
Analysis III - 203(d)

Winter Semester 2024

Session 11: November 28, 2024

Exercise 1 Compute the Fourier coefficients of the following functions, which have period T = 2π
and have the given values over the interval [0, 2π):

�

f(x) = ex−π

�

g(x) = (x− π)3

�

h(x) =


sin(x) 0 ≤ x < π

2
0 π

2 ≤ x < 3π
2

sin(x) 3π
2 ≤ x < 2π

Hint: Recall that cos(π2 − θ) = sin θ and cos(3π2 − θ) = − sin θ.

Solution 1 � To compute the Fourier coefficients of f(x) with a period of 2π, use the formulas
from the lecture:

a0
2

=
1

2π

∫ 2π

0
f(x)dx =

1

2π

∫ 2π

0
ex−πdx =

1

2π

[
ex−π

]2π
0

=
1

2π

(
eπ − e−π

)
For other coefficients, we apply integration by parts twice, and see that we obtain the same
integral again:

an =
1

π

∫ 2π

0
ex−π cos(nx)dx

=
1

π

[
ex−π sin(nx)

n

]x=2π

x=0

− 1

π

∫ 2π

0
ex−π sin(nx)

n
dx

=
1

π

[
ex−π sin(nx)

n

]x=2π

x=0

− 1

π

[
ex−π− cos(nx)

n2

]x=2π

x=0

1

π

∫ 2π

0
ex−π− cos(nx)

n2
dx

=
1

π

(
eπ

sin(2πx)

n
− e0−π sin(n0)

n

)
− 1

π

(
eπ

− cos(n2π)

n2
− e−π− cos(n0)

n2

)
+

1

π

∫ 2π

0
ex−π− cos(nx)

n2
dx
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=
1

π

eπ − e−π

n2
+

1

π

∫ 2π

0
ex−π− cos(nx)

n2
dx

=
1

π

eπ − e−π

n2
− 1

π

∫ 2π

0
ex−π cos(nx)

n2
dx

We rearrange that ∫ 2π

0
ex−π cos(nx)dx =

eπ − e−π

n2
− 1

n2

∫ 2π

0
ex−π cos(nx)dx

=⇒
(
1 +

1

n2

)∫ 2π

0
ex−π cos(nx)dx =

eπ − e−π

n2

=⇒
∫ 2π

0
ex−π cos(nx)dx =

(
1 +

1

n2

)−1 eπ − e−π

n2
.

We conclude that

an :=
1

π

∫ 2π

0
ex−π cos(nx)dx =

(
1 +

1

n2

)−1 eπ − e−π

πn2

=

(
n2 + 1

n2

)−1
eπ − e−π

πn2

=
n2

1 + n2

eπ − e−π

πn2

=
eπ − e−π

(1 + n2)π

The coefficients of the sine modes are:

bn =
1

π

∫ 2π

0
ex−π sin(nx)dx

=
1

π

[
−ex−π cos(nx)

n

]x=2π

x=0

+
1

π

∫ 2π

0

ex−π cos(nx)

n
dx

=
1

π

[
−ex−π cos(nx)

n

]x=2π

x=0

+
1

π

[
ex−π sin(nx)

n2

]x=2π

x=0

− 1

π

∫ 2π

0
ex−π sin(nx)

n2
dx

=
1

π

e−π − eπ

n
− 1

π

∫ 2π

0
ex−π sin(nx)

n2
dx

Similar as above, it follows that

bn :=
1

π

∫ 2π

0
ex−π sin(nx)dx =

1

1 + 1
n2

1

π

e−π − eπ

n
=

1

π

e−π − eπ

n+ 1
n
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� We compute the average

a0
2

:=
1

2π

∫ 2π

0
(x− π)3dx =

1

2π

∫ π

−π
z3dz = 0.

We compute the coefficients of the cosine modes: for n ≥ 1, we find

an :=
2

2π

∫ 2π

0
(x− π)3 cos(nx)dx

=
1

π

∫ 2π

0
(x− π)3 cos(nx)dx

=
1

π

∫ π

−π
z3 cos(n(z + π))dz

=
1

π

∫ π

−π
z3 cos(nz + nπ))dz

=
1

π

∫ π

−π
z3 cos(nz))dz ·

{
1 if n is even
−1 if n is odd

.

