
Analysis III - 203(d)

Winter Semester 2024

Session 14: December 19, 2025

Exercise 1 Given the following functions over an interval [0, 1),

(a) f(x) = x

(b) g(x) = x2

(c) h(x) = ex

(d) s(x) = sin(πx)

sketch their extension to

• a periodic function with period 1,

• an even periodic function with period 2,

• an odd periodic function with period 2.

State the formulas for the even and odd 2-periodic extensions over the interval [−1, 1].

Solution 1 We begin with these plots:

x

y

f(x) = x

x

y

g(x) = x2

x

y

h(x) = ex

x

y

s(x) = sin(πx)
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x

y

feven(x)

x

y

geven(x)

x

y

heven(x)

x

y

seven(x)

x

y

fodd(x)

x

y

godd(x)

x

y

hodd(x)

x

y

sodd(x)

We state the formulas for the even and odd extensions of period 2. Over [−1, 1], define the even
extensions:

feven(x) = |x|,
geven(x) = x2,
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heven(x) = e|x|,

seven(x) = | sin(πx)|,

and we define the odd extensions:

fodd(x) = x,

godd(x) =

{
x2 x ∈ [0, 1)

−(−x)2 = −x2 x ∈ [−1, 0)

hodd(x) =

{
ex x ∈ [0, 1)

−e−x x ∈ [−1, 0)
,

sodd(x) = sin(πx).

Exercise 2 Consider the function

f : [0, 1] → R, x 7→ x3.

Extend this to an odd function with period T = 2. Sketch the graph of that function from −2 to
2. Compute its Fourier coefficients in standard form. Compute the complex Fourier coefficients.

Solution 2 We first sketch the odd extensions of that function:

x

y

godd(x)

The odd extension of period 2 is given by

fodd(x) = x3, x ∈ [−1, 1].

For the Fourier coefficients in standard form, we note that an = 0, n ∈ N since the function is odd
by construction. For the sine-terms, we have

bn =

∫ 1

−1
fodd(x) sin(πnx) dx = 2

∫ 1

0
x3 sin(πnx) dx =

2(−1)n(6− π2n2)

π3n3
.

We directly compute the integral via repeated integration by parts:∫ 1

0
x3 sin(πnx) dx =

[
x3 (−1)

πn cos(πnx)
]x=1

x=0
+ 3 (−1)

πn

∫ 1

0
x2 cos(πnx) dx
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= (−1)
πn cos(πn) + 3 (−1)

πn

∫ 1

0
x2 cos(πnx) dx

= − (−1)n

πn + 3 (−1)
πn

∫ 1

0
x2 cos(πnx) dx.

∫ 1

0
x2 cos(πnx) dx =

[
x2 1

πn sin(πnx)
]x=1

x=0
+ 2 1

πn

∫ 1

0
x sin(πnx) dx = 2 1

πn

∫ 1

0
x sin(πnx) dx.

∫ 1

0
x sin(πnx) dx =

[
x (−1)

πn cos(πnx)
]x=1

x=0
+ (−1)

πn

∫ 1

0
cos(πnx) dx

=
[
x (−1)

πn cos(πnx)
]x=1

x=0
+ 1

π2n2 [sin(πnx)]
x=1
x=0

= (−1)n (−1)
πn .

Putting all this together, we obtain∫ 1

0
x3 sin(πnx) dx = − (−1)n

πn + 3 (−1)
πn 2 1

πn(−1)n (−1)
πn

= −(−1)n

πn
+

6

π3n3
(−1)n

= (−1)n
π2n2 − 6

π3n3
.

For the complex Fourier coefficients, we find for n ∈ N:

c0 = a0 = 0,

cn =
1

2
(an − ibn) =

i(−1)n+1(π2n2 − 6)

π3n3
,

c−n =
1

2
(an + ibn) =

i(−1)n(π2n2 − 6)

π3n3
.

Exercise 3 Suppose that

f(x) =


x+ 1 if −1 < x < 0 ,
1− x if 0 < x < 1 ,
0 otherwise.

g(x) =

{
1
2 if −1 < x < 1 ,
0 otherwise.

h(x) = |x|.

Compute the convolutions u(x) = (f ⋆ g)(x) and v(x) = (g ⋆ g)(x) and w(x) = (g ⋆ h)(x).

Solution 3 We can compute these convolutions via direct computations or by results from Fourier
analysis.
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• This first one is the most difficult one. First, we note that

g(x) =
1

2
1[−1,1](x), 1[−1,1](x) =

{
1 x ∈ [−1, 1],

0 otherwise,

and

f(x) = (x+ 1)1[−1,0](x) + (1− x)1(0,1](x).

