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Exercise 1 Consider a curve u in one-dimenstonal space with
w:ll,2] =R,  tet?4t

Verify that the curve is simple, differentiable, and regular. Compute the curve integral fuf dl,
where

fR—=R, z — 323
is the scalar field.

Solution 1 This is just a fancy way of describing integration by substitution from Analysis 1. We
first verify that the curve is simple, differentiable, and regular.

e The curve is simple if it does not intersect itself. This means that u(ty) # u(te) for t1 # to.
In this case, the curve u(t) = t? +t is a strictly increasing function on the interval [1,2].
We conclude that the curve is simple.

e We see that the curve is differentiable because its only component is differentiable.

e The curve is reqular because the derivative u(t) = 2t + 1 is not zero over the interval (1,2).

The curve integral of f over I' is given by

2 2 2
/ufdl_/l Flut)) |a(t)| dt /1 3(u(t))® 2t + 1| dt /1 342+ ) |2t + 1] dt

We have |2t + 1| = 2t + 1 over the interval [1,2]. Hence

2
/fdl:3/ (t2 +t)3(2t + 1) dt.
u 1

This integral can be computed using standard methods of integration. One straight-forward but
technical solution is to just expand the polynomial that we integrate. However, a simpler method
uses substitution:

2 2
/fdlzi/l 4(t2+t)3(2t+1)dt:z/1 6t(t2+t)4dt:z(t2+t)4|§j:2(64—24). (1)

This simplifies to
/fdl:i-24(34—1):i-16-80:3-320:960. (2)
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Exercise 2 (vector analysis in 1D) Let Q C (a,b) be an open interval in one-dimensional

space.

Ezplain why there cannot be a simple closed continuous curve in §2.

When Q = (—10,10), compute the integral of the scalar field

X

W=

along the curves

m:[0,1] - Q, t— (2t —1),
vo i [-1,1] = Q, t—(t),
v3:[0,1] = Q, t— (1—2t),
Y4 :[0,1] = Q,  trs (=14 2t%),
Compute the tangent vectors (t).

Compute the integral of the vector field

F(zx) = (mexz) (3)

along the curve 4. Find a potential for this vector field, and write down the general form
of all potentials.

Solution 2 This is content of Analysis 1 but repackaged in the manner of vector analysis.

It is wvisually clear that any closed continuous curve in € would have to intersect itself.
Formally, one can use the intermediate value theorem.

Before we compute all the line integrals, we mote that the curves vi,73, and 4 map the
interval [0,1] to the interval [—1,1]. Hence, we can solve the corresponding line integrals
by a change of variables in the line integral for vo. Furthermore, we note that s is the
reparameterization of v, in the opposite direction. Hence, we conclude from FExercise 5 on
FEzercise Sheet 4, that the corresponding line integrals must be equal. Let us now start the
computations with vy :

/Wfdzz/_llf(t)dt:/_llﬂiitzdt:o, )

since the integrand is odd around t = 0. For ~1, we have

1 1
ra= [ ra@mia=2 [ ree-na- [
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As already pointed out previously, we must have fyg fdl= f% fdl =0. Finally, we find for

4 that 44(t) = 10t* > 0 for t € [0,1] and thus

1 1
fﬂzéfWMWMﬂﬁ=1HWﬁw=/fﬂ=Q

where we have used the substitution u = v4(t) = —1 + 2t5 with du = 4(t) dt.

1 x

e The general form of a potential for I is f(x) = 5e gt C, where C is an arbitrary constant.
We set C = —1/2 such that f(0) = 0. For the curve integral of F along 74, we thus find

that

[ Pdi= ea(0) = FOu(0) = 1) = F(-1) = (e~ ) =0,
Y4

(7)

Exercise 3 We review notions of potentials and conservative vector fields. Let @ C R"™ be open.
Suppose we have a vector field F = (Fy, ..., F,) € C*(Q,R"). Recall that we have introduced the

condition

@'Fj = ajFZ‘, 1<4,5 <n.

Suppose that n = 1. Show that F' satisfies .

is a simple reqular curve, then

/F dl = f(v(b)) — f(v(a)).

