
Serie 10

Analysis IV, Spring semester

EPFL, Mathematics section, Prof. Dr. Maria Colombo

• The exercise series are published every Monday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Monday at 8am via moodle. They will be marked with 0,

1 or 2 points.

• Starred exercises (?) are either more difficult than other problems or focus on non-core materials, and as

such they are non-examinable.

Exercise 1. We want to generalise the results for 1-periodic functions from the lecture to periodic

functions with period not necessarily equal to 1 . To this end, let L > 0 and let f : R → C be a

complex-valued, continuous and L-periodic function. For n ∈ Z, we define

cn =
1

L

∫ L

0
f(x)e−

2πinx
L dx.

(i) Show that the series
∞∑
−∞

cne
2πinx
L

converges to f in L2(0, L). More precisely, show that

lim
N→∞

∫ L

0

∣∣∣f(x)−
N∑

n=−N
cne

2πinx
L

∣∣∣2 dx = 0.

(ii) If the series
∑+∞

n=−∞ |cn| is absolutely convergent, show that

+∞∑
n=−∞

cne
2πinx
L

converges uniformly to f .

(iii) Show that

1

L

∫ L

0
|f(x)|2 dx =

∞∑
n=−∞

|cn|2.

Hint: For (iii), apply Parseval’s identity to the function x 7→ f(Lx).

Solution:
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(i) Consider the function g : R→ C given by g(x) = f(Lx) which is 1-periodic. Let {an}∞n=−∞
be the Fourier coeffcients of g. From the Fourier theorem we know that

lim
N→∞

∫ 1

0

∣∣∣g(x)−
N∑

n=−N
ane2πinx

∣∣∣2 dx = 0.

Notice that

an =

∫ 1

0
g(x)e2πinx dx =

1

L

∫ L

0
f(x)e

2πinx
L dx = cn.

Thus,

lim
N→∞

∫ 1

0

∣∣∣f(Lx)−
N∑

n=−N
cne2πinx

∣∣∣2 dx = 0

which implies, with the change of variables y := Lx, that

lim
N→∞

∫ L

0

∣∣∣f(x)−
N∑

n=−N
cne

2πinx
L

∣∣∣2 dx = 0.

(ii) Consider the Nth partial Fourier sum SNf : R→ C given by

SNf(x) =

N∑
n=−N

cne
2πinx
L .

We will prove that {SNf}∞N=1 is a Cauchy sequence in (C(R), ‖ · ‖∞). By the absolute

convergence of {cn}n∈Z, there exists for any ε > 0 a large M such that
∑
|n|≥M |cn| < ε.

Then, for any n ≥ m ≥M ,

|Snf(x)− Smf(x)| =

∣∣∣∣∣ ∑
m<|k|≤n

cke
2πikx
L

∣∣∣∣∣ ≤ ∑
m<|k|

|ck| < ε for all x ∈ R.

Thus {SNf}∞N=1 is a Cauchy sequence in (C(R), ‖ · ‖∞) and therefore it converges to some

function g ∈ C(R). Since SNf → g uniformly, SNf → g in L2(0, L) as well. Thus, f = g

in L2(0, L), which proves that they agree a.e. but since they are both continuous f = g

everywhere (see Exercise sheet 8) and hence the series converges uniformly to f .

(iii) Let {an}∞n=−∞ be as in (i). Using Parseval’s identity,

∫ 1

0
|f(Lx)|2 dx =

∫ 1

0
|g(x)|2 dx =

∞∑
n=−∞

|an|2 =
∞∑

n=−∞
|cn|2.

We conclude after the change of variables y := Lx that

1

L

∫ L

0
|f(x)|2 dx =

∞∑
n=−∞

|cn|2.

Exercise 2. Fourier series sometimes yield an elegant way to compute the value of a series.

(i) Compute the Fourier series of the function defined by f(x) = (2x − 1)2 on [0, 1[ and extended
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to a 1-periodic function on R .

(ii) Compare f and its Fourier series Ff on [0, 1] .

(iii) Use (ii) to compute the value of the convergent series

∞∑
n=1

(−1)n

n2
and

∞∑
n=1

1

n2
.

Solution:

(i) We compute the Fourier coefficients. Observe that f is even with respect to 1
2 hence bn = 0,

for all n ≥ 1 . As for the other coefficients, we have

a0 = 2

∫ 1

0
(2x− 1)2 dx =

∫ 1

−1
u2 du =

2

3
.

Integrating by parts twice, we get

an = 2

∫ 1

0
(2x− 1)2 cos(2πnx) dx

= 2

([
1

2πn
(2x− 1)2 sin(2πnx)

]1
0︸ ︷︷ ︸

=0

−
∫ 1

0

2

πn
(2x− 1) sin(2πnx) dx

)

= − 4

πn

∫ 1

0
(2x− 1) sin(2πnx) dx

=
4

πn

([
1

2πn
(2x− 1) cos(2πnx)

]1
0

−
∫ 2π

0

1

πn
cos(2πnx) dx︸ ︷︷ ︸
=0

)

=
4

(πn)2
.