Furthermore, we have for any x, y ∈ R that

1[−1,1](x− y) = 1[x−1,x+1](y).

Hence, we can write

(f ⋆ g)(x) =
1

2

∫ ∞

−∞
f(y)1[x−1,x+1](y)dy.

We think of this as a subinterval [x−1, x+1] that moves over the real line, and we integrate
f over this subinterval. Since f change its behavior three different times, the integral in the
definition of f ⋆ g above will also change its behavior several times, depending on x.

We therefore use a case distinction.

1. If x < −2, the integral is just over the region where f equals zero, and so (f ⋆g)(x) = 0.

2. If −2 < x < −1, then we only need to integrate f over [−1, x+ 1] ⊆ [−1, 0]. We find

(f ⋆ g)(x) =
1

2

∫ x+1

−1
(y + 1)dy =

1

4
(y + 1)2

∣∣∣y=x+1

y=−1
=

1

4
(x+ 2)2.

3. If −1 < x < 0, then we integrate f over [−1, 0] ∪ [0, x+ 1] ⊆ [−1, 1]. We find

(f ⋆ g)(x) =
1

2

∫ 0

−1
(y + 1)dy +

1

2

∫ x+1

0
(1− y)dy

=
1

4
(y + 1)2

∣∣∣y=0

y=−1
− 1

4
(1− y)2

∣∣∣y=x+1

y=0
=

1

4
−
(
x2

4
− 1

4

)
=

1

2
− 1

4
x2.

4. If 0 < x < 1, then we integrate f over [x− 1, 0] ∪ [0, 1] ⊆ [−1, 1]. We find

(f ⋆ g)(x) =
1

2

∫ 0

x−1
(y + 1)dy +

1

2

∫ 1

0
(1− y)dy =

1

2
− 1

4
x2

=
1

4
(y + 1)2

∣∣∣y=0

y=x−1
− 1

4
(1− y)2

∣∣∣y=1

y=0
=

(
1

4
− x2

4

)
+

1

4
=

1

2
− 1

4
x2.
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5. If 1 < x < 2, then we integrate f over [x− 1, 1] ⊆ [0, 1]. We find

(f ⋆ g)(x) =
1

2

∫ 1

x−1
(1− y)dy =

1

4
(x− 2)2

6. Lastly, if 2 < x, the integral is just over the region where f equals zero, and so (f ⋆
g)(x) = 0.

• Note that

f̂(ω) =
1√
2π

(
sin(ω/2)

ω/2

)
,

ĝ(ω) =
1√
2π

sin(ω)

ω
.

Using the Convolution Theorem, we find

v̂(ω) =
√
2π(ĝ(ω))2 = f̂(2ω)

Using the Modulation Theorem, we find

v(x) =
1

2
F−1(2f̂(2ω)) =

1

2
f(

x

2
)

=
1

4

{
2 + x, −2 ≤ x < 0,

2− x, 0 ≤ x < 2.

Alternatively, consider

(g ⋆ g)(x) =
1

2

∫ x+1

x−1
g(y) dy.

The g in the integral has support [−1, 1]. Clearly, this integral equals 0 when x < −2 or
when x > 2 because then (x − 1, x + 1) and (−1, 1) are disjoint. So it remains to consider
the case −2 < x < 2. The integral equals (up to a factor of 1

2 , the length of the intersection
of (x− 1, x+ 1) and (−1, 1). To put this into a formula, it seems reasonable to distinguish
whether x lies to the left or to the right of the origin. If −2 ≤ x ≤ 0, then∫ x+1

x−1
g(y) dy =

∫ x+1

−1
g(y) dy =

1

2
((x+ 1)− (−1)) =

1

2
(x+ 2).

Hence

(g ⋆ g)(x) =
1

4
(x+ 2).
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If 0 ≤ x ≤ 2, then∫ x+1

x−1
g(y) dy =

∫ 1

x−1
g(y) dy =

1

2
((1)− (x− 1)) =

1

2
(2− x).

Hence

(g ⋆ g)(x) =
1

4
(2− x).

• We first observe

(g ⋆ h)(x) =
1

2

∫ x+1

x−1
|y|dy.

The absolute value function has two different regimes. From here, we make a case distinction,
depending on whether (x − 1, x + 1) lies in one of the regimes or the other. If 0 < x − 1,
which means 1 < x, then (x− 1, x+ 1) lies within the positive real numbers and

(g ⋆ h)(x) =
1

2

∫ x+1

x−1
ydy = x.