However, z3 cos(nz) is the product of an odd and an even function, and so the integral
vanishes. Explicitly:∫ π

−π
z3 cos(nz))dz =

∫ 0

−π
z3 cos(nz))dz +

∫ π

0
z3 cos(nz))dz

= −
∫ π

0
w3 cos(nw))dw +

∫ π

0
z3 cos(nz))dz = 0.

Finally, we compute the coefficients of the sine modes:

bn :=
2

2π

∫ 2π

0
(x− π)3 sin(nx)dx

=
1

π

∫ 2π

0
(x− π)3 sin(nx)dx

=
1

π

∫ π

−π
z3 sin(n(z + π))dx

=
1

π

∫ π

−π
z3 sin(nz)dz ·

{
1 if n is even
−1 if n is odd

.

In either case, since z3 and sin(nz) are odd functions,∫ π

−π
z3 sin(nz)dz = 2

∫ π

0
z3 sin(nz)dz.

3



We perform integration by parts several times:∫ π

0
z3 sin(nz)dz

= − 1

n

[
z3 cos(nz)

]z=π

z=0
+

3

n

∫ π

0
z2 cos(nz)dz

= − 1

n

[
z3 cos(nz)

]z=π

z=0
+

3

n2

[
z2 sin(nz)

]z=π

z=0
− 6

n2

∫ π

0
z sin(nz)dz

= − 1

n

[
z3 cos(nz)

]z=π

z=0
+

3

n2

[
z2 sin(nz)

]z=π

z=0
+

6

n3
[z cos(nz)]z=π

z=0 − 6

n3

∫ π

0
cos(nz)dz

= − 1

n

[
z3 cos(nz)

]z=π

z=0
+

3

n2

[
z2 sin(nz)

]z=π

z=0
+

6

n3
[z cos(nz)]z=π

z=0 +
6

n4
[sin(nz)]z=π

z=0

= −π3(−1)n

n
+

6π(−1)n

n3

=⇒ bn =

({
2π2

n − 12
n3 , if n is odd,

−2π2

n + 12
n3 , if n is even,

)
·

({
−1 if n is odd

1 if n is even

)
= −2π2

n
+

12

n3
.

� The average of h(x) over 1 period T is 0 therefore:

a0
2

= 0

Moreover h(x) is odd therefore an = 0. Explicitly, we compute

an =
1

π

∫ 2π

0
h(x) cos(nx)dx =

1

π

∫ π
2

0
sin(x) cos(nx)dx+

1

π

∫ 2π

3π
2

sin(x) cos(nx)dx.

To compute the integrals, we apply the product-to-sum identity

sin(x) cos(nx) =
1

2
(sin((1 + n)x) + sin((1− n)x)) .

We obtain for the first integral

1

π

∫ π
2

0
sin(x) cos(nx)dx =

1

π

∫ π
2

0

1

2
(sin((1 + n)x) + sin((1− n)x)) dx

=
1

π

(
1

2

[
− 1

1 + n
cos((1 + n)x)− 1

1− n
cos((1− n)x)

]π
2

0

)

= − 1

n+ 1
cos

(
(n+ 1)π

2

)
− 1

1− n
cos

(
(1− n)π

2

)
+

1

n+ 1
+

1

1− n

=
1

2π(n2 − 1)

[
(1− n) cos

(π
2
+

nπ

2

)
+ (n+ 1) cos

(π
2
− nπ

2

)]
− 1

π(n2 − 1)
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=
n sin

(
nπ
2

)
− 1

π(n2 − 1)
,

where we have applied the hint in the last equation. For the second integral, we obtain

1

π

∫ 2π

3π
2

sin(x) cos(nx)dx =
1

π

∫ 2π

3π
2

1

2
(sin((1 + n)x) + sin((1− n)x)) dx

=
1

π

(
1

2

[
− 1

1 + n
cos((1 + n)x)− 1

1− n
cos((1− n)x)

]2π
3π
2

)