Thus, the Fourier series of f is given by

Ff(x) =
1

3
+
∞∑
n=1

4

(πn)2
cos(2πnx).

(ii) Since f ∈ C0,1([0, 1]), the Dirichlet theorem gives that the Fourier series converges pointwise

for any x ∈ [0, 1]. Hence we have for all x ∈ [0, 1]

f(x) = Ff(x) =
1

3
+
∞∑
n=1

4

(πn)2
cos(2πnx). (1)

(iii) Evaluating (1) in x = 1
2 , we get

0 = f
(1

2

)
=

1

3
+

∞∑
n=1

4

(πn)2
(−1)n,

3



which implies
∞∑
n=1

(−1)n

n2
= −π

2

12
.

Again, evaluating (1) in x = 0, we get

1 = f(0) =
1

3
+

∞∑
n=1

4

(πn)2
,

which implies
∞∑
n=1

1

n2
=
π2

6
.

Exercise 3. We have seen conditions that ensure the pointwise convergence of the Fourier series - but

does it converge also absolutely? In general, this is not the case, as the following example illustrates.

Let [a, b] ⊆ [0, 1] and consider the indicator function f(x) = 1[a,b](x).

(i) Compute the Fourier series of f .

(ii) If a 6= 0, b 6= 1 and a 6= b, show that the Fourier series doesn’t converge absolutely; however, it

converges pointwise for every x.

(iii) What happens if a = 0 and b = 1 ?

Solution:

(i) We begin by computing the Fourier coefficients:

c0 =

∫ 1

0
f(x) dx =

∫ b

a
dx = b− a

cn =

∫ 1

0
f(x)e−2πinx dx =

∫ b

a
e−inx dx =

[
−1

2πin
e−2πinx

] ∣∣∣∣∣
b

a

=
1

2πin
(e−2πina − e−2πinb).

Thus, the Fourier series is given by

Ff(x) = b− a+
∑
n 6=0

e−2πina − e−2πinb

2πin
e2πinx.

(ii) Notice that

e−2πina − e−2πinb = e2πin
b+a
2 (e2πin

b−a
2 − e2πin

a−b
2 ) = 2ie2πin

b+a
2 sin (πn(b− a)) .

Thus,

|cn| =
∣∣∣∣e−2πina − e−2πinb

2πin

∣∣∣∣ =
1

πn
|sin (πn(b− a))| = 1

πn
| sin(nθ)|
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where θ := π(b− a). Since θ < π, there exists N large enough such that for all k ≥ 1, there

exists n ∈ [Nk + 1, N(k + 1)] such that | sin(nθ)| > 1/2. Thus,∑
n∈Z
|cn| =∞,

and therefore the series does not converge absolutely. Alternatively, it is enough to recall

from the lecture that absolute convergence of the series
∑

n∈Z cn would imply that the Fourier

series converges to f uniformly. The latter is however impossible as f is not continuous.

Finally, we show that the series converges pointwise. Indeed, the quantities

lim
x>
→
x0
f(x) and lim

x<
→
x0
f(x)

are well-defined for every x0. Thus, since f is continuously differentiable everywhere except

in a and b, it follows from Dirichlet’s theorem that the Fourier series converges pointwise.

More precisely, we have that pointwise

Ff(x) =


1 if x ∈ (a, b)

0 if x ∈ [0, a) ∪ (b, 1]

1
2 if x ∈ {a, b} .

(iii) If a = 0, b = 1, cn = 0 for all n ∈ Z \ {0}, so that for every x ∈ [0, 1]

f(x) = 1[0,1](x) ≡ 1 = c0.

Exercise 4. We consider the so-called sawtooth function, that is the 2π-periodic function f defined

by

f(x) =


−i(π + x) −π < x < 0,

0 x = 0,

i(π − x) 0 < x < π.

(2)

(i) Recall Exercise 1 and compute the Fourier series Ff .

(ii) Compare Ff and f .

(iii) Can we differentiate term by term the Fourier series, i.e is the derivative of f equal to the sum

of the derivaties of every term in the Fourier series?

