

Analysis III - 203(d)

Winter Semester 2024

Session 14: December 19, 2025

Exercise 1 Given the following functions over an interval $[0, 1]$,

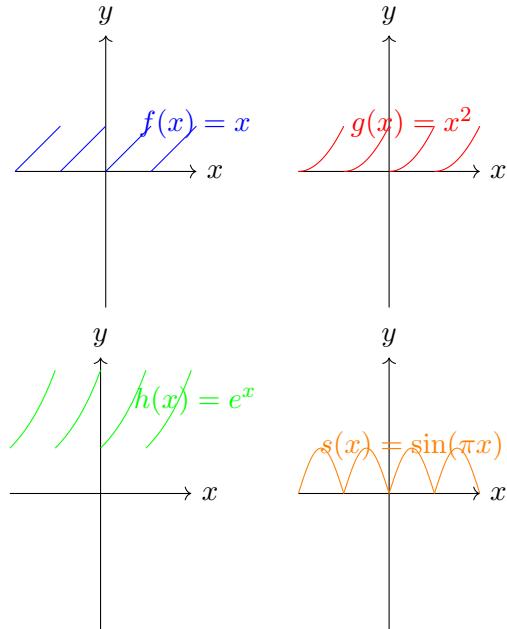
- (a) $f(x) = x$
- (b) $g(x) = x^2$
- (c) $h(x) = e^x$
- (d) $s(x) = \sin(\pi x)$

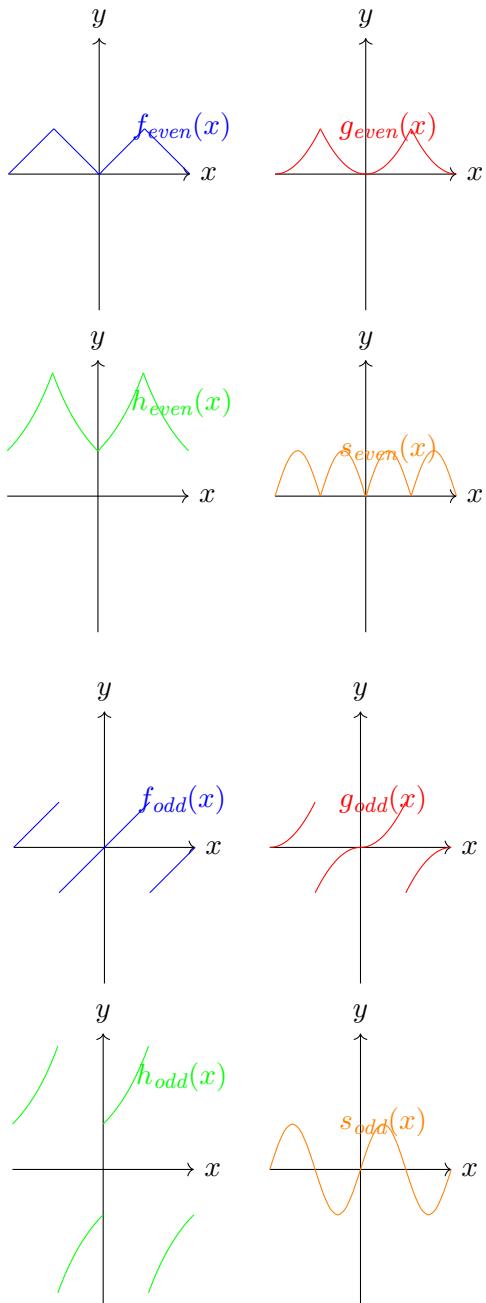
sketch their extension to

- a periodic function with period 1,
- an even periodic function with period 2,
- an odd periodic function with period 2.

State the formulas for the even and odd 2-periodic extensions over the interval $[-1, 1]$.

