
Analysis III - 203(d)

Winter Semester 2024

Session 8: November 7, 2025

Exercise 1 Consider the surface

S :=
{
x⃗ ∈ R3

∣∣ ∥x∥ = 1, x3 > 0
}

• Find a parameterization of S and find the unit normal corresponding to that parameteriza-
tion.

• Find a parameterization of C = ∂S.

• Verify Stokes theorem with the vector field

F⃗ (x1, x2, x3) = (−x2, x1, x3).

Solution 1 We conduct this in several steps.

• One possible parameterisation of the surface S reads:

Ω := [0, 2π)× [0, π2 ),

Φ : Ω → S, (θ, ϕ) 7→ (cos θ cosϕ, sin θ cosϕ, sinϕ).

We think of this as a parameterization of the upper hemisphere. The first variable θ param-
eterizes the equator-like lines (latitude) and the second variable paramterizes the longitude
(how far up north, starting at the equator). We compute the partial derivatives:

Φ =

cos θ cosϕ
sin θ cosϕ

sinϕ

 , ∂θΦ =

− sin θ cosϕ
cos θ cosϕ

0

 , ∂ϕΦ =

− cos θ sinϕ
− sin θ sinϕ

cosϕ

 ,

∂θΦ× ∂ϕΦ =

cos θ cos2 ϕ
sin θ cos2 ϕ
sinϕ cosϕ

 .

The norm of this cross product is

∥∂θΦ× ∂ϕΦ∥ =

√
cos2 θ cos4 ϕ+ sin2 θ cos4 ϕ+ sin2 ϕ cos2 ϕ

=

√
cos4 ϕ+ sin2 ϕ cos2 ϕ = cosϕ

√
cos2 ϕ+ sin2 ϕ = cosϕ.
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Figure 1: The first variable eastwards. The second variable points up north. The resulting normal
is pointing away from the origin. Remark: if we only consider the upper hemisphere surface, then
there is no outside or inside pointing normal. Indeed, if you cut open the Earth and only consider
the upper hemisphere, then there would be inside left.

Hence

n⃗ =
∂θΦ× ∂ϕΦ

∥∂θΦ× ∂ϕΦ∥
=

cos θ cosϕ
sin θ cosϕ

sinϕ


According to the right-hand rule, when walking along the boundary with our right hand
pointing into the first direction and our left-hand pointing into the interior of the surface,
the resulting normal points will be the one pointing away from the origin.

• We first parameterize the boundary of the parameter space Ω

γ : [0, 2π) 7→ ∂Ω, θ 7→
(
θ,

π

2

)
,

which gives us the parameterization of the boundary as follows:

Φ ◦ γ : [0, 2π) 7→ ∂C, θ 7→ (cos θ, sin θ, 0).

• We have to show that: ∫∫
S
∇× F⃗ dσ =

∮
C
F⃗ dℓ

On the one hand,∫∫
S
∇× F⃗ dσ =

∫∫
S
∇× F⃗ · n⃗∥∂θΦ× ∂ϕΦ∥ dσ
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=

∫∫
S

0
0
2

 ·

cos θ cosϕ
sin θ cosϕ

cosϕ

 sinϕ dϕdθ

=

∫ 2π

0

∫ π
2

0
2 cosϕ sinϕ dϕdθ

= 2π

∫ π
2

0
2 cosϕ sinϕ dϕdθ = 2π

∫ π
2

0
sin(2ϕ) dϕdθ = 2π

[
1

2
cos 2ϕ

]π
2

0

= 2π.

On the other hand,∮
C
F⃗ dℓ =

∫ 2π

0
F⃗ (Φ ◦ γ) · d(Φ ◦ γ)

dθ
dθ

=

∫ 2π

0

− sin θ
cos θ
0

 ·

− sin θ
cos θ
0

 dθ =

∫ 2π

0
1dθ = 2π

Exercise 2 Let S be the surface with parameterization Φ : Ω → S as follows:

S :=
{
x⃗ ∈ R3

∣∣ x21 + x22 = 1, −1 < x3 < 1
}
,

Suppose we have a vector field

F⃗ (x1, x2, x3) := (x2x3,−x1x3, 0).

• Find a parameterization of the unit normal n⃗ given associated with that parameterization.

• Compute the scalar field F⃗ · n⃗ and calculate the integrals of this scalar fields over S.

• Compute the integral using the formula∫
Ω
F⃗ · (∂sΦ× ∂tΦ)dsdt

and compare the result.

