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Part 1: multiple choice questions (10 points)

e For each question, mark the box corresponding to the correct answer.
e Each question has exactly one correct answer.

e For each multiple choice question, we give :

+1 point if your answer is correct,
0 points if you give no answer or more than one answer, or if your answer is incorrect.

Question 1 : Let A= {x = (21,70,73) ER?: 0< 2y < w3 < w3 < 1}, and define f(z) = 1 for all x € R3.
What is the value of [, fdx ?

[[]1/24.
[ ]1/s.
[]1.

[]1)2

Question 2 : Let f: R — C be a 2w-periodic function. Define for N =1,2,--- and x € R

Sn(z) = Z f(n)e””

Which of the following statements is false ?

[ ] If f(z) = |sin(z)| for € R, then Sy converges to f uniformly on R.

[ ] There exists a (2m-periodic) function f which is Lipschitz continuous, but such that Sy does not
converge to f pointwise as N — —+o0.

[ ] If £ belongs to the space L2( (0,27)) then the sequence (Sy)n admits an almost everywhere convergent
subsequence.

|:| If f is not continuous on R, then the convergence of Sy to f cannot be uniform on R.

Question 3 : Let Q = (0,1). For z € (0,1), define f(z) = z. What can you infer from the Minkowski
inequality 7
gllLz) = 3 gllL2(q) tor all g -
LI+l > 3+ lgll for all g € L*()
LTI+ gllzz) < 5 + lgllzz o) for all g € L2(Q).
L 0f+90220) < 3+ 191132, for all g € L2(Q)
L0+ 9llz2@) < 5 + llgll2@) for all g € L2(Q).

Question 4 : Which of the following statements is true?

|:| If f,g: R — R are simple functions and f(z) > 0 for all € R, then f¢ is a simple function.

|:| If f: R — R is a simple function, then there exists a finite number of reals numbers ¢q,...,cy and a
finite number of disjoint intervals E, ..., Ex for which f(z) = Zf\;l ¢ilp, (x) for all z € R.

|:| There exists a simple function g: R — R and a continuous function f: R — R such that f o g is not
simple.

|:| If f:R — R is a measurable function and a pointwise limit of simple functions, then f is simple.
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Question 5 : Let f : R — C be a 1-periodic function such that f can be written as a pointwise limit of
Fourier series whose coefficients f(n) for n € Z are given by

. 9" ifn >0,
f(”)_{ 0 ifn<o.

Then the function f : R — C is given by

L]
L]
L]
L] f(a

z 4—2cos(27mz)—2isin(27x) 1
5—4isin(2mwx) :
4—2cos(27mz)—2isin(27x) 1
5—4 cos(2mx) :
4—2cos(2rx)+2isin(2wx)
5—4isin(2wx) :
4—2cos(2mx)+2isin(2wx)
5—4 cos(2mx) :

T

T

(z) =
() =
(z) =
() =

Question 6 : For which of the following sequences of measurable functions f, : 2 — R, with  C R
measurable, is it true that
lim [ fo(z)dz=07 (1)
n—oo 0

(x) :== (2™ — 1) log(z) and Q := (0,1).
(] fulz) = 222 and Q= (0,1).

(

(

x) = ﬁg—(’ml) and Q := (0,1).

e~ and Q := (0, 00).

5
S~—
|

Question 7 : Which of the following statements is true?

[ ] If A is a dense subset of R, then either m*(A) = 0 or m*(A) = oc.
|:| If f: R — R is measurable and A C R is measurable, then f(A) is measurable.

|:| If A C R is a non-measurable set and f: R — R is continuous and nondecreasing, then f(A) is not
measurable.

[ ] If C is a subset of R such that m*(AU (BN C))+m*(ANBNC) =m*(A) +m*(BNC) for all sets
A, B C R", then C is measurable.

Question 8 : Which of the following statements is true?
[ ] There is a measurable set A C R with m(A) = 0 such that [, Ia(x)dz # [, 1a(z)dz. Here, 1, is the
indicator function on A, and I, is defined as I4(x) = +o0 if z € A and I4(z) = 0 otherwise.
[ ]I {fn: [0,1] = [0,00)}n>1 is a sequence of nonnegative measurable functions which converges to zero

almost everywhere, then lim,, f[() 1 fn(x)dx = 0.

|:| If {fn : R = R}, is a sequence of nonnegative measurable functions such that lim, fR fn(z)dz =0,
then the pointwise limit of f,, is zero.