Solution 1 We begin with these plots:





We state the formulas for the even and odd extensions of period 2. Over $[-1, 1]$, define the even extensions:

$$\begin{aligned} f_{even}(x) &= |x|, \\ g_{even}(x) &= x^2, \end{aligned}$$

$$h_{even}(x) = e^{|x|},$$

$$s_{even}(x) = |\sin(\pi x)|,$$

and we define the odd extensions:

$$f_{odd}(x) = x,$$

$$g_{odd}(x) = \begin{cases} x^2 & x \in [0, 1) \\ -(-x)^2 = -x^2 & x \in [-1, 0) \end{cases}$$

$$h_{odd}(x) = \begin{cases} e^x & x \in [0, 1) \\ -e^{-x} & x \in [-1, 0) \end{cases},$$

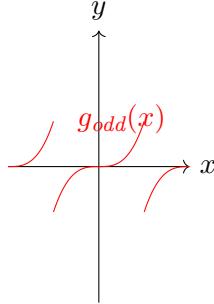
$$s_{odd}(x) = \sin(\pi x).$$

Exercise 2 Consider the function

$$f : [0, 1] \rightarrow \mathbb{R}, \quad x \mapsto x^3.$$

Extend this to an odd function with period $T = 2$. Sketch the graph of that function from -2 to 2 . Compute its Fourier coefficients in standard form. Compute the complex Fourier coefficients.

Solution 2 We first sketch the odd extensions of that function:



The odd extension of period 2 is given by

$$f_{odd}(x) = x^3, \quad x \in [-1, 1].$$

For the Fourier coefficients in standard form, we note that $a_n = 0, n \in \mathbb{N}$ since the function is odd by construction. For the sine-terms, we have

$$b_n = \int_{-1}^1 f_{odd}(x) \sin(\pi n x) dx = 2 \int_0^1 x^3 \sin(\pi n x) dx = \frac{2(-1)^n (6 - \pi^2 n^2)}{\pi^3 n^3}.$$

We directly compute the integral via repeated integration by parts:

$$\int_0^1 x^3 \sin(\pi n x) dx = \left[x^3 \frac{(-1)}{\pi n} \cos(\pi n x) \right]_{x=0}^{x=1} + 3 \frac{(-1)}{\pi n} \int_0^1 x^2 \cos(\pi n x) dx$$

$$\begin{aligned}
&= \frac{(-1)}{\pi n} \cos(\pi n) + 3 \frac{(-1)}{\pi n} \int_0^1 x^2 \cos(\pi n x) \, dx \\
&= -\frac{(-1)^n}{\pi n} + 3 \frac{(-1)}{\pi n} \int_0^1 x^2 \cos(\pi n x) \, dx.
\end{aligned}$$

$$\int_0^1 x^2 \cos(\pi n x) \, dx = [x^2 \frac{1}{\pi n} \sin(\pi n x)]_{x=0}^{x=1} + 2 \frac{1}{\pi n} \int_0^1 x \sin(\pi n x) \, dx = 2 \frac{1}{\pi n} \int_0^1 x \sin(\pi n x) \, dx.$$

$$\begin{aligned}
\int_0^1 x \sin(\pi n x) \, dx &= \left[x \frac{(-1)}{\pi n} \cos(\pi n x) \right]_{x=0}^{x=1} + \frac{(-1)}{\pi n} \int_0^1 \cos(\pi n x) \, dx \\
&= \left[x \frac{(-1)}{\pi n} \cos(\pi n x) \right]_{x=0}^{x=1} + \frac{1}{\pi^2 n^2} [\sin(\pi n x)]_{x=0}^{x=1} \\
&= (-1)^n \frac{(-1)}{\pi n}.
\end{aligned}$$

Putting all this together, we obtain

$$\begin{aligned}
\int_0^1 x^3 \sin(\pi n x) \, dx &= -\frac{(-1)^n}{\pi n} + 3 \frac{(-1)}{\pi n} 2 \frac{1}{\pi n} (-1)^n \frac{(-1)}{\pi n} \\
&= -\frac{(-1)^n}{\pi n} + \frac{6}{\pi^3 n^3} (-1)^n \\
&= (-1)^n \frac{\pi^2 n^2 - 6}{\pi^3 n^3}.
\end{aligned}$$

For the complex Fourier coefficients, we find for $n \in \mathbb{N}$:

$$\begin{aligned}
c_0 &= a_0 = 0, \\
c_n &= \frac{1}{2} (a_n - i b_n) = \frac{i (-1)^{n+1} (\pi^2 n^2 - 6)}{\pi^3 n^3}, \\
c_{-n} &= \frac{1}{2} (a_n + i b_n) = \frac{i (-1)^n (\pi^2 n^2 - 6)}{\pi^3 n^3}.
\end{aligned}$$

