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Exercise 1 Given the following functions over an interval [0,1),
(a) f(z) =z
(b) g(z) = a?
(c) h(z) =€"
(d) s(z) = sin(nx)
sketch their extension to
e q periodic function with period 1,
e an even periodic function with period 2,
e an odd periodic function with period 2.

State the formulas for the even and odd 2-periodic extensions over the interval [—1,1].

Solution 1 We begin with these plots:

SN2 Y




Y Y
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Y Y
odd(ﬂﬁ) 94dd(x)

We state the formulas for the even and odd extensions of period 2. Over [—1,1], define the even
extensions:

feven(l') = ’:L'|7

geven(x) = 112,



heven(x) = €|a:|’
Seven(w) = ’Sin(ﬂ'l‘)‘,
and we define the odd extensions:

fodd(x) =,

B 72 T e [O, 1)
Jodd(T) = {-(—%)2 =22 zre [(—1,0)

hoaalz) = {ez i: €10,1) ,

Sodd(z) = sin(mx).
Exercise 2 Consider the function
f:00,1] =R, x>

Ezxtend this to an odd function with period T' = 2. Sketch the graph of that function from —2 to
2. Compute its Fourier coefficients in standard form. Compute the complex Fourier coefficients.

Solution 2 We first sketch the odd extensions of that function:
Y

f g dd(yj’f)

The odd extension of period 2 is given by
fodd(z) =23, ze[-1,1].

For the Fourier coefficients in standard form, we note that a, = 0,n € N since the function is odd
by construction. For the sine-terms, we have

2(—1)"(6 — 7n?)

1 1
by, = / foad(x) sin(mnzx) dr = 2/ 23 sin(mnx) do =
-1 0

w3n3
We directly compute the integral via repeated integration by parts:
1 1 =1 1 1
/ 3sin(mng) do = {x?’% COS(WTL.%')} . + 3(m)/ 2 cos(mnz) dx
0 r= 0



7

1
=1 cos(mn) + 3(7_”?/ x% cos(mnz) dx
0

™ ™

1
=" 3(_1)/ z? cos(mnzx) da.
0

1 1 1
/ 2? cos(mnz) do = [2* L sin(ﬂnx)]i;é + 27371/ zsin(mnzx) dr = 27r1n/ zsin(mnzx) dz.
0 0 0

1 =1 1
/ xsin(mnx) dr = [w% cos(wnx)] + (Tll)/ cos(mnx) dx
0 o= 0

T

= {x% cos(wna:)] x:O + A [sin(mnz))*=;

= (g

™

Putting all this together, we obtain

™ ™ ™

1
/ 23 sin(mnzx) dr = Gl 3(_1)2L(_1)n@
0

(_1)n 6 n
S 1
™ + 7T3n3( )
- (_1)nw

m3n3

For the complex Fourier coefficients, we find for n € N:

(1) (22
cn:2(an—ibn)zz( )" (o 6),

m3n3
1 , i(=1)"(7*n* — 6
C_p= i(an + iby) = (=1) 753”3 )
Exercise 3 Suppose that
r+1 if-1l<z<0, 1 .
, s if-l<ax<1,
flx)y=<¢ 1—2 if0<z<1, g(z) = { (2) otherwise h(z) = |z
0 otherwise. '

Compute the convolutions u(z) = (f * g)(x) and v(x) = (g * g)(x) and w(x) = (g * h)(x).

Solution 3 We can compute these convolutions via direct computations or by results from Fourier
analysis.



o This first one is the most difficult one. First, we note that

1 {1 z € [-1,1],

=1 : I- =
g(x) 51 1,1 (2) -1.1)() 0 otherwise,

and

f(@)=(z+ D11 g(x) + (1 —2)10y(@).

Furthermore, we have for any x,y € R that

Ly@—y) =1p 1200 )-

Hence, we can write

e =5 [ e s

We think of this as a subinterval [x — 1, x + 1] that moves over the real line, and we integrate
f over this subinterval. Since f change its behavior three different times, the integral in the
definition of f x g above will also change its behavior several times, depending on x.

We therefore use a case distinction.

1. If x < =2, the integral is just over the region where f equals zero, and so (f*g)(x) = 0.

2. If =2 <z < —1, then we only need to integrate f over [-1,x + 1] C [-1,0]. We find

z+1 —
(fxg)(x) = ;/1 (y+1)dy = i(er 1) Z_:l = i(m +2)2.