[ ] If f: R — R is a nonnegative measurable function, then lim,_, o Jpnlog(1+ %)dl‘ = [ flzx)da.

Question 9 : Let Q be an open set of R. Assume that m(2) < +o00. Which of the following statements is
true ?

[ ] Define for z € R, o(z) = eﬁl{yemykl}(az). If f € CO(R), then f x p € CZ(R).

[ ] The Schwartz space S(R) is not dense in L!(R).

|:| For every f € L?(Q) and every € > 0 there is a measurable set 4 C Q and a constant ¢ € R such that
Hf — C].AHLz(Q) <e.
[ ] For every f € L°°(Q) there exists a sequence {f, }n € C2°(2) such that lim, 4o || fn — fllze=@) = 0.
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Question 10 : Consider the partial differential equation
—Au =0 in R%

Which of the following functions u : R? — R is a solution of this equation ?

y)
y)
u(x,y) = azd — %amZyQ + 2 for all a € R.
y) = ax® — 3axy® + x? — y? for all a € R.
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Part 2: open questions (35 points)
e Please answer the question in the designated empty space below each exercise.

e If you don’t have enough space, you may use the additional empty pages at the end of the exam.
In this case, please mark very clearly (if possible by indicating the page numbers) i) on the page
of the relevant exercise that you are continuing the solution elsewhere and ii) which exercise you are
continuing on the additional pages.

e Your answer should be carefully justified. The derivation of the results must be clear and complete.
e Leave the check-boxes empty; they are used for grading only.

e Any solutions not in the booklet will not be graded.

Exercise 1 (6 points)

|:|o |:|A5|:|1 |:|A5 I:'z |:|.5|:|3 |:|A5|:|4 |:|,5 |:|5 |:|A5|:|G Do not write here.

Let © be a measurable set of R? be such that m(Q) < +oc0.

i. (8 points) Let f,g: Q@ — [0,00] be two measurable functions such that fg > 1 almost everywhere in

). Show that
(@) < ( [ 1(otas) " (f g<x>4/3dx)3/4,

m(@? < [ fa)ds [ glo)is

ii. (3 points) Let f:Q — [0,00] be such that || f|| 1) < 1. Show that

a.

Jim [ |f@)de = m({a € 2 f(a) > 0)).
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Exercise 2 (6 points)
l:,o D,le |:|.5|:|2 D.SDI} |:|.5|:|4 D.st D,sDe Do not write here.

Let f :[0,1] — R be a measurable and absolutely integrable function.

i. (1.5 points) For n > 1 show that the function 2 — f,(z) = (zn+1)?f(z) is measurable and absolutely
integrable in [0, 1].
ii. (1.5 points) For n > 1 and z € [0,1], define g,(x) = (zn + 1)?|f(x)|. Show that the sequence {g, }n

converges pointwise in [0, 1] and compute its limit.

ili. (& points) Assume in addition that f > 0 almost everywhere in [0, 1] and there exists a constant C' > 0
such that f[O.l] (xn +1)2f(z)dz < C for every n > 1. Show that f = 0 almost everywhere in [0, 1].
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Exercise 3 (8 points)

I I I Do not write here
[ Js[_Js [_Js[_Js [_Js[_Jr [ Js[ s '

Let a € R and let f: R — R be a 2w-periodic function such that
a(z+ ) if z € [-m,0)
flx) = ,
—(x—m) if z €[0,7).
i. (1 point) For which value(s) of a € R is the function f even ? For each such a value of a, what can
you infer on the real Fourier coefficients of f 7 Justify.

ii. (2.5 points) Compute the Fourier coeflicients of f and determine the Fourier series of f.

iii. Answer to the following questions:

a. (0.5 point) Provide all values of a € R (if any) for which the Fourier series converges in L?((—, 7)).
b. (1 point) Provide all values of a € R (if any) for which the Fourier series converges pointwise on
R.
c. (0.5 point) Provide all values of a € R (if any) for which the Fourier series converges uniformly
on R.
In each case, justify your answer and determine the limit of the Fourier series in the most

precise and simplified way.

iv. (2.5 points) Compute
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Exercise 4 (6 points)

iii.

l:,o |:|,5|:|1 |:|.5 I:lz D.sDa |:|.5|:|4 D.s Ds |:|,5|:|e Do not write here.