• Find a counterclockwise parameterization of ∂Ω and use it build a parameterization of the
curve C = ∂S.

• Compute the integrals ∮
C
F⃗ dl.
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Solution 2 • In a similar fashion as Exercise 1 Subquestion 2 we obtain the following normal
vector:

n⃗ =

x1
x2
0


•

F⃗ · n⃗ =

 x2x3
−x1x3

0

 ·

x1
x2
0

 = x1x2x3 − x1x2x3 = 0

∫
S
F⃗ · n⃗dσ =

∫
S
0dσ = 0

• We define the parameterisation:

Φ : [0, 2π)× [−1, 1] 7→ S, (θ, z) 7→ (cos θ, sin θ, z)

∫
Ω
F⃗ (Φ) · (∂SΦ× ∂tΦ)dsdt =

∫ 2π

0

∫ 1

−1

 z sin θ
−z cos θ

0

 ·

cos θ
sin θ
0

 dsdt

=

∫ 2π

0

∫ 1

−1
0dsdt = 0

• A counter clockwise parameterisation of ∂Ω is given by:

γ1 : [0, 2π) 7→ ∂Ω1, (θ) 7→ (θ,−1)

γ2 : [−1, 1) 7→ ∂Ω2, (r) 7→ (2π, r)

γ3 : [0, 2π) 7→ ∂Ω3, (θ) 7→ (2π − θ, 1)

γ4 : [−1, 1) 7→ ∂Ω4, (r) 7→ (0,−r)

which we can use to build a parameterization of the curve C = ∂S:

Φ ◦ γ1 : [0, 2π) 7→ C1, (θ) 7→ (cos θ, sin θ,−1)

Φ ◦ γ2 : [1,−1) 7→ C2, (r) 7→ (1, 0, r)

Φ ◦ γ3 : [0, 2π) 7→ C3, (θ) 7→ (cos θ,− sin θ, 1)

Φ ◦ γ4 : [−1, 1) 7→ C4, (r) 7→ (1, 0,−r)
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• ∮
C
F⃗ dl =

∮
C1∪C2∪C3∪C4

F⃗ dl

=

4∑
i=1

∫
Ci

F⃗ (Φ ◦ γi) · (Φ ◦ γi)′dl

=

∫ 2π

0

− sin θ
cos θ
0

 ·

− sin θ
cos θ
0

 dθ +

∫ 1

−1

 0
−r
0

 ·

0
0
1

 dr +

∫ 2π

0

− sin θ
− cos θ

0

 ·

− sin θ
− cos θ

0

 dθ+

+

∫ 1

−1

0
r
0

 ·

 0
0
−1

 dr

= 2

∫ 2π

0
sin2 θ + cos2 θdr

= 2

∫ 2π

0
dθ = 4π

• F⃗ has non-zero curl, so it cannot be a gradient of a scalar field.

Exercise 3 Let S be a surface with parameterization Φ : Ω → S as follows:

S :=
{
x⃗ ∈ R3

∣∣ x1 + x2 + x3 = 1, x1, x2, x3 > 0
}
,

Ω =
{
(s, t) ∈ R2

∣∣ s+ t < 1, s, t > 0
}
,

Φ : Ω → S, (s, t) 7→ (s, t, 1− s− t).

We consider the vector fields

F⃗ (x1, x2, x3) := (x2x3,−x1x3, x1x2), G⃗(x1, x2, x3) := (−x2, x1, x3)

• Find the unit normal n⃗ given associated with that parameterization.

• Compute the scalar fields F⃗ · n⃗ and G⃗ · n⃗ and calculate the integrals of these scalar fields over
S.

• Compute the integrals using the formula∫
Ω
F⃗ · (∂SΦ× ∂tΦ)dsdt

and compare the result.

• Find a counterclockwise parameterization of ∂Ω and use it build a parameterization of the
curve C = ∂S.
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• Compute the integrals ∮
C
F⃗ dl,

∮
C
G⃗dl.

• Can you exclude that F⃗ or G⃗ are gradients of a scalar field?

