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Winter Semester 2024

Session 8: November 7, 2025

Exercise 1 Consider the surface
S:={ze R3 | x| = 1,23 > 0}

o Find a parameterization of S and find the unit normal corresponding to that parameteriza-
tion.

e Find a parameterization of C' = 0S.

o Verify Stokes theorem with the vector field

—

F(x1,29,23) = (—x2, 21, 23).

Solution 1 We conduct this in several steps.

e One possible parameterisation of the surface S reads:

Q:=1[0,2m) x [0, ),
O:0Q— S, (0,0)— (cosbcosa,sinb cosp,sin ).
We think of this as a parameterization of the upper hemisphere. The first variable 0 param-

eterizes the equator-like lines (latitude) and the second variable paramterizes the longitude
(how far up north, starting at the equator). We compute the partial derivatives:

cos 6 cos ¢ —sin 6 cos ¢ —cosfsing
® = [sinffcosg |, 0P = | cosllcos¢p |, 03P = | —sinfsing |,
sin ¢ 0 cos ¢
cos 6 cos? ¢
Opg® x 0y ® = sin 6 cos? ¢
sin ¢ cos ¢

The norm of this cross product is

109 x 0p®@|| = \/0052 0 cos* ¢ + sin? 0 cos? ¢ + sin? ¢ cos? ¢

= y/cos? ¢ + sin® ¢ cos? ¢ = cos P/ cos? ¢ + sin® ¢ = cos .



Figure 1: The first variable eastwards. The second variable points up north. The resulting normal
is pointing away from the origin. Remark: if we only consider the upper hemisphere surface, then
there is no outside or inside pointing normal. Indeed, if you cut open the Earth and only consider
the upper hemisphere, then there would be inside left.

Hence
9P x Oy cos 6 cos ¢
n=-————— = | sinfcos¢
[06® % 05| sin

According to the right-hand rule, when walking along the boundary with our right hand
pointing into the first direction and our left-hand pointing into the interior of the surface,
the resulting normal points will be the one pointing away from the origin.

o We first parameterize the boundary of the parameter space )
T
v [0,27) > 09, 0 (9,5) ,
which gives us the parameterization of the boundary as follows:

dovy:[0,2m) — 9C, 6~ (cosb,sinb,0).
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o We have to show that:



cos 0 cos ¢

:// 0] -|sinfcoso | sing dpdf
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cos ¢
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:/ /2200s¢sin(;5 dodb
o Jo

—or / ® 9cos dsin o dpdd = 2 / * sin(26) dodo = 2n [; cos 2¢] S _on
0

0 0

On the other hand,

27r
7{ Fdl = ﬁ<I>O7 d((I)O’Y)dQ
C 0
27r —siné —sinf o
= cos@ - | cosf d9:/ 1d0 = 2«
0 0 0

Exercise 2 Let S be the surface with parameterization ® : 0 — S as follows:
S={FeR|ai+a3=1, —-1<az3<1},
Suppose we have a vector field
ﬁ(.%'l,l'g,xg) = (woxs3, —z173,0).
o Find a parameterization of the unit normal 1 given associated with that parameterization.

o Compute the scalar field F -t and calculate the integrals of this scalar fields over S.

o Compute the integral using the formula

/ F (0D x 0,®)dsdt
Q

and compare the result.

e Find a counterclockwise parameterization of 0Q and use it build a parameterization of the

curve C = 08S.

o Compute the integrals

7{ Fdl.
C



Solution 2 o In a similar fashion as Exercise 1 Subquestion 2 we obtain the following normal

vector:
I
n = T2
0
°
T2I3 T
F-n= —I13 . T2 = L1X2x3 — L1TX2X3 — 0
0 0

/ﬁ-ﬁdaz/()dazo
S S

®:[0,27) x [-1,1] = S, (0, 2) — (cosb,sinb, z)

o We define the parameterisation:

on  rl zsind cos 0
/ F(®) - (0s® x 0;P)dsdt = / / —zcosf | - | sinf | dsdt
Q 0 —1 0 0

27 1
= / / Odsdt =0
0 -1

o A counter clockwise parameterisation of ) is given by:

7 :[0,27) = 094, (0) — (6,—1)
v2 i [—1,1) = 09Qa, (1) — (2m,71)
v3 : [0,27) > 093, (0) — (27 —0,1)
41 [—1,1) = 0Qy, (1) — (0,—1)

® o~y :]0,27) — C1, (0) — (cosb,sinf, —1)
Doy [l,—1)— Co,(r)— (1,0,7)

® o3 :100,2m) — C3,(0) — (cosf,—sinb, 1)
Doy [—1,1)— C4,(r) — (1,0, —1)



f Fdl = }[ Fdl
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e I has non-zero curl, so it cannot be a gradient of a scalar field.
Exercise 3 Let S be a surface with parameterization ® :  — S as follows:

S = {feRg ‘ 1 +x0+23=1, 1,29, 23 > O},
Q= {(s,t) € R? | s+t<1, s,t>0},
O:0—S, (s,t)— (s,t,1—5—1).
We consider the vector fields
F(x1,22,13) := (v2x3, —T173, 2122), G(21,20,23) 1= (—a, 21, 73)

o Find the unit normal 1 given associated with that parameterization.

o Compute the scalar fields F it and G -7 and calculate the integrals of these scalar fields over

S.

o Compute the integrals using the formula
/ F - (05 x 9,®)dsdt
Q

and compare the result.

e Find a counterclockwise parameterization of 02 and use it build a parameterization of the
curve C = 9S.



o Compute the integrals

fﬁdz, jfédz.
C C

o Can you exclude that F or G are gradients of a scalar field?

