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Winter Semester 2024

Session 11: November 28, 2024

Exercise 1 Compute the Fourier coefficients of the following functions, which have period T = 27
and have the given values over the interval [0, 2m):

Hint: Recall that cos(5 —

2 —0) =sind and cos(3F — 0) = —sind.
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Solution 1 e To compute the Fourier coefficients of f(x) with a period of 27, use the formulas
from the lecture:
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For other coefficients, we apply integration by parts twice, and see that we obtain the same
integral again:
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We rearrange that
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The coefficients of the sine modes are:
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Similar as above, it follows that
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o We compute the average
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We compute the coefficients of the cosine modes: for n > 1, we find
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However, z3cos(nz) is the product of an odd and an even function, and so the integral

vanishes. Explicitly:
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Finally, we compute the coefficients of the sine modes:
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In either case, since 23 and sin(nz) are odd functions,
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We perform integration by parts several times:
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e The average of h(x) over 1 period T is 0 therefore:
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Moreover h(x) is odd therefore a,, = 0. Explicitly, we compute
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To compute the integrals, we apply the product-to-sum identity
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sin(x) cos(nx)dx.

sin(x) cos(nx) = % (sin((1 + n)x) + sin((1 — n)x)) .

We obtain for the first integral
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where we have applied the hint in the last equation. For the second integral, we obtain
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again by using the hint. Therefore, we have

an = ﬁ {sin (772”) + sin (37;”)] — 0,

since the sum-to-product formula for the sine yields

sin (%) + sin (37;11) = 2sin (27n) cos (mn) = 0.

For b,, we have:
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where we have again used a reflection formula an product-to-sum formula to simplify the
trigonometric expressions. Now we see immediately, that if n is odd, then b, = 0 since
cos("gr) = 0. Whenever n is even, i.e. n = 2k for some k € N, we have
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by = bop = ———2
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Exercise 2 Compute the Fourier coefficients of the function f with period T = 27 and which

satisfies
f(z) =sin(x) if 0 <z <,

and

f(z) = f(—x) for all z € R.
Solution 2 Note that f(x) is an even function. Using a change of variables, we compute
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2. Thus:
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Here, if n is odd, the coefficient numerators are 1+ (—1) = 0, and if n is even, they are both equal
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Exercise 3 Use Dirichlet’s theorem to explain whether the Fourier series converges at x € [0,T]

and to which value:

=z fo<z<l _
f(x)_{z—x fl<e<2 * 1=%
T ifo<z<l
flx)=¢ et ifl<z<2 |, T =3.

sin(z) if2<x<3

Here, the functions have the given period T .



Solution 3 e f is continuous and finite on the closed interval [0,2] therefore the Fourier
series, Fn f, converges to f when we take the limit of N going to co.

e f is continuous and finite on the closed intervals [0,1], [1,2] and [2,3]. However, note that
f s not continuous in 0, 1 and 2. Therefore the Fourier series, F'f, converges to:

( sin(g)—i—ﬂ ifz=0
s if0<ax<l1
le ifr=1
g(z) =4 e ifl<az<?2
sin(22)+e1 ifo =2
sin(z) if2<ax<3
{ sin(?é)—i—ﬂ ifz =3

and we extend that function g to a periodic function with period T = 3.
Exercise 4 Give the Fourier series in complex notation, when f has period T = 2 and
flx)=a for0 <z < 2.
Solution 4 We can re-use the results about the sawtooth wave.

glx)=x for0<z <1

-1
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Moreover we can write f in terms of g by introducing r = %
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Ff(x)= Z cpe™
n—=—oo

Exercise 5 Find the Fourier coefficients of cos(z)® with period T = 2r. Use Parseval’s identity
to compute fo% cos(x)10dz.



Solution 5 We will not use the standard approach in integrating the function f. Instead we try
to rewrite f as sum of cos(nx) using trigonometric formulas:
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Using these formulas we can rewrite f as follows:
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Now we consider cos® 2x and cos* 2x seperately:
cos® 2z = cos 2z cos? 2z
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putting everything together we have:
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For the second part we use Parseval’s identity which is given by:
2 [ e =By @)+
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substituting our Fourier coefficients and f gives:
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We simplify this value:

35 \ 2 7\? 7\? 1\? 1\?
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Therefore, in total,
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Exercise 6 Give the Fourier series of the function f with period T = 2 and
f(z) =cos(x) for —1 <z < 1.

Give the Fourier series in standard form and in complexr notation. Compare F5f at the points
x = —7/4,0,7/4 with the original function f.
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Solution 6 We calculate the complex Fourier coefficients

e 1. 4 .
co = / coszdr = —[sinx].; =sin1
2, 2

I ,
Cp = / cosze T dx
2/
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2 /_1 (26 o ) v
1
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Using ¢, we can determine a, and b,
% =co=sinl, a,=cpt+c_,= T sin(l—7m)+7(1 ) sin(1+mn), b, = i(c_pn—cp) =0

The Fourier series in standard and in complex notation are given by:

- 1 . 1 ) 2mna;
Ff(z) = nzzoo <2(1—n7r) sin(l — 7n) + 0 ) sin(1 + 7rn)> e T
Ff(x) =sin(1) + 221 <(1—1n7r) sin(1 — wn) + Atnm sin(1 + 7Tn)> cos (mnx)

We compare Fsf(z) and f(z) at several points
Fyf(0) = 1.00664,  Fyf (-%) ~0.69196,  Fyf (g) ~ 0.69196,

FO) =1, f (—%) ~ 070711,  f (g) ~ 0.70711.
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