=
1

π(n2 − 1)
+

1

2π(1− n2)

[
(1− n) cos

(
(1 + n)

3π

2

)
+ (1 + n) cos

(
(1− n)

3π

2

)]
=

1

π(n2 − 1)
+

1

2π(1− n2)

[
(1− n) sin

(
3πn

2

)
− (1 + n) sin

(
3πn

2

)]
=

1 + n sin
(
3πn
2

)
π(n2 − 1)

,

again by using the hint. Therefore, we have

an =
n

π(n2 − 1)

[
sin
(πn

2

)
+ sin

(
3πn

2

)]
= 0,

since the sum-to-product formula for the sine yields

sin
(πn

2

)
+ sin

(
3πn

2

)
= 2 sin (2πn) cos (πn) = 0.

For bn we have:

bn =
2

2π

∫ π
2

0
sin(x) sin(nx)dx+

2

2π

∫ 2π

3π
2

sin(x) sin(nx)dx

=
2

2π

∫ π
2

−π
2

sin(x) sin(nx)dx

=
1

π

∫ π
2

−π
2

sin(x) sin(nx)dx

=
2

π

∫ π
2

0
sin(x) sin(nx)dx

=
1

π

∫ π
2

0
cos((n− 1)x)− cos((n+ 1)x)dx

=
1

π

[
sin((n− 1)x)

n− 1
− sin((n+ 1)x)

n+ 1

]x=π
2

x=0
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=
n
(
cos(nπ2 ) + cos(3nπ2 )

)
π(1− n2)

=
2n cos(nπ) cos(−nπ

2 )

π(1− n2)
=

2n(−1)n cos(nπ2 )

π(1− n2)
,

where we have again used a reflection formula an product-to-sum formula to simplify the
trigonometric expressions. Now we see immediately, that if n is odd, then bn = 0 since
cos(nπ2 ) = 0. Whenever n is even, i.e. n = 2k for some k ∈ N, we have

bn = b2k =
4k(−1)k

π(1− 4k2)

Exercise 2 Compute the Fourier coefficients of the function f with period T = 2π and which
satisfies

f(x) = sin(x) if 0 ≤ x < π,

and
f(x) = f(−x) for all x ∈ R.

Solution 2 Note that f(x) is an even function. Using a change of variables, we compute

bn =
2

T

∫ π

−π
f(x) sin(nx)dx

=
2

T

∫ 0

−π
f(x) sin(nx)dx+

2

T

∫ π

0
f(x) sin(nx)dx

= (−1)
2

T

∫ 0

π
f(−x) sin(−nx)dx+

2

T

∫ π

0
f(x) sin(nx)dx

=
2

T

∫ π

0
f(x) sin(−nx)dx+

2

T

∫ π

0
f(x) sin(nx)dx

= − 2

T

∫ π

0
f(x) sin(nx)dx+

2

T

∫ π

0
f(x) sin(nx)dx = 0.

Therefore bn = 0. The average is

a0
2

=
2

2π

∫ π

0
sinxdx =

1

π
[− cosx]π0 =

2

π
.

The cosine mode coefficients are:

an =
2

T

∫ π

−π
f(x) cos(nx)dx

=
4

T

∫ π

0
sinx cos(nx)dx
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=
4

T

∫ π

0

1

2
sin((1− n)x) +

1

2
sin((n+ 1)x)dx

=
2

T

∫ π

0
sin((1− n)x) + sin((n+ 1)x)dx

=
2

T

∫ π

0
− sin((n− 1)x) + sin((n+ 1)x)dx

=
2

T

[
cos((n− 1)x)

(n− 1)

]x=π

x=0

+
2

T

[
−cos((n+ 1)x)

(n+ 1)

]x=π

x=0

=
2

T

(
cos((n− 1)π)

(n− 1)
− 1

(n− 1)
− cos((n+ 1)π)

(n+ 1)
+

1

(n+ 1)

)
=

2

T

(
cos(nπ − π)

(n− 1)
− 1

(n− 1)
− cos(nπ + π)

(n+ 1)
+

1

(n+ 1)

)
=

2

T

(
−cos(nπ)

(n− 1)
− 1

(n− 1)
+

cos(nπ)

(n+ 1)
+

1

(n+ 1)

)
=

2

T

(
− (−1)n

(n− 1)
− 1

(n− 1)
+

(−1)n

(n+ 1)
+

1

(n+ 1)

)
=

2

T

(
1 + (−1)n

(n+ 1)
− 1 + (−1)n

(n− 1)

)
=

1

π

(
1 + (−1)n

(n+ 1)
− 1 + (−1)n

(n− 1)

)
.

