
Analysis III - 203(d)

Winter Semester 2024

Session 6: October 17, 2024

Exercise 1 We have the vector field

F⃗ (x1, x2) =
(
x1x2, x

2
2

)
.

and the domains

Ω1 :=
{
(x1, x2) ∈ R2

∣∣ x21 + x22 < 1
}
,

Ω2 :=
{
(x1, x2) ∈ R2

∣∣ x21 + x22 < 1, x1 > 0
}
,

Verify Green’s theorem for the vector field F⃗ with the domains Ω1 and Ω2. You need to find
parameterizations of the boundary first.

Solution 1 Green’s theorem over some domain Ω is given by∫
∂Ω

F⃗ · ds⃗ =

∫ ∫
Ω

∂F2

∂x1
− ∂F1

∂x2
dΩ.

Here, ∂Ω is a curve parameterized in counterclockwise direction.
We consider the domain Ω1. A counterclockwise parameterisation for the boundary is given by

γ : [0, 2π] 7→ R2, t 7→ (cos t, sin t).

∫
∂Ω

F⃗ · ds⃗ =

∫ 2π

0

(
cos t sin t
sin2 t

)
·
(
− sin t
cos t

)
dt

=

∫ 2π

0
− sin2 t cos t+ sin2 t cos t dt = 0

On the other hand, ∫ ∫
Ω

∂F2

∂x1
− ∂F1

∂x2
dΩ =

∫ ∫
Ω
−x1 dΩ.

There are different ways to compute the last integral. For example, since Ω is symmetric along
the x2 axis but −x1 is obviously an odd function, we can conclude that∫ ∫

Ω
−x1 dΩ = 0.
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Alternatively, we can use radial coordinates for the disk:∫ ∫
Ω
−x1 dΩ =

∫ 2π

0

∫ 1

0
−r cos(θ)r dθ dr = −

∫ 2π

0
cos(θ) dθ

∫ 1

0
r2 dr = 0,

where we have used that integrating the cosine function over a period is 0. Yet another possibility
is ∫ ∫

Ω
−x1 dΩ = −

∫ 1

−1

∫ √
1−x2

1

−
√

1−x2
1

x1 dx2 dx1 =

∫ 1

−1
2x1

√
1− x21 dx1 = 0,

where we have used that the last function is odd. In any case, the integral of the domain and the
integral along the boundary give the same value, thereby verifying Green’s theorem.
We consider domain Ω2. A parameterisation for the boundary is given by two seperate curves,
one for the circular arc and one for the straight line. For the circular arc we have

γ :
[
−π

2
,
π

2

]
7→ R2, t 7→ (cos t, sin t) (1)

and for the vertical line we have

δ : [−1, 1] 7→ R2, t 7→ (0,−t). (2)

With that, we compute∫
∂Ω

F⃗ · ds⃗ =

∫
γ
F⃗ · ds⃗+

∫
δ
F⃗ · ds⃗

=

∫ π
2

−π
2

(
sin t cos t
sin2 t

)
·
(
− sin t
cos t

)
dt+

∫ 1

−1

(
0
t2

)
·
(

0
−1

)
=

∫ 2π

0
− sin2 t cos t+ sin2 t cos t dt−

∫ 1

−1
t2 dt

= −
[
1

3
t3
]1
−1

= −2

3
.

We compute the integral over the domain:∫ ∫
Ω

∂F2

∂x1
− ∂F1

∂x2
dΩ =

∫ ∫
Ω
−x1 dΩ

=

∫ π
2

−π
2

∫ 1

0
−r cos(θ)r dθ dr

= −
∫ π

2

−π
2

cos(θ) dθ

∫ 1

0
r2 dr = [sin θ]

π
2

−π
2

[
−1

3
r3
]1
0

= −2

3
.

Both integrals give the same value, thereby verifying Green’s theorem.
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Exercise 2 Consider the triangle domain

T :=
{
(x1, x2) ∈ R2

∣∣ x1 > 0, x2 > 0, x1 + x2 < 1
}
.

and the vector field

F⃗ (x1, x2) =

(
x1x2 +

x1
1 + x21 + x22

, x1x2 +
x2

1 + x21 + x22

)
Find the curve integral of F⃗ along the boundary of T using Green’s theorem.

Solution 2 ∫
∂Ω

F⃗ · ds⃗ =

∫ ∫
Ω

∂F2

∂x1
− ∂F1

∂x2
dΩ

=

∫ ∫
Ω
x2 +

−2x1x2
(1 + x21 + x22)

2
− x1 −

−2x1x2
(1 + x21 + x22)

2
dΩ

=

∫ ∫
Ω
x2 − x1 dΩ

=

∫ 1

0

∫ 1−x1

0
x2 − x1 dx2 dx1

=

∫ 1

0

1

2
(1− x1)

2 − x1(1− x1) dx

=

[
−1

6
(1− x1)

3 − 1

2
x21 +

1

3
x31

]1
0

= −1

2
+

1

3
− −1

6
= 0

Exercise 3 Consider the parabolic arc

Γ :=
{
(x1, x2) ∈ R2

∣∣ −1 < x1 < 1, x2 = 3(1− x21)
}
.