If x+ 1 < 0, which means x < −1, then (x− 1, x+ 1) lies within the negative real numbers
and

(g ⋆ h)(x) =
1

2

∫ x+1

x−1
(−y)dy = −x.

The case x− 1 < 0 < x+ 1, which is −1 < x < 1, is more demanding. We split

(g ⋆ h)(x) =
1

2

∫ 0

x−1
−ydy +

1

2

∫ x+1

0
ydy

=
1

2

[
−1

2
y2
]y=0

y=x−1

+
1

2

[
1

2
y2
]y=x+1

y=0

=
1

4
(x− 1)2 +

1

4
(x+ 1)2 =

1

2
x2 +

1

2
.

Note: if you plot this function, it will look like a moving average of |x| that has been smoothed
around x = 0.

Exercise 4 Suppose that f(x) = x2 and that

g(x) =

{
1
2 if −1 < x < 1 ,
0 otherwise.

h(x) =

{
e−x if x > 0 ,
0 otherwise.

Compute the convolutions u(x) = (f ⋆ g)(x) and v(x) = (f ⋆ h)(x) .
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Solution 4 We find by direct computation:

(f ⋆ g)(x) = (g ⋆ f)(x) =
1

2

∫ 1

−1
(x− y)2dy

=
1

2

(
1

3
(x+ 1)3 − 1

3
(x− 1)3

)
=

1

6

(
(x3 + 3x2 + 3x+ 1)− (x3 − 3x2 + 3x− 1)

)
=

1

6

(
6x2 + 2

)
= x2 +

1

3
.

Similarly,

(f ⋆ h)(x) =

∫ ∞

0
(x− y)2e−ydy =

∫ ∞

0
(y − x)2e−ydy.

We proceed here with integration by parts: first,∫ ∞

0
(y − x)2e−ydy =

[
−(y − x)2e−y

]y=∞
y=0

−
∫ ∞

0
(−1)2(y − x)e−ydy

= x2 + 2

∫ ∞

0
(y − x)e−ydy.

Then, ∫ ∞

0
(y − x)e−ydy =

[
−(y − x)e−y

]y=∞
y=0

−
∫ ∞

0
(−1)e−ydy

= −x+

∫ ∞

0
e−ydy.

Lastly, ∫ ∞

0
e−ydy =

[
−e−y

]y=∞
y=0

= 1.

Thus, in total, we obtain

(f ⋆ h)(x) = x2 + 2 (−x+ 1) = x2 − 2x+ 2.

Exercise 5 We have discussed solutions to the differential equation

−∆u(x) + k2u(x) = e−|x|, x ∈ R.
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• Verify that, in the case k = 1, we have a solution

u(x) =
1

2
(1 + |x|)e−|x|

Verify that every function of the form

v(x) =
1

2
(1 + |x|)e−|x| + c1e

−x + c2e
x

is a solution. For which values of c1 and c2 does the function decay towards zero as x goes
to ±∞?

• Verify that, in the case k ̸= 1, we have a solution

u(x) = − e−k|x|

k(k2 − 1)
+

e−|x|

k2 − 1

Verify that every function of the form

v(x) = − e−k|x|

k(k2 − 1)
+

e−|x|

k2 − 1
+ c1e

−kx + c2e
kx

is a solution.

Solution 5 • Consider the function

v(x) =
1

2
(1 + |x|)e−|x| + c1e

−x + c2e
x.

Obviously, u(x) is a special case of a function of that form when c1 = c2 = 0. This function
is continuous and it is differentiable over (−∞, 0) and (0,∞). Its derivative equals

v′(x) = −1

2
xe−|x| − c1e

−x + c2e
x.

To see that, we can, e.g., compute the v′ for x > 0 and x < 0 and verify that v′ matches this
description.

This function is again continuous and it is differentiable over (−∞, 0) and (0,∞). Its
derivative equals

v′′(x) =
1

2
e−|x| (|x| − 1) + c1e

−x + c2e
x.

That this is a solution to the differential equations is evident from

−v′′(x) + v(x) = −1

2
e−|x| (|x| − 1)− c1e

−x − c2e
x +

1

2
(1 + |x|)e−|x| + c1e

−x + c2e
x

=
1

2
e−|x| (1− |x|) + 1

2
(1 + |x|)e−|x| = e−|x|.

To ensure that the solution decays towards zero as x goes to ±∞, we need to have c1 = c2 = 0.

9



• We repeat the same type of arguments. Consider the function

v(x) = − e−k|x|

k(k2 − 1)
+

e−|x|

k2 − 1
+ c1e

−kx + c2e
kx.