Exercise 3 Suppose that

$$f(x) = \begin{cases} x+1 & \text{if } -1 < x < 0, \\ 1-x & \text{if } 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases} \quad g(x) = \begin{cases} \frac{1}{2} & \text{if } -1 < x < 1, \\ 0 & \text{otherwise.} \end{cases} \quad h(x) = |x|.$$

Compute the convolutions $u(x) = (f \star g)(x)$ and $v(x) = (g \star g)(x)$ and $w(x) = (g \star h)(x)$.

Solution 3 We can compute these convolutions via direct computations or by results from Fourier analysis.

- This first one is the most difficult one. First, we note that

$$g(x) = \frac{1}{2}1_{[-1,1]}(x), \quad 1_{[-1,1]}(x) = \begin{cases} 1 & x \in [-1, 1], \\ 0 & \text{otherwise,} \end{cases}$$

and

$$f(x) = (x+1)1_{[-1,0]}(x) + (1-x)1_{(0,1]}(x).$$

Furthermore, we have for any $x, y \in \mathbb{R}$ that

$$1_{[-1,1]}(x-y) = 1_{[x-1,x+1]}(y).$$

Hence, we can write

$$(f \star g)(x) = \frac{1}{2} \int_{-\infty}^{\infty} f(y)1_{[x-1,x+1]}(y)dy.$$

We think of this as a subinterval $[x-1, x+1]$ that moves over the real line, and we integrate f over this subinterval. Since f change its behavior three different times, the integral in the definition of $f \star g$ above will also change its behavior several times, depending on x .

We therefore use a case distinction.

1. If $x < -2$, the integral is just over the region where f equals zero, and so $(f \star g)(x) = 0$.
2. If $-2 < x < -1$, then we only need to integrate f over $[-1, x+1] \subseteq [-1, 0]$. We find

$$(f \star g)(x) = \frac{1}{2} \int_{-1}^{x+1} (y+1)dy = \frac{1}{4}(y+1)^2 \Big|_{y=-1}^{y=x+1} = \frac{1}{4}(x+2)^2.$$

3. If $-1 < x < 0$, then we integrate f over $[-1, 0] \cup [0, x+1] \subseteq [-1, 1]$. We find

$$\begin{aligned} (f \star g)(x) &= \frac{1}{2} \int_{-1}^0 (y+1)dy + \frac{1}{2} \int_0^{x+1} (1-y)dy \\ &= \frac{1}{4}(y+1)^2 \Big|_{y=-1}^{y=0} - \frac{1}{4}(1-y)^2 \Big|_{y=0}^{y=x+1} = \frac{1}{4} - \left(\frac{x^2}{4} - \frac{1}{4} \right) = \frac{1}{2} - \frac{1}{4}x^2. \end{aligned}$$

4. If $0 < x < 1$, then we integrate f over $[x-1, 0] \cup [0, 1] \subseteq [-1, 1]$. We find

$$\begin{aligned} (f \star g)(x) &= \frac{1}{2} \int_{x-1}^0 (y+1)dy + \frac{1}{2} \int_0^1 (1-y)dy = \frac{1}{2} - \frac{1}{4}x^2 \\ &= \frac{1}{4}(y+1)^2 \Big|_{y=x-1}^{y=0} - \frac{1}{4}(1-y)^2 \Big|_{y=0}^{y=1} = \left(\frac{1}{4} - \frac{x^2}{4} \right) + \frac{1}{4} = \frac{1}{2} - \frac{1}{4}x^2. \end{aligned}$$

5. If $1 < x < 2$, then we integrate f over $[x-1, 1] \subseteq [0, 1]$. We find

$$(f \star g)(x) = \frac{1}{2} \int_{x-1}^1 (1-y) dy = \frac{1}{4}(x-2)^2$$

6. Lastly, if $x > 2$, the integral is just over the region where f equals zero, and so $(f \star g)(x) = 0$.

- Note that

$$\begin{aligned}\hat{f}(\omega) &= \frac{1}{\sqrt{2\pi}} \left(\frac{\sin(\omega/2)}{\omega/2} \right), \\ \hat{g}(\omega) &= \frac{1}{\sqrt{2\pi}} \frac{\sin(\omega)}{\omega}.\end{aligned}$$