Solution 3 • In a similar fashion as exercise 1 subquestion 2 we obtain the following normal
vector:

n⃗ =
1√
3

1
1
1


• ∫

Ω
F⃗ (Φ) · (∂SΦ× ∂tΦ)dsdt =

∫
Ω
F⃗ (Φ) · (∂SΦ× ∂tΦ)

∥∂SΦ× ∂tΦ∥
∥∂SΦ× ∂tΦ∥

dsdt

=

∫
Ω
F⃗ (Φ) · n⃗∥∂SΦ× ∂tΦ∥dsdt

=

∫
S
F⃗ · n⃗dσ

•

∂sΦ× ∂tΦ =

 1
0
−1

×

 0
1
−1

 =

1
1
1



∫
S
F⃗ (Φ) · (∂SΦ× ∂tΦ)dsdt =

∫ 1

0

∫ 1−t

0

 t(1− s− t)
−s(1− s− t)

st

 ·

1
1
1

 dsdt

=

∫ 1

0

∫ 1−t

0
t(1− s− t)− s(1− s− t) + stdsdt

∫ 1

0

∫ 1−t

0
t(1− s− t)dsdt =

∫ 1

0

1

2
t− t2 +

1

2
t3dt =

1

24∫ 1

0

∫ 1−t

0
s(1− s− t)dsdt =

∫ 1

0

∫ 1−t

0

1

2
(1− s− t)2dsdt =

∫ 1

0

1

6
(1− t)3dt =

1

24
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∫ 1

0

∫ 1−t

0
stdsdt =

∫ 1

0

1

2
(1− t)2tdt =

∫ 1

0

1

6
(1− t)3dt =

1

24

∫ 1

0

∫ 1−t

0
t(1− s− t)− s(1− s− t) + stdsdt =

1

24
− 1

24
+

1

24
=

1

24

∫
S
G⃗(Φ) · (∂SΦ× ∂tΦ)dsdt =

∫ 1

0

∫ 1−t

0

 −t
s

1− s− t

 ·

1
1
1

 dsdt

=

∫ 1

0

∫ 1−t

0
1− 2tdsdt

=

∫ 1

0
(1− 2t)(1− t)dt

=

[
−1

2
(1− 2t)(1− t)

]1
0

−
∫ 1

0
(1− t)2dt

=
1

2
−
[
−1

3
(1− t)3

]1
0

=
1

2
− 1

3
=

1

6

• The boundary of Ω consists of three lines which can be parameterized in a counter clockwise
way as follows:

γ1 : [0, 1] 7→ ∂Ω1, (r) 7→ (r, 0),

γ2 : [0, 1] 7→ ∂Ω2, (r) 7→ (1− r, r),

γ3 : [0, 1] 7→ ∂Ω3, (r) 7→ (0, 1− r),

which we can use to parameterize the curve C which consist of three lines:

Φ ◦ γ1 : [0, 1] 7→ C1, (r) 7→ (r, 0, 1− r),

Φ ◦ γ2 : [0, 1] 7→ C2, (r) 7→ (1− r, r, 0),

Φ ◦ γ3 : [0, 1] 7→ C3, (r) 7→ (0, 1− r, r),

• ∮
C
F⃗ dl =

∮
C1∪C2∪C3

F⃗ dl
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=

∫
C1

F⃗ (Φ ◦ γ1) ·
d(Φ ◦ γ1)

dr
dl +

∫
C2

F⃗ (Φ ◦ γ2) ·
d(Φ ◦ γ2)

dr
dl +

∫
C3

F⃗ (Φ ◦ γ3) ·
d(Φ ◦ γ3)

dr
dl

=

∫ 1

0

 0
−r + r2

0

 ·

 1
0
−1

 dr +

∫ 1

0

 0
0

r − r2

 ·

−1
1
0

 dr +

∫ 1

0

r − r2

0
0

 ·

 0
−1
1

 dr =

= 0

∮
C
G⃗dl =

∮
C1∪C2∪C3

G⃗dl

=

∫
C1

G⃗(Φ ◦ γ1) ·
d(Φ ◦ γ1)

dr
dl +

∫
C2

G⃗Φ ◦ γ2) ·
d(Φ ◦ γ2)

dr
dl +

∫
C3

G⃗(Φ ◦ γ3) ·
d(Φ ◦ γ3)

dr
dl

=

∫ 1

0

 0
r

1− r

 ·

 1
0
−1

 dr +

∫ 1

0

 −r
1− r
0

 ·

−1
1
0

 dr +

∫ 1

0

r − 1
0
r

 ·

 0
−1
1

 dr =

=

∫ 1

0
r − 1dr +

∫ 1

0
r + 1− rdr +

∫ 1

0
rdr

=

∫ 1

0
2rdr = 1

• Both F⃗ and G⃗ have non-zero curl, so they cannot be gradients of a scalar field.