Obviously, u(x) is a special case of a function of that form when c1 = c2 = 0. Clearly, v is
continuous and it is differentiable over (−∞, 0) and (0,∞). Calculations, for v ̸= 0 show
that the derivative (in the sense of distributions) equals

v′(x) = sign(x)

(
e−k|x| − e−|x|)

k2 − 1
+ (−k)c1e

−kx + kc2e
kx.

This function is still continuous and obviously differentiable over (−∞, 0) and (0,∞). We
find that

v′′(x) = 2δ0 ·
(
e−k|x| − e−|x|)

k2 − 1
+ sign(x)2

(
−ke−k|x| + e−|x|)

k2 − 1
+ k2c1e

−kx + k2c2e
kx

=

(
−ke−k|x| + e−|x|)

k2 − 1
+ k2c1e

−kx + k2c2e
kx.

Here, we have used that the e−|x| − e−k|x| = 0 at x = 0.

That being settled, we check

− v′′(x) + k2v(x)

= −−ke−k|x| + e−|x|

k2 − 1
− k2c1e

−x − k2c2e
x − k2

e−k|x|

k(k2 − 1)
+ k2

e−|x|

k2 − 1
+ c1e

−x + c2e
x

=
ke−k|x| − e−|x|

k2 − 1
− ke−k|x|

(k2 − 1)
+ k2

e−|x|

k2 − 1

= e−|x|.

This is the desired differential equation.

Exercise 6 We want to find a solution to the boundary value problem

−∆u(x) + k2u(x) = x, 0 < x < L,

u(0) = 0, u(L) = 0.

• Extend the right-hand side f(x) = x to an odd function with period 2L and compute its
Fourier coefficients.

• Using these coefficients, find the Fourier series of the solution u. Verify that the boundary
condition u(0) = u(L) = 0 is satisfied.
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Solution 6 • The odd extension of period 2 is simply given by

fodd(x) = x, x ∈ [−L,L].

• Since fodd is odd by construction, we have

fodd(x) =
∞∑
n=1

fn sin(
nπx

L
),

with

fn =
2

L

∫ L

0
x sin(

nπx

L
) dx =

2

L

[
−x

L

nπ
cos

(nπ
L

x
)]x=L

x=0

+
2

L

∫ L

0

L

nπ
cos

(nπ
L

x
)

dx

=

[
−x

2

nπ
cos

(nπ
L

x
)]x=L

x=0

+
2

nπ

∫ L

0
cos

(nπ
L

x
)

dx

=

[
−x

2

nπ
cos

(nπ
L

x
)]x=L

x=0

+
2

nπ

[(
L

nπ

)
sin

(nπ
L

x
)]x=L

x=0

=

[
−x

2

nπ
cos

(nπ
L

x
)]x=L

x=0

= −L
2

nπ
cos (nπ) = (−1)n+1 2L

πn
.

• For the solution, we make a sine ansatz u(x) =
∑∞

n=1 un sin(
nπx
L ) because this satisfies the

boundary conditions. Then, the PDE can be written in terms of the Fourier coefficients as[
k2 +

(πn
L

)2
]
un = (−1)n+1 2L

πn
, ∀n ∈ N.

Therefore, the solution is given by

un = (−1)n+1 2L

πn

[
k2 +

(πn
L

)2
]−1

.

Exercise 7 (Fun with Neumann boundary conditions) Consider the Poisson problem with
Neumann boundary conditions over the interval [a, b] = [0, 1]:

−u′′(x) + k2u(x) = x− 1

2
, a < x < b,

u′(a) = 0, u′(b) = 0,

for some k ≥ 0.

(a) Extend f(x) = x− 1
2 to an even function over the real line with period 2.
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(b) Compute the Fourier coefficients of that even extension of f .

(c) Find the Fourier series of a function that satisfies the above differential equation.

Solution 7 • The even extension of period 2 is given by feven(x) = |x| − 1
2 , x ∈ [−1, 1].

• Since feven is even by construction, we only have cosine terms, i.e.

feven(x) =
f0
2

+
∞∑
n=1

fn cos(πnx).

Here,

f0 =
1

2

∫ 1

−1
(|x| − 1

2
) dx =

∫ 1

−1
(x− 1

2
) dx = 0,

and for any n ≥ 1,

fn =

∫ 1

−1
(x− 1

2
) cos(πnx) dx

= 2

∫ 1

0
(x− 1

2
) cos(πnx) dx = 2

∫ 1

0
x cos(πnx) dx =

2

π2n2
((−1)n − 1) .