Using the Convolution Theorem, we find

$$\hat{v}(\omega) = \sqrt{2\pi}(\hat{g}(\omega))^2 = \hat{f}(2\omega)$$

Using the Modulation Theorem, we find

$$\begin{aligned}v(x) &= \frac{1}{2} \mathcal{F}^{-1}(2\hat{f}(2\omega)) = \frac{1}{2} f\left(\frac{x}{2}\right) \\ &= \frac{1}{4} \begin{cases} 2+x, & -2 \leq x < 0, \\ 2-x, & 0 \leq x < 2. \end{cases}\end{aligned}$$

Alternatively, consider

$$(g \star g)(x) = \frac{1}{2} \int_{x-1}^{x+1} g(y) dy.$$

The g in the integral has support $[-1, 1]$. Clearly, this integral equals 0 when $x < -2$ or when $x > 2$ because then $(x-1, x+1)$ and $(-1, 1)$ are disjoint. So it remains to consider the case $-2 < x < 2$. The integral equals (up to a factor of $\frac{1}{2}$, the length of the intersection of $(x-1, x+1)$ and $(-1, 1)$). To put this into a formula, it seems reasonable to distinguish whether x lies to the left or to the right of the origin. If $-2 \leq x \leq 0$, then

$$\int_{x-1}^{x+1} g(y) dy = \int_{-1}^{x+1} g(y) dy = \frac{1}{2}((x+1) - (-1)) = \frac{1}{2}(x+2).$$

Hence

$$(g \star g)(x) = \frac{1}{4}(x+2).$$

If $0 \leq x \leq 2$, then

$$\int_{x-1}^{x+1} g(y) dy = \int_{x-1}^1 g(y) dy = \frac{1}{2}((1) - (x-1)) = \frac{1}{2}(2-x).$$

Hence

$$(g \star g)(x) = \frac{1}{4}(2-x).$$

- We first observe

$$(g \star h)(x) = \frac{1}{2} \int_{x-1}^{x+1} |y| dy.$$

The absolute value function has two different regimes. From here, we make a case distinction, depending on whether $(x-1, x+1)$ lies in one of the regimes or the other. If $0 < x-1$, which means $1 < x$, then $(x-1, x+1)$ lies within the positive real numbers and

$$(g \star h)(x) = \frac{1}{2} \int_{x-1}^{x+1} y dy = x.$$

If $x+1 < 0$, which means $x < -1$, then $(x-1, x+1)$ lies within the negative real numbers and

$$(g \star h)(x) = \frac{1}{2} \int_{x-1}^{x+1} (-y) dy = -x.$$

The case $x-1 < 0 < x+1$, which is $-1 < x < 1$, is more demanding. We split

$$\begin{aligned} (g \star h)(x) &= \frac{1}{2} \int_{x-1}^0 -y dy + \frac{1}{2} \int_0^{x+1} y dy \\ &= \frac{1}{2} \left[-\frac{1}{2} y^2 \right]_{y=x-1}^{y=0} + \frac{1}{2} \left[\frac{1}{2} y^2 \right]_{y=0}^{y=x+1} \\ &= \frac{1}{4}(x-1)^2 + \frac{1}{4}(x+1)^2 = \frac{1}{2}x^2 + \frac{1}{2}. \end{aligned}$$

Note: if you plot this function, it will look like a moving average of $|x|$ that has been smoothed around $x = 0$.

Exercise 4 Suppose that $f(x) = x^2$ and that

$$g(x) = \begin{cases} \frac{1}{2} & \text{if } -1 < x < 1, \\ 0 & \text{otherwise.} \end{cases} \quad h(x) = \begin{cases} e^{-x} & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Compute the convolutions $u(x) = (f \star g)(x)$ and $v(x) = (f \star h)(x)$.