Here, if n is odd, the coefficient numerators are 1+(−1) = 0, and if n is even, they are both equal
2. Thus:

an =

{
0, if n is odd,

− 2
π(n−1) +

2
π(n+1) , if n is even,

Exercise 3 Use Dirichlet’s theorem to explain whether the Fourier series converges at x ∈ [0, T ]
and to which value:

�

f(x) =

{
x if 0 ≤ x < 1
2− x if 1 ≤ x < 2

, T = 2.

�

f(x) =


π if 0 ≤ x < 1
ex−1 if 1 ≤ x < 2
sin(x) if 2 ≤ x < 3

, T = 3.

Here, the functions have the given period T .
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Solution 3 � f is continuous and finite on the closed interval [0, 2] therefore the Fourier
series, FNf , converges to f when we take the limit of N going to ∞.

� f is continuous and finite on the closed intervals [0, 1], [1, 2] and [2, 3]. However, note that
f is not continuous in 0, 1 and 2. Therefore the Fourier series, Ff , converges to:

g(x) =



sin(3)+π
2 if x = 0

π if 0 < x < 1
π+1
2 if x = 1

ex−1 if 1 < x < 2
sin(2)+e1

2 if x = 2
sin(x) if 2 < x < 3
sin(3)+π

2 if x = 3

and we extend that function g to a periodic function with period T = 3.

Exercise 4 Give the Fourier series in complex notation, when f has period T = 2 and

f(x) = x for 0 ≤ x < 2.

Solution 4 We can re-use the results about the sawtooth wave.

g(x) = x for 0 ≤ x < 1

ag0 = 1, agn = 0, bgn =
−1

πn

Moreover we can write f in terms of g by introducing x = y
2

f(y) = 2g(y/2)

which gives us the Fourier coefficients of f

af0 = 2, afn = 0, bfn =
−2

πn

Using this we can obtain the Fourier coefficients cn:

c0 =
a0
2

= 2, cn =
an
2

− bn
2
i =

1

nπ
i, c−n =

an
2

+
bn
2
i = − 1

nπ
i

such that

Ff(x) =

∞∑
n=−∞

cne
πnxi

Exercise 5 Find the Fourier coefficients of cos(x)8 with period T = 2π. Use Parseval’s identity
to compute

∫ 2π
0 cos(x)16dx.
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Solution 5 We will not use the standard approach in integrating the function f . Instead we try
to rewrite f as sum of cos(nx) using trigonometric formulas:

cos2 α =
1

2
+

1

2
cos 2α

cosα cosβ =
1

2
cos(α− β) +

1

2
cos(α+ β)

Using these formulas we can rewrite f as follows:

cos8 x = (cos2 x)4

= (
1

2
+

1

2
cos 2x)4

= ((
1

2
+

1

2
cos 2x)2)2

= (
1

4
+

1

2
cos 2x+

1

4
cos2 2x)2

= (
1

4
+

1

2
cos 2x+

1

4
cos2 2x)2

= (
1

4
+

1

2
cos 2x+

1

4
cos2 2x)(

1

4
+

1

2
cos 2x+

1

4
cos2 2x)