3. If =1 <z <0, then we integrate f over [—1,0]U [0,z + 1] C [-1,1]. We find

0 z+1
o) =g [ wenayg [ 1-uay

1 y=0 1

=] 30w =

4. If 0 < x < 1, then we integrate f over [x —1,0]U[0,1] C [—1,1]. We find

(fx9g)(=) 1/0(+1)d +1/1(1 )d Lol

x) = — = — =-——x

g 3] W y+g | A-pdy=5-7
1 y=0 1 y=1 1 22 1 1 1
_ - 12‘ (- 2‘ e [ el
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5. If 1 < x <2, then we integrate f over [x —1,1] C [0,1]. We find

N =

1
(f*g)(x) = /1(1 —y)dy = %(w —2)?

6. Lastly, if 2 < x, the integral is just over the region where f equals zero, and so (f
g9)(x) = 0.

e Note that

N

o) = = (),
1

sin(w)

Using the Modulation Theorem, we find

F@fw) = 31(3)

24z, —2<zx<0,
2—z, 0<z<2

=~ —= N =

Alternatively, consider

1 r+1
g oa) =5 [ o dv
z—1
The g in the integral has support [—1,1]. Clearly, this integral equals 0 when x < —2 or
when x > 2 because then (xr — 1,z + 1) and (—1,1) are disjoint. So it remains to consider
the case —2 < x < 2. The integral equals (up to a factor of %, the length of the intersection
of (x—1,z+1) and (—1,1). To put this into a formula, it seems reasonable to distinguish
whether x lies to the left or to the right of the origin. If —2 < x <0, then

z+1 z+1
[ awdy=[ g dy= 5+ 1~ (1) =y +2).

-1 -1

Hence



If0 <z <2, then

Hence
1
(9% 9)(w) = (2 2).

o We first observe

1 x+1
(=) =5 [ loldy
z—1
The absolute value function has two different regimes. From here, we make a case distinction,

depending on whether (x — 1,x + 1) lies in one of the regimes or the other. If 0 < = — 1,
which means 1 < x, then (xr — 1,z + 1) lies within the positive real numbers and

1 z+1
geha) =5 [ wdy=a

If ¢ +1 < 0, which means x < —1, then (x — 1,2 + 1) lies within the negative real numbers
and

x+1
@) =5 [ oy =

-1

The case x —1 <0 < x + 1, which is —1 < x < 1, is more demanding. We split

1 0 1 x+1
weme) =5 [ —vdueg [ uiy

_1 2
1 |: 1 9 y=0 171 ) y=x+1
2 2 y=z—1 212 y=0
1 1 1 1
=—(z—1)72%+= 1)2 =22+ =.
4(:6 )“ + 4(x+ ) 57 + 5

Note: if you plot this function, it will look like a moving average of |x| that has been smoothed
around x = 0.

Exercise 4 Suppose that f(x) = 2% and that
1

g(x):{Q if—l<z<1, h(w):{e_x ifx >0,

0 otherwise. 0 otherwise.

Compute the convolutions u(x) = (f * g)(x) and v(x) = (f xh)(z) .



Solution 4 We find by direct computation:

1
(f % 9)(@) = (g% f)(z) = - / (z — )*dy

2/,
1/1 1
_ (1 13— 2(p—1)3
5 (30407 @ -17)
1
:6(($3+3x2+3x+1)—(m3—3:n2+3:n—1))
Lo 2
1
— 2 =
= +3.

Similarly,

(f % h)(z) = /0 (@ y)evdy = /0 Cly—2)evdy.

We proceed here with integration by parts: first,

o0

| w=arevay = [~ ape 1 - [T 20—y
=z - —x)e Ydy.
= +2/0 (y —x)e Ydy

Then,

Lastly,

Thus, in total, we obtain
(fxh)(z)=a® +2(—z+1)=2® — 2z +2.
Exercise 5 We have discussed solutions to the differential equation

—Au(z) + Fu(z) = el 2 eR.



o Verify that, in the case k = 1, we have a solution

1
u(@) =51+ j|)e 1!
Verify that every function of the form
1
v(x) = 5(1 + |z))e 1+ c1e™ + cpe”

i a solution. For which values of c1 and co does the function decay towards zero as x goes
to +oo?

o Verify that, in the case k # 1, we have a solution

okl ~a|

(2) +
u(z) = —
k(k2—-1)  k2-1
Verify that every function of the form
—k|z| —|x|
v(x) =— c + -2 +c1e™F 4 coeh®

k2 —1)  k2—1

18 a solution.