Solution 3 e In a similar fashion as exercise 1 subquestion 2 we obtain the following normal
vector:
(s
n=—
V31
[ ]
- ~ |0s® x 0y P||
F(®)-(0sP x 0yP)dsdt = | F(P) - (0sP x 0,P) —————dsdt
| (@) (05 x a@)ise = [ Fi)- 050 x o) 2 THeas
/ﬁ( ) - 7t)|0s® x ;P ||dsdt
Q
:/ - fido
S
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1 1—t 1 1 1 1 1
/ / stdsdt = / —(1 = t)*tdt = / (1 —t)?dt = —

/1/1tt(1 B —s(l—s— )+ stdsdt = ~ -~ 4 L _ 1
—s—t)—s(l—s— stdsdt = — — — + — = —
A 24 24 24 24

. 11—t —t 1
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o The boundary of Q2 consists of three lines which can be parameterized in a counter clockwise
way as follows:

T [07 1] = ana (’l“) = (Tv 0)7
v2 1 [0,1] = 0Qa, (1) — (1 —7,7),
BER [O’ 1] = 6933 (T) = (07 1- T)v
which we can use to parameterize the curve C' which consist of three lines:
bov;:[0,1] — Cy, (r) — (r,0,1 —1),
(1)0’72 : [0’ 1] = CQ)(T) — (1 —7",7",0),
(1)0’73 : [0’ 1] = C3>(T) = (071 _T7T)7
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e Both F and G have non-zero curl, so they cannot be gradients of a scalar field.

Exercise 4 (Green’s theorem) Consider the following closed curve C':
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The curved part of the curve can be parameterized by

v [0, E] — Rt (cos®(t),sin®(t)).

2
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o Find parameterizations of the other two curves.

o With the F(z1,32) = (w2, —x1) compute the curve integral

fzml
C
o Use Green’s theorem to explain how to compute the size of the area enclosed by the curve C.

Solution 4 °

71 :00,1] = Rt (0,1 —1t).

Yo : [0,1] = R?,  t+ (,0).

1 1 s - 3 2 .
- 1—1¢ 0 0 1 2 sin® t —3cos“tsint
7{ Fl _/ ( 0 > . <—1> dt+/0 <—t> ' <0> dt+/0 (—cos3t) . ( 3sin?tcost > dt
—3 cos? tsin? tdt

3
~1 sin? 2tdt

23 /1 1
= [ S Zcosdt— |t
/0 4(2008 2)

o We want to evaluate:

// ldxdy
Q

and Green’s theorem tells us that:

7{ Fdl = // @ — @dxld:cg
dx1  Oxa

In the previous exercise we solved the line integral with the vector field F(x1,z2) = (x2, —x1).
If we apply Greens theorem for this vector field then



B F, OF
L ]{ Fdl :/ 0F; @dxldm = // —2dz1dxs
16 C o 01y Oz2 Q

Therefore we have that

3
- = —2dx1d
16 //Q a2

and consequently

3T
— = dxid
32 //Q 1T

Exercise 5 (Stokes’s theorem) We have a vector field

—

F(z1,72,73) = (7122, 7273, T173)
and a surface
S = {(z1,22,23) € R3 | w4 aitai=1, 20>0,23> 0}
o Find parameterizations of the surface S and a parameterization of its boundary curve C'.

o Use Stokes’ theorem to compute the integral

/ / curl F do.
S

Solution 5 This is a quarter of a globe. We parameterize this surface by The surface is parame-
terized by

Q:=[0,%] x[0,7],
O:Q— S, (0,¢)— (cos@,cosbsinp,sinfsin @)

For the boundary parameterisation, we walk from the North pole to South pole along one side and
then back from the South pole to the North pole along the other side. The parameterization is
given by the two curves

v1:[0,7] = R3¢ — (cos ¢, sin ¢, 0),
12 [0,7] S RS, s (cos(m — 6),0,sin(m — 9)).
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The derivatives of those two curves are

;Yl : [077-(] — R37 ¢ — (_Sin¢a COS(b: 0)7
;}/2 : [Ovﬂ-] — R3> ¢ = (Sin(ﬂ- - ¢)7 07 - COS(ﬂ- - ¢))

Equipped with that, we use the vector field as in the problem statement,

—

F(z1,22,23) = (x122, T2x3, T123) ,

and, after renaming the paramter variable from ¢ to t, compute

//Scurlﬁda://y1 (ﬁo’Yl)-Mdo%—//m <F_"o72).72d0—

» [costsint —sint - 0 sin(m — t)
= / 0 - | cost |dt+ / 0 . 0 dt
0 0 0 0 \sin(m — t) cos(m — ) —cos(m —t)
» [costsint —sint - 0 sin(t)
= / 0 - | cost |dt+ / 0 : 0 dt
0 0 0 0 \sin(t) cos(t) — cos(t)

vy s
= / — costsin? tdt — / sin t cos? tdt
0 0
t t=m t=m 2

= _ [% sin?’(t)];g - [% cos3(t)]t:0 = - [% (3053(15)L:0 =-3

This completes the discussion.
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