Solution 4 We find by direct computation:

$$\begin{aligned}
(f \star g)(x) &= (g \star f)(x) = \frac{1}{2} \int_{-1}^1 (x-y)^2 dy \\
&= \frac{1}{2} \left(\frac{1}{3}(x+1)^3 - \frac{1}{3}(x-1)^3 \right) \\
&= \frac{1}{6} ((x^3 + 3x^2 + 3x + 1) - (x^3 - 3x^2 + 3x - 1)) \\
&= \frac{1}{6} (6x^2 + 2) \\
&= x^2 + \frac{1}{3}.
\end{aligned}$$

Similarly,

$$(f \star h)(x) = \int_0^\infty (x-y)^2 e^{-y} dy = \int_0^\infty (y-x)^2 e^{-y} dy.$$

We proceed here with integration by parts: first,

$$\begin{aligned}
\int_0^\infty (y-x)^2 e^{-y} dy &= [-(y-x)^2 e^{-y}]_{y=0}^{y=\infty} - \int_0^\infty (-1)2(y-x)e^{-y} dy \\
&= x^2 + 2 \int_0^\infty (y-x)e^{-y} dy.
\end{aligned}$$

Then,

$$\begin{aligned}
\int_0^\infty (y-x)e^{-y} dy &= [-(y-x)e^{-y}]_{y=0}^{y=\infty} - \int_0^\infty (-1)e^{-y} dy \\
&= -x + \int_0^\infty e^{-y} dy.
\end{aligned}$$

Lastly,

$$\int_0^\infty e^{-y} dy = [-e^{-y}]_{y=0}^{y=\infty} = 1.$$

Thus, in total, we obtain

$$(f \star h)(x) = x^2 + 2(-x+1) = x^2 - 2x + 2.$$

Exercise 5 We have discussed solutions to the differential equation

$$-\Delta u(x) + k^2 u(x) = e^{-|x|}, \quad x \in \mathbb{R}.$$

- Verify that, in the case $k = 1$, we have a solution

$$u(x) = \frac{1}{2}(1 + |x|)e^{-|x|}$$

Verify that every function of the form

$$v(x) = \frac{1}{2}(1 + |x|)e^{-|x|} + c_1e^{-x} + c_2e^x$$

is a solution. For which values of c_1 and c_2 does the function decay towards zero as x goes to $\pm\infty$?

- Verify that, in the case $k \neq 1$, we have a solution

$$u(x) = -\frac{e^{-k|x|}}{k(k^2 - 1)} + \frac{e^{-|x|}}{k^2 - 1}$$

Verify that every function of the form

$$v(x) = -\frac{e^{-k|x|}}{k(k^2 - 1)} + \frac{e^{-|x|}}{k^2 - 1} + c_1e^{-kx} + c_2e^{kx}$$

is a solution.

Solution 5 • Consider the function

$$v(x) = \frac{1}{2}(1 + |x|)e^{-|x|} + c_1e^{-x} + c_2e^x.$$

Obviously, $u(x)$ is a special case of a function of that form when $c_1 = c_2 = 0$. This function is continuous and it is differentiable over $(-\infty, 0)$ and $(0, \infty)$. Its derivative equals

$$v'(x) = -\frac{1}{2}xe^{-|x|} - c_1e^{-x} + c_2e^x.$$

To see that, we can, e.g., compute the v' for $x > 0$ and $x < 0$ and verify that v' matches this description.

This function is again continuous and it is differentiable over $(-\infty, 0)$ and $(0, \infty)$. Its derivative equals

$$v''(x) = \frac{1}{2}e^{-|x|}(|x| - 1) + c_1e^{-x} + c_2e^x.$$

That this is a solution to the differential equations is evident from

$$\begin{aligned} -v''(x) + v(x) &= -\frac{1}{2}e^{-|x|}(|x| - 1) - c_1e^{-x} - c_2e^x + \frac{1}{2}(1 + |x|)e^{-|x|} + c_1e^{-x} + c_2e^x \\ &= \frac{1}{2}e^{-|x|}(1 - |x|) + \frac{1}{2}(1 + |x|)e^{-|x|} = e^{-|x|}. \end{aligned}$$

To ensure that the solution decays towards zero as x goes to $\pm\infty$, we need to have $c_1 = c_2 = 0$.