Solution 5 e (Consider the function

1
v(z) = 5(1 + |z))e 1 + c1e™® + coe.

Obviously, u(x) is a special case of a function of that form when ¢y = co = 0. This function
is continuous and it is differentiable over (—o0,0) and (0,00). Its derivative equals

1
V(x) = —5566_‘3”' —c1e” " + coe”.

To see that, we can, e.g., compute the v' for x > 0 and x < 0 and verify that v' matches this

description.

This function is again continuous and it is differentiable over (—o00,0) and (0,00). Its
derivative equals

1
v"(z) = §e_|x| (lz| = 1) + c1e™ " + co€”.

That this is a solution to the differential equations is evident from

1 1
—v"(x) + v(z) = —§ef|x‘ (J¢| = 1) — c1e™™ — coe” + 5(1 + |z)e 1l + c1e™® 4 ce®
1 1
= 567‘36' (1—|z|)+ 5(1 + |z)e Il = e7lel,

To ensure that the solution decays towards zero as x goes to 00, we need to have ¢y = co = 0.



o We repeat the same type of arguments. Consider the function

eikl‘rE' 67‘x|
T

+cre R 4 cpek®,

() = —
Obviously, u(x) is a special case of a function of that form when ¢y = ca = 0. Clearly, v is
continuous and it is differentiable over (—o0,0) and (0,00). Calculations, for v # 0 show
that the derivative (in the sense of distributions) equals

(e Hlal — e~lel)

71 + (=k)c1e™* 4 kegel®.

v/ (x) = sign(x)

This function is still continuous and obviously differentiable over (—o0,0) and (0,00). We

find that
—klz| _ o—lx] —keFlzl 4 ozl
V" (x) = 25 - (e - i ) + sign(z)? (ke 12 _t <) + ke 4 kP cgel®
(_ke_km‘ + e_‘ml) 2 —kx 2 kx
= 21 + k“cre + k“coe”™”.

Here, we have used that the e7 1%l — ekl = 0 qt 2 = 0.

That being settled, we check

—"(2) + k*v(x)

—ke kel 4 o=l 5 ) ) e~ klzl ; ezl B
- _ o —kCl€x—k02€x—kk(k2_1)+ kz_l—l—clex%—chx
ke_k‘xl — e_|a3| k;e_klcd 9 e_lajl
= — +k
k2 -1 (k2 —1) k2 -1
= eIl

This is the desired differential equation.

Exercise 6 We want to find a solution to the boundary value problem

—Au(z) + Ku(z) =z, 0<z<L,
uw(0) =0, wu(L)=0.

e Extend the right-hand side f(x) = x to an odd function with period 2L and compute its
Fourier coefficients.

o Using these coefficients, find the Fourier series of the solution u. Verify that the boundary
condition u(0) = u(L) = 0 is satisfied.

10



Solution 6 o The odd extension of period 2 is simply given by
fodd(x) =z, TE [_LvL]

o Since foqq ts odd by construction, we have

fosale) = 3 sin(L7).

with
L x=L L
2 L 2 L
o= /0 xsin(w) dx = I [mm cos (Tx)]m_o + L/o ECOS (%x) dx
2 nt \]7F 2 L
= |—x— cos (—:U) — cos (—:c) dzx
nmw L /J|._o nm)y
2 (nﬂ' )_I:L 2 L (nﬂ' ) v=L
= |—z—cos|—z — | — |sin(—=x
™ L e—o N \NT L -0
2 nr \]5F
= |rres (7))
2 2L
= L= = (=1t =,
— cos (nm) = (—1) "

e For the solution, we make a sine ansatz u(z) = Y 07 up sin("f%) because this satisfies the

boundary conditions. Then, the PDE can be written in terms of the Fourier coefficients as

2
[/8 n (%) } Uy, = (—1)”“%, Vn e N.
T

Therefore, the solution is given by

sl ()

™ L

Exercise 7 (Fun with Neumann boundary conditions) Consider the Poisson problem with

Neumann boundary conditions over the interval [a,b] = [0, 1]:
—u () + Ku(z) =z — =, a<xz<b,
ul(a) =Y ul(b) =Y

for some k > 0.

(a) Extend f(x) = x —  to an even function over the real line with period 2.