Exercise 4 (Green’s theorem) Consider the following closed curve C:

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

x

y

The curved part of the curve can be parameterized by

γ :
[
0,

π

2

]
→ R2, t 7→

(
cos3(t), sin3(t)

)
.
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• Find parameterizations of the other two curves.

• With the F⃗ (x1, x2) = (x2,−x1) compute the curve integral∮
C
F⃗ dl

• Use Green’s theorem to explain how to compute the size of the area enclosed by the curve C.

Solution 4 •

γ1 : [0, 1] → R2, t 7→ (0, 1− t) .

γ2 : [0, 1] → R2, t 7→ (t, 0) .

• ∮
C
F⃗ dl =

∫ 1

0

(
1− t
0

)
·
(

0
−1

)
dt+

∫ 1

0

(
0
−t

)
·
(
1
0

)
dt+

∫ π
2

0

(
sin3 t

− cos3 t

)
·
(
−3 cos2 t sin t
3 sin2 t cos t

)
dt

=

∫ π
2

0
−3 cos2 t sin2 tdt

=

∫ π
2

0
−3

4
sin2 2tdt

=

∫ π
2

0

3

4

(
1

2
cos 4t− 1

2

)
dt

=

∫ π
2

0
−3

8
dt = −3π

16

• We want to evaluate: ∫∫
Ω
1dxdy

and Green’s theorem tells us that:

∮
C
F⃗ dl =

∫∫
Ω

∂F2

∂x1
− ∂F1

∂x2
dx1dx2

In the previous exercise we solved the line integral with the vector field F⃗ (x1, x2) = (x2,−x1).
If we apply Greens theorem for this vector field then
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−3π

16
=

∮
C
F⃗ dl =

∫∫
Ω

∂F2

∂x1
− ∂F1

∂x2
dx1dx2 =

∫∫
Ω
−2dx1dx2

Therefore we have that

−3π

16
=

∫∫
Ω
−2dx1dx2

and consequently

3π

32
=

∫∫
Ω
dx1dx2

Exercise 5 (Stokes’s theorem) We have a vector field

F⃗ (x1, x2, x3) = (x1x2, x2x3, x1x3)

and a surface

S :=
{
(x1, x2, x3) ∈ R3

∣∣ x21 + x22 + x23 = 1, x2 ≥ 0, x3 ≥ 0
}

• Find parameterizations of the surface S and a parameterization of its boundary curve C.

• Use Stokes’ theorem to compute the integral∫∫
S
curl F⃗ dσ.

Solution 5 This is a quarter of a globe. We parameterize this surface by The surface is parame-
terized by

Ω := [0, π2 ]× [0, π],

Φ : Ω 7→ S, (θ, ϕ) 7→ (cosϕ, cos θ sinϕ, sin θ sinϕ)

For the boundary parameterisation, we walk from the North pole to South pole along one side and
then back from the South pole to the North pole along the other side. The parameterization is
given by the two curves

γ1 : [0, π] → R3, ϕ 7→ (cosϕ, sinϕ, 0),

γ2 : [0, π] → R3, ϕ 7→ (cos(π − ϕ), 0, sin(π − ϕ)).
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The derivatives of those two curves are

γ̇1 : [0, π] → R3, ϕ 7→ (− sinϕ, cosϕ, 0),

γ̇2 : [0, π] → R3, ϕ 7→ (sin(π − ϕ), 0,− cos(π − ϕ)).

Equipped with that, we use the vector field as in the problem statement,

F⃗ (x1, x2, x3) = (x1x2, x2x3, x1x3) ,

and, after renaming the paramter variable from ϕ to t, compute∫∫
S
curl F⃗ dσ =

∫∫
γ1

(
F⃗ ◦ γ1

)
· γ̇1 dσ +

∫∫
γ2

(
F⃗ ◦ γ2

)
· γ̇2 dσ

=

∫ π

0

cos t sin t
0
0

 ·

− sin t
cos t
0

 dt+

∫ π

0

 0
0

sin(π − t) cos(π − t)

 ·

 sin(π − t)
0

− cos(π − t)

 dt

=

∫ π

0

cos t sin t
0
0

 ·

− sin t
cos t
0

 dt+

∫ π

0

 0
0

sin(t) cos(t)

 ·

 sin(t)
0

− cos(t)

 dt

=

∫ π

0
− cos t sin2 tdt−

∫ π

0
sin t cos2 tdt

= −
[
1
3 sin

3(t)
]t=π

t=0
−
[
1
3 cos

3(t)
]t=π

t=0
= −

[
1
3 cos

3(t)
]t=π

t=0
= −2

3

This completes the discussion.
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