• For the solution, we make a cosine ansatz

u(x) = u0 +

∞∑
n=1

un cos(πnx)

because the cosine modes satisfy the Neumann boundary conditions. We have expressed the
(even extension) of the right-hand side as a Fourier cosine series, and therefore the PDE
can be written in terms of the Fourier coefficients:[

k2 + π2n2
]
un = fn =

2

π2n2
((−1)n − 1) , ∀n ∈ N.

Note that no information can be provided for the coefficient u0 when k = 0; indeed, any
choice will be possible.1 We have u0 = 0.

This provides the coefficients of the Fourier (cosine) series of u:

un =
(
k2 + π2n2

)−1 2

π2n2
((−1)n − 1) , ∀n ∈ N.

1This corresponds to the fact that whenever we have solution of −u′′ = f with Neumann boundary conditions,
then also u+ c is a solution to the same problem, for any constant c ∈ R. In other words, the solution is not unique.
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Therefore, the solution is given by

u(x) = u0 +
∞∑
n=1

2

π2n2 [k2 + π2n2]
((−1)n − 1) cos(πnx).

The boundary conditions are satisfied by construction, because we have used a Fourier cosine
series.

Exercise 8 (Fun with periodic boundary conditions) Consider the Poisson problem with
periodic boundary conditions over the interval [a, b] = [0, 1]:

−u′′(x) + k2u(x) = x− 1

2
, a < x < b,

u(a) = u(b),

for some k ≥ 0.

(a) Extend f(x) = x− 1
2 to a 1-periodic function over the real line.

(b) Compute the Fourier coefficients of that extension of f .

(c) Find the Fourier series of a function that satisfies the above differential equation.

Solution 8 1. The 1-periodic extension is simply given by fper(x) = x − 1
2 , x ∈ [0, 1] with

periodic continuation.

2. When we develop the Fourier coefficients of fper,

fper(x) =
af0
2

+
∑
n≥1

afn cos(2πnx) + bfn sin(2πnx).

We compute the Fourier coefficients. We have

af0 = 2

∫ 1

0
(x− 1

2) dx = 2

[
(x− 1

2)
2

2

]x=1

x=0

=
(
(1− 1

2)
2 − (0− 1

2)
2
)
= 0.

and

afn = 2

∫ 1

0

(
x− 1

2

)
cos(2πnx) dx

= 2

[(
x− 1

2

)
1

2πn
sin(2πnx)

]x=1

x=0

− 2

2πn

∫ 1

0

(
x− 1

2

)′
sin(2πnx) dx

= 2

[(
x− 1

2

)
1

2πn
sin(2πnx)

]x=1

x=0

− 2

2πn

∫ 1

0
sin(2πnx) dx
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= 0.

Notice that x − 1
2 has zero average, hence a0 = 0. The higher cosine modes of fper do not

see the constant, and thus agree with the 1-periodic extension of f , which is odd, and hence
the higher cosine modes have coefficient zero as well. We have

bfn = 2

∫ 1

0

(
x− 1

2

)
sin(2πnx) dx

= 2

∫ 1

0
x sin(2πnx) dx−

∫ 1

0
sin(2πnx) dx

= 2

∫ 1

0
x sin(2πnx) dx.

Via integration by parts:

bfn = 2

∫ 1

0
x sin(2πnx) dx = 2

[
x
(− cos)

2πn
(2πnx)

]x=1

x=0

−
∫ 1

0

(− cos)

2πn
(2πnx) dx

= −2
1

2πn
+

1

2πn

∫ 1

0
cos(2πnx) dx =

−1

πn
.

3. We use a full Fourier series for the solution of the Poisson problem with periodic boundary
conditions,

u(x) =
au0
2

+
∑
n≥1

aun cos(2πnx) + bun sin(2πnx).

because both the sine and cosine modes satisfy the periodic boundary conditions. When we
write the differential equation in terms of the Fourier coefficients, then we find that a0 is
indeterminate,2 and [

k2 + (2πn)2
]
aun = afn, ∀n ∈ N,[

k2 + (2πn)2
]
bun = bfn, ∀n ∈ N.

With our specific choice of coefficients, Therefore, the solution is given by

u(x) =

∞∑
n=1

−1

πn [k2 + (2πn)2]
sin(2πnx).

Note that the periodic boundary conditions are satisfied.

2Similar to the Neumann problem, if we have any solution to −u′′ = f with periodic boundary conditions, then
so does u+ c for any constant c ∈ R.
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