Show that if v is closed, then

/Fdl:O.
~

Solution 3 e We recall that the curl of a vector field F' = (Fy, F3) is given by
curl F' = (81F2 — 82F1) .

Hence, it is clear that curl F' = 0 if and only if F' satisfies .

Suppose that n = 2. Show that F' satisfies if and only if it is curl-free: curl F = 0.

Suppose that n = 3. Show that F' satisfies if and only if it is curl-free: curl F = 0.

(8)

Suppose that F admits a potential f € C1(,R), so that Vf = F. Show that if vy : [a,b] — Q

(9)

(10)

(11)



e We recall that the curl of a vector field F' = (Fy, Fa, F3) is given by

82F3 - 83F2
curl F' = 83F1 - 81F3 . (12)
81F2 — 82F1

Hence, it is clear that curl F = 0 if and only if F' satisfies . Also, recall Ezercise 6
from Ezercise Sheet 3. On the one hand, we noticed there that the curl of a vector field is
given by the off-diagonal entries of the anti-symmetric part of the Jacobian matriz. On the
other hand, condition is equivalent to the statement that the Jacobian matriz of F is
symmetric. We therefore conclude that the curl vanishes if and only if the Jacobian matriz
s symmetric.

e Forn =1, we have F = (F}) and the condition is trivially satisfied.

e We have Vf = F. Hence, we can write the line integral as

b
/ Fi = / F(y(t)) - 4(t) dt (13)

b b d
= [Via®) o d = [ Lrae) d=rae) - f6@). )

If ~ is closed, then v(a) = (b) and we find that the line integral vanishes.
Exercise 4 We introduce the following curves:
v:[0,1] = R, t (3,4%,48),
§:[1,00) = R, t— (5,6715)
For each curve
e compute the tangent vector
e compute the speed of the curve
e find the unit tangent vector

e for d, find the unit normal along the curve that is the 90 degree clockwise rotation of unit
tangent

e argue why it is a reqular curve
e and compute the length of the curve.

Solution 4 e We compute the tangent vectors:

A(t) = o , 5(t)-<_0t>. (15)



e The speed of the curve is given by the norm of the tangent vector:

O = VA2 +16 =212 +4, [5(t)| =e " (16)

o The unit tangent vector is given by

L) = 0 L (17)
I ROU vEra )
t5(t) = 2’ < Ol> (18)

Note that the unit tangent vector of § is constant!

e The unit normal vector is given by the 90 degree clockwise rotation of the unit tangent vector.
The corresponding rotation matriz is
0 1
= . 1
R <_1 0) (19)

Hence, we find
autt) = Ris() = (). (20)

e The curves are reqular because their tangent vectors never vanish.

e The length of the curves is given by the integral of the speed: For v, we find

/1 |7(t)\dt:2/1 \/t2+4dt:4/1\/(t/2)2+1dt (21)
0 0

1/2

Vu? 4 1du = 4(v/2 4 sinh~1(1/2)), (22)
(23)

where we have used the substitution u = t/2 with du = dt/2. The last integral can be found
with trigonometric substitution.

For d, we find
/ 16(t)|dt = / etdt = e 1. (24)
1 1

Note that the curve is parametrized for t € [1,00), but still has a finite length!



Exercise 5 We consider the vector field
F:R? 5 R%  (z,y) — (:1:3,y3)

We want to find a potential over the domain Q2 = R%. Fiz a constant of integration at (0,0) and
define a potential via the integral of the vector field F' along a simple reqular curve going from

(0,0) to (z,y).

Solution 5 The most simple among the simple regular curves from (0,0) to (z,y) is the straight
line:

v:[0,1] = R?, t s (tx,ty).

We compute that 4(t) = (z,y). We fix some constant of integration f(0,0) = C for our yet-to-be-
found potential f € C'(R2 R). For any (z,y) € R%, we now compute

1 1
flx,y) — f(0,0) = / (t3m3,t3y3) (x,y) dt = ($4 + y4) / 3 dt = 1 (334 + y4) . (25)

0 0 4

Therefore,
flay) =~ (" +y!) +C. (26)

Indeed, one easily verifies that Vf = F'.