- We repeat the same type of arguments. Consider the function

$$v(x) = -\frac{e^{-k|x|}}{k(k^2 - 1)} + \frac{e^{-|x|}}{k^2 - 1} + c_1 e^{-kx} + c_2 e^{kx}.$$

Obviously, $u(x)$ is a special case of a function of that form when $c_1 = c_2 = 0$. Clearly, v is continuous and it is differentiable over $(-\infty, 0)$ and $(0, \infty)$. Calculations, for $v \neq 0$ show that the derivative (in the sense of distributions) equals

$$v'(x) = \text{sign}(x) \frac{(e^{-k|x|} - e^{-|x|})}{k^2 - 1} + (-k)c_1 e^{-kx} + kc_2 e^{kx}.$$

This function is still continuous and obviously differentiable over $(-\infty, 0)$ and $(0, \infty)$. We find that

$$\begin{aligned} v''(x) &= 2\delta_0 \cdot \frac{(e^{-k|x|} - e^{-|x|})}{k^2 - 1} + \text{sign}(x)^2 \frac{(-ke^{-k|x|} + e^{-|x|})}{k^2 - 1} + k^2 c_1 e^{-kx} + k^2 c_2 e^{kx} \\ &= \frac{(-ke^{-k|x|} + e^{-|x|})}{k^2 - 1} + k^2 c_1 e^{-kx} + k^2 c_2 e^{kx}. \end{aligned}$$

Here, we have used that the $e^{-|x|} - e^{-k|x|} = 0$ at $x = 0$.

That being settled, we check

$$\begin{aligned} -v''(x) + k^2 v(x) &= -\frac{-ke^{-k|x|} + e^{-|x|}}{k^2 - 1} - k^2 c_1 e^{-x} - k^2 c_2 e^x - k^2 \frac{e^{-k|x|}}{k(k^2 - 1)} + k^2 \frac{e^{-|x|}}{k^2 - 1} + c_1 e^{-x} + c_2 e^x \\ &= \frac{ke^{-k|x|} - e^{-|x|}}{k^2 - 1} - \frac{ke^{-k|x|}}{(k^2 - 1)} + k^2 \frac{e^{-|x|}}{k^2 - 1} \\ &= e^{-|x|}. \end{aligned}$$

This is the desired differential equation.

Exercise 6 We want to find a solution to the boundary value problem

$$\begin{aligned} -\Delta u(x) + k^2 u(x) &= x, \quad 0 < x < L, \\ u(0) &= 0, \quad u(L) = 0. \end{aligned}$$

- Extend the right-hand side $f(x) = x$ to an odd function with period $2L$ and compute its Fourier coefficients.
- Using these coefficients, find the Fourier series of the solution u . Verify that the boundary condition $u(0) = u(L) = 0$ is satisfied.

Solution 6 • The odd extension of period 2 is simply given by

$$f_{\text{odd}}(x) = x, \quad x \in [-L, L].$$

• Since f_{odd} is odd by construction, we have

$$f_{\text{odd}}(x) = \sum_{n=1}^{\infty} f_n \sin\left(\frac{n\pi x}{L}\right),$$

with

$$\begin{aligned} f_n &= \frac{2}{L} \int_0^L x \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \left[-x \frac{L}{n\pi} \cos\left(\frac{n\pi x}{L}\right) \right]_{x=0}^{x=L} + \frac{2}{L} \int_0^L \frac{L}{n\pi} \cos\left(\frac{n\pi x}{L}\right) dx \\ &= \left[-x \frac{2}{n\pi} \cos\left(\frac{n\pi x}{L}\right) \right]_{x=0}^{x=L} + \frac{2}{n\pi} \int_0^L \cos\left(\frac{n\pi x}{L}\right) dx \\ &= \left[-x \frac{2}{n\pi} \cos\left(\frac{n\pi x}{L}\right) \right]_{x=0}^{x=L} + \frac{2}{n\pi} \left[\left(\frac{L}{n\pi} \right) \sin\left(\frac{n\pi x}{L}\right) \right]_{x=0}^{x=L} \\ &= \left[-x \frac{2}{n\pi} \cos\left(\frac{n\pi x}{L}\right) \right]_{x=0}^{x=L} \\ &= -L \frac{2}{n\pi} \cos(n\pi) = (-1)^{n+1} \frac{2L}{\pi n}. \end{aligned}$$