(1 point) State Plancherel’s identity (provide all hypotheses needed for the identity to hold).

ii. (3 points) Prove Plancherel’s identity assuming fer? (R), in addition to the hypotheses stated in i.

Hint: you can use, without proof, that for ¢ € L*(R), [, ¢(x)dx = || [z o(Ax + a)dx for all a € R
and all A € R\ {0}.

(2 points) Compute the value of the integral

/OO (tcos(t) — sin(t))? it

4

—00

Hint: consider the function f(x) = x1(_11)(x) and compute its Fourier transform.
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Exercise 5 (9 points)

[ Jo [ Jsl Il Jal Ja [ Js[ Jo[ Jo[ Jo[ Is
LI Ll oL Jsl Jo [ Js[ Js[ Js[ o

Do not write here.

Let ¢: R — R be continuous, and G: R — R be in S(R). Define Q(t) = fot g(T)dr. Consider the problem

i

iii.

iv.

Oyuly, t) + Oyuly,t) + a(tyu(y. t) = dpu(y,t),  yER,t>0,
u(y,0) = G(y)-
(3.5 points) Use the Fourier transform to show formally that

uly, ) = / REDT2TEC £ de

where R(&,t) = (2mi€)2t + t(2mi€) + Q(2).

(and as a result the solution (2) is well-defined).

(1)

(2)

ii. (1 point) Show that the integrand & — e(ED+2T€U G (€) is absolutely integrable for any fixed ¢ > 0

Additionally, show that u(y,t) = (Kt * G)(y) where, for fixed ¢t > 0, the kernel K;: R — R is given by

o0
Ki(y) = / (R0 +2micy g

— 00

(2 points) Let G(y) = ﬁe‘yz/‘l for all y € R. Show that

L Q-
2y/mVEF 1
Hint: You can use without proof that for any a > 0,b € C,

/OO o—(ag=0)? ge _ VT
a

—00

u(y,t) =

(2.5 points) Fix T > 0, and consider the following PDE, known as the Black-Scholes equation:

2
Opv(s,t) + s0sv(s,t) + %831}(5,1‘) —v(s,t) =0, $>0,t€[0,T],
v(0,t) =0, v(s, T) = f(s),
where we define )
f(S) = ﬁ€7%10g2(s)7 s> 0.
Formally compute an explicit expression for v(s,t).
Hint: Consider a change of variables (s,t) — (y,T) of the form

s=e", t=1T —br

for an appropriate choice of parameters a,b > 0, and then use part iii.
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Table of Fourier transform pairs
[ /) | F(H) () = f(a)
1, ity <y o f sin (jbla)
L) = { 0, otherwise fla) = ™ «Q
1, ifb<y<e ;o1 et _ g—ica
2 || fly) = { 0, otherwise fla) = 2o i
oy ey ity >0 sy 1 1
3| flw) = { 0, otherwise (w>0) | fla) = Vomr w + o
A f( ) B e~ Wy ifth < y<c f( ) B 1 e—(w+1',(‘z)b _ e—(11)+ia)c
vI= 0, otherwise * = 2o w + ia
e*iwy7 ifh < y<c R 1 e—i(w+a)b _ e—i(11)+a)c
5 = =
1) { 0, otherwise fle) 2 w+ o
1 R o 8—|’wo¢|
6 = 0 Y B
W)= A0 fla) =35
e~ lwyl R 2 1
7 fly) = ] (w #0) fla) = P R
2 2 A 1 _ %
s | fw =" w0 fe) = Jal® ™
2, 2 A —1x a?
9 — ye WY 0 = ——¢ 4u?
fly) = ye (w #0) fla) SNCPEN
0] 0= L w0 flo) = var (& ~ fal) el
Y (y2 +w2)2 Jw]