I

Exercise 6 The closed curve
v(t) = (sin(¢)(1 + 0.5sin(2t)), cos(t)(1 4 0.5sin(2t)))

encircles a domain S in counterclockwise direction. Find the tangent 4(t), the unit tangent T(t)
and the outward pointing unit normal 7i(t). Only simplify as much as reasonable.

Solution 6 We calculate:
A(t) = (cos(t)(1 + 0.5sin(2t)) + sin(t) cos(2t), — sin(t)(1 + 0.5sin(2t)) + cos(t) cos(2t))
With that:

14()|* = cos(t)?(1 + 0.5sin(2t))? + sin(t)? cos(2t)? + 2 cos(t)(1 + 0.5 sin(2t)) sin(t) cos(2t)
+ sin(t)2(1 + 0.5sin(2t))? + cos(t)? cos(2t)? — 2sin(t)(1 + 0.5 sin(2t)) cos(t) cos(2t)
= (1 +0.5sin(2t))% + cos(2t)? + 2 cos(t)(1 + 0.5sin(2t)) sin(t) cos(2t)
— 2sin(t)(1 4 0.5sin(2t)) cos(t) cos(2t)
= (14 0.5sin(2t))? + cos(2t)2.



Hence

15(t)] = /(1 + 0.5sin(2t))2 + cos(2t)2.

We want to compute the tangent vector:

(t) = cos(t)(1 4 0.5sin(2t)) + sin(t) cos(2t) —sin(¢)(1 + 0.5sin(2t)) + cos(t) cos(2t)
B V(1 +0.5sin(26))2 + cos(2t)2 V(1 +0.5sin(2t))2 + cos(2t)2

Accordingly, the normal vector is:

A = = sin(t)(1 + 0.5sin(2t)) + cos(t) cos(2t)  cos(t)(1 + 0.5sin(2t)) + sin(¢) cos(2¢)
V(1 +0.5sin(26))2 + cos(2t)2 V(1 +0.55in(2t))2 + cos(2t)2
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Exercise 7 We work over the quadratic domain
Q= {($1,$2)€R2 ‘ -1 <2 <1, —1<.%'2<1}.

Compute the integral fo divF dx1dxo, where

—

F(x1,22) = (Sin(wl)w% (21 + $2)5)

Solution 7 We make use of the Divergence theorem to express the volume integral as a curve
integral.

//V~ﬁda:1dm2:/ F.ide
Q o2



— /11 F(zy,-1)- (_01> dxq +/11 F(—z1,1) - <(1)) dzy
+ /11 F(=1,-x) - <—01> dis + /11 F(1,29) <(1)> diy

1 1
= —/ (2 — 1)° day +/ (22 4 1)° day
-1 -1
1

1
+ (—1)/ sin(—1)(—x2) dxs +/ sin(1)ze dzs

-1 -1

1 1
:/1(1—:13%)5 dm1+/1(1—|—x%)5 dxy
1

+(-1) /1 sin(—1)(—x2) dzg +/ sin(1)xy dxs.

-1 -1

We observe the last two integrals are zero: either because xo is an odd function, or because

(1)/1 sin(—1)(—w2) dwa + /1 sin(1)ay drg = /

-1 -1 -1

1 1

sin(1)(—z2) dxs +/ sin(1)xy dzy = 0.
-1

To evaluate the remaining two integrals, we can either compute the quintic powers manually, which
s a lot of work, or we utilize the binomial theorem:

D S G

k=0

With that, we can simplify the calculation as follows:

//V-ﬁdwldm:/ F.7dl,
Q o0
1

(1 —22)° dx —l—/ (1+22)° dxy
-1

I
OWH
Jun

— 2 (Z) (—1)* /11(:70)% dxy +kz5:0 (2) /ll(x)% dy
Qe ] e )
5

() (o) [

= 0. So we only need the terms with k = 0,2,4. Thus

(]

o

— =

Fork=1,3,5, we get ((—l)k +1

> (3) (coren) [20]

k=0