• For the solution, we make a sine ansatz $u(x) = \sum_{n=1}^{\infty} u_n \sin\left(\frac{n\pi x}{L}\right)$ because this satisfies the boundary conditions. Then, the PDE can be written in terms of the Fourier coefficients as

$$\left[k^2 + \left(\frac{\pi n}{L} \right)^2 \right] u_n = (-1)^{n+1} \frac{2L}{\pi n}, \quad \forall n \in \mathbb{N}.$$

Therefore, the solution is given by

$$u_n = (-1)^{n+1} \frac{2L}{\pi n} \left[k^2 + \left(\frac{\pi n}{L} \right)^2 \right]^{-1}.$$

Exercise 7 (Fun with Neumann boundary conditions) Consider the Poisson problem with Neumann boundary conditions over the interval $[a, b] = [0, 1]$:

$$\begin{aligned} -u''(x) + k^2 u(x) &= x - \frac{1}{2}, \quad a < x < b, \\ u'(a) &= 0, \quad u'(b) = 0, \end{aligned}$$

for some $k \geq 0$.

(a) Extend $f(x) = x - \frac{1}{2}$ to an even function over the real line with period 2.

(b) Compute the Fourier coefficients of that even extension of f .

(c) Find the Fourier series of a function that satisfies the above differential equation.

Solution 7 • The even extension of period 2 is given by $f_{\text{even}}(x) = |x| - \frac{1}{2}, x \in [-1, 1]$.

• Since f_{even} is even by construction, we only have cosine terms, i.e.

$$f_{\text{even}}(x) = \frac{f_0}{2} + \sum_{n=1}^{\infty} f_n \cos(\pi n x).$$

Here,

$$f_0 = \frac{1}{2} \int_{-1}^1 (|x| - \frac{1}{2}) dx = \int_{-1}^1 (x - \frac{1}{2}) dx = 0,$$

and for any $n \geq 1$,

$$\begin{aligned} f_n &= \int_{-1}^1 (x - \frac{1}{2}) \cos(\pi n x) dx \\ &= 2 \int_0^1 (x - \frac{1}{2}) \cos(\pi n x) dx = 2 \int_0^1 x \cos(\pi n x) dx = \frac{2}{\pi^2 n^2} ((-1)^n - 1). \end{aligned}$$

• For the solution, we make a cosine ansatz

$$u(x) = u_0 + \sum_{n=1}^{\infty} u_n \cos(\pi n x)$$

because the cosine modes satisfy the Neumann boundary conditions. We have expressed the (even extension) of the right-hand side as a Fourier cosine series, and therefore the PDE can be written in terms of the Fourier coefficients:

$$[k^2 + \pi^2 n^2] u_n = f_n = \frac{2}{\pi^2 n^2} ((-1)^n - 1), \quad \forall n \in \mathbb{N}.$$

Note that no information can be provided for the coefficient u_0 when $k = 0$; indeed, any choice will be possible.¹ We have $u_0 = 0$.

This provides the coefficients of the Fourier (cosine) series of u :

$$u_n = (k^2 + \pi^2 n^2)^{-1} \frac{2}{\pi^2 n^2} ((-1)^n - 1), \quad \forall n \in \mathbb{N}.$$

¹This corresponds to the fact that whenever we have solution of $-u'' = f$ with Neumann boundary conditions, then also $u + c$ is a solution to the same problem, for any constant $c \in \mathbb{R}$. In other words, the solution is not unique.

Therefore, the solution is given by

$$u(x) = u_0 + \sum_{n=1}^{\infty} \frac{2}{\pi^2 n^2 [k^2 + \pi^2 n^2]} ((-1)^n - 1) \cos(\pi n x).$$

The boundary conditions are satisfied by construction, because we have used a Fourier cosine series.

Exercise 8 (Fun with periodic boundary conditions) Consider the Poisson problem with periodic boundary conditions over the interval $[a, b] = [0, 1]$:

$$\begin{aligned} -u''(x) + k^2 u(x) &= x - \frac{1}{2}, \quad a < x < b, \\ u(a) &= u(b), \end{aligned}$$

for some $k \geq 0$.

