous Step, we have

N N
1 1 ,
li = 1 - 2mikx
Aim 5D fnr) = lim Y age
n=1 n=1 |k|§M

1 N
: 2mikx
= ap lim — E e
Z kN—>ooN
|k|<M n=1

1
— Z ak/ eszkxdx
0

|kl<M

1
:/ Z akGkaw dr
0

|k|<M

- /01 (@) da.

Step 3: We now show the result for general continuous functions.

From the Weierstrass’ Theorem, we know that the trigonometric polynomials are dense in the space
C°([0,1]), so for any f € C°([0,1]) and & > 0 arbitrary, we know that there exists a trigonometric
polynomial P such that ||f — P|co < . As a consequence, we have thta

/01 f(x)dm—/olP(:v)dm

and that for all n > 1 |f(n7) — P(n7)| < e. The latter implies that for all N > 1, we have

<e€

1

N <e€

1 N
f(nt) — N Z P(nt)

1 k=1

WE

i

Since

- o
lim ;P(m-)—/o P(x)dx,

N—ooco N
n

there is N; > 0 such that for all N > N,

1 & 1
N;P(nﬂ - /0 P(z)dz| < e.
Finally, we deduce that for all N > N,
1 & 1
v 2 fom) = [ f@)de
1 & 1 < 1 & 1 1 1
<|% ;f(nr) - ;P(Tw) + N;P(m') - | Paydsl+] [ pey i - /0 P(x)dz| < 3e.
Since € was arbitrary, we deduce that
1 1
Jim = 7 f(nr) = | f@)dr.




Exercise 6 (x). Construct a continuous function whose Fourier series diverges at some point.

Hint: You may work on [—,7]. For N € N, we define ¢y () := sgn(z) sin((N + 3)z) and choose the
ansatz f(x) := > oo apn, (x) for a sequence {ay}72, of positive real numbers (what assumption on
{ar} do you need? ) and sequence {Nj}32, of integers. Choose the sequence N}, carefully, depending

on {ay}k, such that the Fourier series diverges in some point.

Solution: Let {a;} be a sequence of positive real numbers with "7, ar < 4o00. For N € N we
define ¢y () := sgn(z) sin((N + 3)z) . We make the ansatz

@) =3 axon, (@)
k=1

for some sequence {N;}72, in N yet to be chosen. Observe that since ¢, is bounded by 1 and
continuous for every N € N and since > ;2 ar < 0o, we have that limy_,« Zi\;l arn, ()
converges uniformly. In particular, it follows that f is continuous. We know claim that there
exists a choice of the sequence {NN}}7°, such that the Fourier series diverges in 0. More precisely,

we will prove that with an appropriate choice of {N;}72,, that
lim Sy f(0) = +oo,
N—o00

where Sy f(2) == 32, <y f(n)e™* denotes the Nth partial Fourier sum. Recall from the lecture

(or observe) that that for a continuous, 27-periodic function f, we have that

™

Snf(z)= [ Dn(z—y)f(y)dy (4)

—T

sin((NJr%):p)
27 sin(3)

from the geometric series

where Dy (z) := is the Dirichlet kernel. Indeed, (4) just follows from observing that

N N 1 — i(N+Dz | _ —i(N+1)z e—iNz _ i(N+1)z

inT inx —inz — —
Ze ngoe +1;€ 1 — e + 1 — etz 1 — etz

In|<N

e—iz/2 _ giz/2 Sin(%)

em Nt sin((N + 1)z)

Hence it suffices to prove that with an appropriate choice of {Nj}3, (notice that Dy(—y) =
Dn(y))

IS T o N 1
Jim $570) = tim_[* Dy sy = Jim WWf(y)dszroo. (5)

Step 1: We prove that for all N € N, we have the lower bound

T ™ sin? 1 o
Dx(undy = 5 [ T2 gy > D, ©)
i - 2

10



Observe that by definition and since the integrand is even, we have

i 1 (™ sin?[(N + 3)y] 1 /™ sin?[(N + 1)y
D dy=— [ LT, o [P PERLT TR,
D@y =o0 | amy W/O sm() 0
Notice that sin($) < § for y € [0, 7], so that we can estimate from below
/7r sin2[(.N —g&c— 3)z] o > 2/” sin?[(N + )] "
0 | sin(3)] 0 T
_ 2/(N+é)7r Sinz(y) dy
0 Y
_ N 2/“ sin?(y) dy + /(NJré)7r sin(y) dy
=1 (=D Yy Nm Yy
Notice that . ) l
™ 1 ™
/ Sin (y) dy > / Sin2(y) dy _
(-)r Y I Ju—1)x 2
=%
Thus,
™ sin?[(N + %)l‘} N 1 Nl 1 gy N+ gy
= dx > - = / —dy > / —/ — =log(N +1).
/0 sin(3) ; ! ; l l ; ! Y 1 ( )

We conclude (6).
Step 2: We prove that for all N € N and € > 0, there is My € N such that for all M > My

g T sin z
[ ouwenwa] = |- [ i | < -

The claim follows from the Riemann-Lebesgue lemma if we manage to prove that

Y (z)

—
T sin(Z)

is a function in L!'(—m, 7). It is sufficient to show that this function is bounded. Note that it is
continuous on (—o00,0) U (0, +00) and using De L’Hopital’s rule we can show that the function is
bounded by 2N + 1. Thus, the claim follows.

Step 3: We recursively choose the sequence { N}, such that (5) holds.

Let us select the sequence {Nj}72; recursively. Indeed, assume that we’ve already selected
Ny, ..., Ni_1. We then choose N such that

log(Ny + 1)
ok T

k
s

(i) a
(ii) for all I < k, it holds that

T o 1
1/ i 2] Y, dz| < 1.

2 J_. sin(%)

11




The fact that we can select an Ny € N satisfying (i) and (ii) follows from Step 2. Moreover, with

this choice we have, recalling (4), that

T sin 4+ Dz
Sy, f(0) = 1/ Mf(x) dx

27 ) . sin()
Jj—1 . 1
1 (7 sin[(N; + 3)z] J
o ;ak%r /,r sin(3) Ny () de
1 [T sin[(N; + 1)z
ta 2T /7r sm(g) wNj () dr
0 T & N 1
5 [
k=j+1 - 2

Note that the permutation of the sum and the integral above was permitted because of the uniform

convergence. Now we have

e for k < j due to the requirement (ii) that

L7 sin(N, + Dl
— dr| <1
o / sin() Y (@) dz) <1,
e for k = j due to Step 1 that
T o 1
1 sm[(].\fj + 3)z] e (2) de > log(N; + 1);
21 ) sin(§) I 7r

e for k > j again due to requirement (ii) that

Y, (x) dx

T sin D
1 / [(N; + 3)z] U, (z) de| < 1.

27 sin(%)

1 /W sin[(Ng + 3)z]

o sin(%)

2T

Thus, finally, we get using (i) that

- 10gN+1 >
S 02~ ata SR SRR
k=1 k=j+1

as j — oo as desired.
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