=
1

16
+

1

4
cos 2x+

3

8
cos2 2x+

1

4
cos3 2x+

1

16
cos4 2x

=
1

16
+

1

4
cos 2x+

3

8
(
1

2
+

1

2
cos 4x) +

1

4
cos3 2x+

1

16
cos4 2x

=
4

16
+

1

4
cos 2x+

3

16
cos 4x+

1

4
cos3 2x+

1

16
cos4 2x

Now we consider cos3 2x and cos4 2x seperately:

cos3 2x = cos 2x cos2 2x

= (
1

2
+

1

2
cos 4x) cos 2x

=
1

2
cos 2x+

1

2
cos 4x cos 2x

=
1

2
cos 2x+

1

4
cos 6x+

1

4
cos 2x

=
3

4
cos 2x+

1

4
cos 6x

cos4 2x = (cos2 2x)2
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= (
1

2
+

1

2
cos 4x)2

=
1

4
+

1

2
cos 4x+

1

4
cos2 4x

=
1

4
+

1

2
cos 4x+

1

4
(
1

2
+

1

2
cos 8x)

=
3

8
+

1

2
cos 4x+

1

8
cos 8x

putting everything together we have:

cos8 x =
35

128
+

7

16
cos 2x+

7

32
cos 4x+

1

16
cos 6x+

1

128
cos 8x

For the second part we use Parseval’s identity which is given by:

2

T

∫ T

0
f(x)2dx =

a20
2

+

∞∑
n=0

(an)
2 + (bn)

2

substituting our Fourier coefficients and f gives:

2

T

∫ T

0
f(x)2dx =

a20
2

+

∞∑
n=0

(an)
2 + (bn)

2

1

π

∫ 2π

0
cos(x)16dx = 2

(
35

128

)2

+

(
7

16

)2

+

(
7

32

)2

+

(
1

16

)2

+

(
1

128

)2

.

=⇒
∫ 2π

0
cos(x)16dx = π

(
2

(
35

128

)2

+

(
7

16

)2

+

(
7

32

)2

+

(
1

16

)2

+

(
1

128

)2
)

We simplify this value:

2

(
35

128

)2

+

(
7

16

)2

+

(
7

32

)2

+

(
1

16

)2

+

(
1

128

)2

= 6435

Therefore, in total, ∫ 2π

0
cos(x)16dx = π

6435

16384
≈ 1.233895796

Exercise 6 Give the Fourier series of the function f with period T = 2 and

f(x) = cos(x) for − 1 ≤ x < 1.

Give the Fourier series in standard form and in complex notation. Compare F3f at the points
x = −π/4, 0, π/4 with the original function f .

10



Solution 6 We calculate the complex Fourier coefficients

c0 =
1

2

∫ 1

−1
cosxdx =

1

2
[sinx]1−1 = sin 1

cn =
1

2

∫ 1

−1
cosxe−πnxidx

=
1

2

∫ 1

−1

(
1

2
exi +

1

2
e−xi

)
e−πnxidx

=
1

2

∫ 1

−1

(
1

2
e(1−nπ)xi +

1

2
e−(1+nπ)xi

)
dx

=
1

2

[
1

(1− nπ)i

1

2
e(1−nπ)xi − 1

(1 + nπ)i

1

2
e−(1+nπ)xi

]1
−1

=
1

2(1− nπ)i

(
1

2
e(1−nπ)i − 1

2
e−(1−nπ)i

)
− 1

2(1 + nπ)i

(
1

2
e(1+nπ)i +

1

2
e−(1+nπ)i

)
=

1

2(1− nπ)
sin(1− πn) +

1

2(1 + nπ)
sin(1 + πn)

Using cn we can determine an and bn

a0
2

= c0 = sin 1, an = cn+c−n =
1

(1− nπ)
sin(1−πn)+

1

(1 + nπ)
sin(1+πn), bn = i(c−n−cn) = 0

The Fourier series in standard and in complex notation are given by:

Ff(x) =

∞∑
n=−∞

(
1

2(1− nπ)
sin(1− πn) +

1

2(1 + nπ)
sin(1 + πn)

)
e

2πnx
T

i

Ff(x) = sin(1) +

∞∑
n=1

(
1

(1− nπ)
sin(1− πn) +

1

(1 + nπ)
sin(1 + πn)

)
cos (πnx)

We compare F3f(x) and f(x) at several points

F3f(0) = 1.00664, F3f
(
−π

4

)
≈ 0.69196, F3f

(π
4

)
≈ 0.69196,

f(0) = 1, f
(
−π

4

)
≈ 0.70711, f

(π
4

)
≈ 0.70711.
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