Solution:

(i) Observe that from Exercise 1, we know that the Fourier coefficients of a 2π-periodic function
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f : R→ C are given by, for n ∈ Z,

cn =
1

2π

∫ 2π

0
f(x)e−inx dx =

1

2π

∫ π

0
f(x)e−inx dx+

1

2π

∫ 0

−π
f(y + 2π)e−in(y+2π) dy

=
1

2π

∫ π

0
f(x)e−inx dx+

1

2π

∫ 0

−π
f(y)e−iny dy =

1

2π

∫ π

−π
f(x)e−inx dx ,

where in the second equality, we used the change of variables y := x− 2π and in the third,

we used the 2π-periodicity of the integrand. As odd function, f has average 0 and hence

c0 = 0,

and for n 6= 0,

cn = − i

2π

∫ 0

−π
(π + x)e−inx dx+

i

2π

∫ π

0
(π − x)e−inx dx.

We compute these two integrals separately:∫ 0

−π
(π + x)e−inx dx = (π + x)

1

−in
e−inx|0−π −

1

(−in)2
e−inx|0−π = − π

in
− 2

(in)2
,

∫ π

0
(π − x)e−inx dx = (π − x)

1

(−in)
e−inx|π0 −

−1

(in)2
e−inx|π0 =

π

in
− 2

(in)2
.

Thus,

cn =
1

n
.

We conclude that the Fourier series of f is given by

Ff(x) =
∑

n∈Z\{0}

einx

n
= 2i

∞∑
n=1

sin(nx)

n
.

(ii) Since f is piecewise continuous and continuously differentiable except in x = 0, we deduce

from Dirichlet’s theorem that pointwise

Ff(x) =

f(x) if x 6= 0

1
2(limx→0+ f(x) + limx→0− f(x)) = 0 = f(0) ifx = 0 ,

hence Ff(x) = f(x) pointwise everywhere.

(iii) We observe that f ′(x) = −i for all x 6= 0 . If, however, we differentiate the Fourier series

term by term, we would get

d

dx
Ff(x) = 2i

∞∑
n=1

cos(nx) ,

which doesn’t converge since limn→∞ cos(nx) 6= 0 . Hence, we cannot differentiate the Fourier

series term by term (and in fact, since f is not continuous in 0, f doesn’t verify the criterion

of the lecture which allows to differentiate the Fourier series term by term.)
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Exercise 5 (?). We have seen, by means of the Fourier series, that trigonometric polynomials are

dense in the space of continuous, periodic functions. This raises the question whether all trigonometric

series are the Fourier series of some continuous and periodic function. To answer this question, let us

consider again the 2π-periodic sawtooth function introduced in (2) and recall its Fourier series that

you computed in Exercise 4.

We want to understand what happens if we break the symmetry between the frequencies einx and

e−inx which appear in the Fourier expansion. Consider therefore the series

−1∑
n=−∞

einx

n
, (3)

and prove that it is no longer the Fourier series of a bounded function. In particular, this series is an

example of a trigonometric series which is not a Fourier series.

Hint: Argue by contradiction. Assume that (3) is the Fourier series of a bounded function f . Consider

the Cesaro means ΦNf(x) = 1
N

∑N−1
j=0 Sjf(x) and recall their connection with the Fejer kernel.

Solution: Suppose by contradiction that (3) is the Fourier series of a bounded function f . Let C

be the constant such that |f | ≤ C everywhere. The N -th partial Fourier sum is given by

SNf(x) =
∑

−N≤n≤−1

einx

n
.

Now, if SN → f pointwise as N →∞, then the Cesaro means given by

ΦNf(x) =
1

N

N−1∑
j=0

Sjf(x)

would converge to f(x) as well. Therefore it would be interesting to look at what happens with

the Cesaro means in this specific case. Recall that the definition of the Fejer kernel (here in its

2π-periodic version) is given by

FN (x) =
1

2π

N∑
n=−N

(
1− |n|

N

)
einx

and that we have seen in Exercise sheet 9 that

FN (x) =
1

2π

1

N

∣∣∣∣∣
N−1∑
n=0

einx

∣∣∣∣∣
2

,

which implies FN ≥ 0 ,
∫ π
−π FN (x) dx = 1 and ΦNf(x) = (FN ∗ f)(x) for all x ∈ [−π, π]. Thus,

|ΦNf(x)| ≤
∫ π

−π
|FN (x− y)f(y)| dy ≤ C

∫ π

−π
|FN (x− y)| dy = C. (4)

In this case however, we can compute Cesaro mean explicitly:

ΦNf(x) =
1

N

N−1∑
n=0

∑
−n≤k≤−1

eikx

k
= − 1

N

N−1∑
n=1

(N − n)
e−inx

n
.
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Evaluating in x = 0, we get

ΦNf(0) = − 1

N

N−1∑
n=1

N − n
n

= − 1

N

[
N−1∑
n=1

N

n
− (N − 1)

]
≤ 1−

N−1∑
n=0

1

n

so that

lim
N→∞

ΦNf(0) = −∞,

but this contradicts (4). Thus,
∑−1

n=−∞
einx

n
is not a Fourier series of a bounded function.
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