- (a) Extend $f(x) = x - \frac{1}{2}$ to a 1-periodic function over the real line.
- (b) Compute the Fourier coefficients of that extension of f .
- (c) Find the Fourier series of a function that satisfies the above differential equation.

Solution 8 1. The 1-periodic extension is simply given by $f_{per}(x) = x - \frac{1}{2}, x \in [0, 1]$ with periodic continuation.

2. When we develop the Fourier coefficients of f_{per} ,

$$f_{per}(x) = \frac{a_0^f}{2} + \sum_{n \geq 1} a_n^f \cos(2\pi n x) + b_n^f \sin(2\pi n x).$$

We compute the Fourier coefficients. We have

$$a_0^f = 2 \int_0^1 (x - \frac{1}{2}) dx = 2 \left[\frac{(x - \frac{1}{2})^2}{2} \right]_{x=0}^{x=1} = \left((1 - \frac{1}{2})^2 - (0 - \frac{1}{2})^2 \right) = 0.$$

and

$$\begin{aligned} a_n^f &= 2 \int_0^1 \left(x - \frac{1}{2} \right) \cos(2\pi n x) dx \\ &= 2 \left[\left(x - \frac{1}{2} \right) \frac{1}{2\pi n} \sin(2\pi n x) \right]_{x=0}^{x=1} - \frac{2}{2\pi n} \int_0^1 \left(x - \frac{1}{2} \right)' \sin(2\pi n x) dx \\ &= 2 \left[\left(x - \frac{1}{2} \right) \frac{1}{2\pi n} \sin(2\pi n x) \right]_{x=0}^{x=1} - \frac{2}{2\pi n} \int_0^1 \sin(2\pi n x) dx \end{aligned}$$

$$= 0.$$

Notice that $x - \frac{1}{2}$ has zero average, hence $a_0 = 0$. The higher cosine modes of f_{per} do not see the constant, and thus agree with the 1-periodic extension of f , which is odd, and hence the higher cosine modes have coefficient zero as well. We have

$$\begin{aligned} b_n^f &= 2 \int_0^1 \left(x - \frac{1}{2} \right) \sin(2\pi n x) \, dx \\ &= 2 \int_0^1 x \sin(2\pi n x) \, dx - \int_0^1 \sin(2\pi n x) \, dx \\ &= 2 \int_0^1 x \sin(2\pi n x) \, dx. \end{aligned}$$

Via integration by parts:

$$\begin{aligned} b_n^f &= 2 \int_0^1 x \sin(2\pi n x) \, dx = 2 \left[x \frac{(-\cos)}{2\pi n} (2\pi n x) \right]_{x=0}^{x=1} - \int_0^1 \frac{(-\cos)}{2\pi n} (2\pi n x) \, dx \\ &= -2 \frac{1}{2\pi n} + \frac{1}{2\pi n} \int_0^1 \cos(2\pi n x) \, dx = \frac{-1}{\pi n}. \end{aligned}$$

3. We use a full Fourier series for the solution of the Poisson problem with periodic boundary conditions,

$$u(x) = \frac{a_0^u}{2} + \sum_{n \geq 1} a_n^u \cos(2\pi n x) + b_n^u \sin(2\pi n x).$$

because both the sine and cosine modes satisfy the periodic boundary conditions. When we write the differential equation in terms of the Fourier coefficients, then we find that a_0 is indeterminate,² and

$$\begin{aligned} [k^2 + (2\pi n)^2] a_n^u &= a_n^f, & \forall n \in \mathbb{N}, \\ [k^2 + (2\pi n)^2] b_n^u &= b_n^f, & \forall n \in \mathbb{N}. \end{aligned}$$

With our specific choice of coefficients, Therefore, the solution is given by

$$u(x) = \sum_{n=1}^{\infty} \frac{-1}{\pi n [k^2 + (2\pi n)^2]} \sin(2\pi n x).$$

Note that the periodic boundary conditions are satisfied.

²Similar to the Neumann problem, if we have any solution to $-u'' = f$ with periodic boundary conditions, then so does $u + c$ for any constant $c \in \mathbb{R}$.