11



(b) Compute the Fourier coefficients of that even extension of f.

(¢) Find the Fourier series of a function that satisfies the above differential equation.

Solution 7 e The even extension of period 2 is given by feyen(z) = |z| — 3,2 € [—1,1].

o Since feven 15 even by construction, we only have cosine terms, i.e.
f o
0
feven(x) = 5 + g fn cos(mnz).
n=1

Here,

and for anyn > 1,

1
fn= / (x — %) cos(mnz) dx

-1

1 1
1
= 2/0 (x — §)cos(7rnx) dx = 2/0 zcos(mnx) dr = —— ((=1)" = 1).
e For the solution, we make a cosine ansatz

u(z) = uo + Z Uy, cos(TnT)

n=1

because the cosine modes satisfy the Neumann boundary conditions. We have expressed the
(even extension) of the right-hand side as a Fourier cosine series, and therefore the PDE
can be written in terms of the Fourier coefficients:

2
m2n2

[k‘2 + 7r2n2} Up = fn = (=1)"—=1), Vn € N.

Note that no information can be provided for the coefficient ug when k = 0; indeed, any

choice will be pOSSibleE We have ug = 0.

This provides the coefficients of the Fourier (cosine) series of u:

2
m2n?

up = (B2 + 7% " —— (-1)" = 1), ¥n € N.

!This corresponds to the fact that whenever we have solution of —u” = f with Neumann boundary conditions,
then also u + ¢ is a solution to the same problem, for any constant ¢ € R. In other words, the solution is not unique.

12



Therefore, the solution is given by

S 2
u(z) = uop + nz::l 22 R+ nn] ((=1)™ — 1) cos(mnz).

The boundary conditions are satisfied by construction, because we have used a Fourier cosine
series.

Exercise 8 (Fun with periodic boundary conditions) Consider the Poisson problem with
periodic boundary conditions over the interval [a,b] = [0, 1]:

—u(x) + K*u(z) =z — %,
u(a) = u(b),
for some k > 0.
(a) Extend f(x) =z — % to a 1-periodic function over the real line.
(b) Compute the Fourier coefficients of that extension of f.

(c) Find the Fourier series of a function that satisfies the above differential equation.

Solution 8 1. The 1-periodic extension is simply given by fper(x) = x — %,x € [0,1] with

periodic continuation.

2. When we develop the Fourier coefficients of fper,

f
fper(x) = %] + Z al cos(2mnx) + bl sin(2mwnz).
n>1

We compute the Fourier coefficients. We have

and

! 1
al = 2/ (a: — ) cos(2mnz) dx
0 2

1\ 1 =gt 1)’
2 [(x - 2> — sin(27mx)] - — <x - 2> sin(2mnz) dx
0

2mn 0 2mn
1

> [(x - ;) ﬁ sin(27mx)]

13

r=
z= 1
sin(2mnz) dx

0 2mn 0

r=



=0.

Notice that x — % has zero average, hence ag = 0. The higher cosine modes of fper do not
see the constant, and thus agree with the 1-periodic extension of f, which is odd, and hence
the higher cosine modes have coefficient zero as well. We have

! 1
bl = 2/ (:B - > sin(2mnz) dx
0 2

1 1
= 2/ xsin(2rnz) dz —/ sin(2mnx) dx
0 0
1
= 2/ xsin(2mnz) dx.
0
Via integration by parts:

bl =2 /0 1 zsin(2mnz) do =2 [m(_zcos)(%mx)} T /0 1 m(27rmc) dz

™ . 2mn
1 1 1 -1

e —27 _— 2 d - —.
27m+ 2mn o cos(2mnz) dx —

. We use a full Fourier series for the solution of the Poisson problem with periodic boundary
conditions,

u
u(z) = %) + E a, cos(2mnx) + by sin(2mn).
n>1

because both the sine and cosine modes satisfy the periodic boundary conditions. When we
write the differential equation in terms of the Fourier coefficients, then we find that ag is
indeterminate| and

[k* + (27n)?] a¥ = al, Vn €N,
(62 + (27n)?] b2 = b], Vn € N.

With our specific choice of coefficients, Therefore, the solution is given by

e _1 .
u(z) = Z o R+ @) sin(2mnz).

n=1

Note that the periodic boundary conditions are satisfied.

2Similar to the Neumann problem, if we have any solution to —u”” = f with periodic boundary conditions, then
so does u + ¢ for any constant ¢ € R.
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