Find the curve integral
∫
Γ F⃗ · n⃗ dl, where

F⃗ (x1, x2) =
(
x1(2− cos(x1x2)

2), x2(2 + cos(x1x2)
2)
)

and where n⃗ is the unit vector along Γ, perpendicular to Γ and having non-negative x2 component.

Solution 3 The Idea is to make use of divergence theorem. We do this by closing the curve γ by
introducing the curve

δ : [−1, 1] 7→ R2, t 7→ (t, 0).

This allows us to reformulate the problem as follows:∫
Γ
F⃗ · n⃗ dℓ =

∫
Γ∪∆

F⃗ · n⃗ dℓ−
∫
∆
F⃗ · n⃗ dℓ
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For the first integral on the right-hand side we use the divergence theorem∫
Γ∪∆

F⃗ · n⃗ dℓ =

∫
Ω
∇ · F⃗ dΩ =

∫
Ω
4 dΩ.

We need to compute the area of the domain Ω and proceed as follows:

4

∫
Ω
1 dΩ = 4

∫ 1

−1

∫ 3(1−x2
1)

0
1 dx2 dx1

= 4

∫ 1

−1
[x2]

3(1−x2
1)

0 dx1

= 4

∫ 1

−1
3(1− x21) dx1

= 4
[
3x1 − x31

]1
−1

= 4 ([3− 1]− [−3 + 1]) = 16.

The value of the second integral is given by the integral of F⃗ against the vector (0,−1):∫
∆
F⃗ ·

(
0

−1

)
dl =

∫ 1

−1
0 dx1 = 0.

We conclude that:∫
Γ
F⃗ · n⃗ dl =

∫
Γ∪∆

F⃗ · n⃗ dl =
[
12x1 − 4x31

]1
−1

= (12− 4)− (−12 + 4) = 16.

Exercise 4 Find the tangential vector γ̇(t), the unit tangential vector τ⃗ and the unit normal n⃗ of
the simple closed curve

γ : [0, 2π] → R2, t 7→ (cos(t), sin(t)(1 + sin(2t)2)).

Find the values of γ and τ⃗ for a few values of t ∈ [0, 2π], such as t = π
4 , 2

π
4 , 3

π
4 , . . . , 7

π
4

Solution 4 Some standard calculations show that

γ̇(t) =
(
sin(t), cos(t) + cos(t) sin(2t)2 + sin(t)2 sin(2t) cos(2t)2

)
=

(
sin(t), cos(t) + cos(t) sin(2t)2 + 4 sin(t) sin(2t) cos(2t)

)
Hence,

|γ̇(t)|

=
√

sin(t)2 + cos(t)2 + cos(t)2 sin(2t)4 + 16 sin(t)2 sin(2t)2 cos(2t)2 + 2 cos(t) sin(2t)2 + 2 cos(t)4 sin(t) sin(2t) cos(2t) + 2 sin(2t)24 sin(t) sin(2t) cos(2t)

=

√
1

16
(6 cos(t) + 3 cos(3t)− 5 cos(5t))2 + sin(t)2
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Exercise 5 Find the area of the graph of ϕ over Ω = [0, 1]× [0, 1], where

ϕ(s, t) :=
√

s2 + t2

Find the integral of the function
f(x1, x2, x3) := x1x2x3

over the graph of ϕ over Ω.

Solution 5 We compute the partial derivatives of the function:

∂sϕ(s, t) = s(s2 + t2)−
1
2 , ∂tϕ(s, t) = t(s2 + t2)−

1
2 .

The area of the graph over Ω is given by the integral∫ 1

0

∫ 1

0

√
1 +

s2

s2 + t2
+

t2

s2 + t2
dsdt =

√
2.

The integral of f over the graph S reads as follows:∫∫
S
f dσ =

∫ 1

0

∫ 1

0
s · t ·

√
s2 + t2 ·

√
1 +

s2

s2 + t2
+

t2

s2 + t2
dsdt

=
√
2

∫ 1

0

∫ 1

0
s · t ·

√
s2 + t2 ds dt.

We simplify it further:∫ 1

0

∫ 1

0
s · t ·

(
s2 + t2

) 1
2 ds dt
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=

∫ 1

0
t · 1

3

∫ 1

0
∂s(s

2 + t2)
3
2 ds dt

=

∫ 1

0
t · 1

3

[
(s2 + t2)

3
2

]s=1

s=0
dt

=

∫ 1

0
t · 1

3

(
(1 + t2)

3
2 − t3

)
dt =

1

3

∫ 1

0
t · (1 + t2)

3
2 − t4 dt

Next, ∫ 1

0
t · (1 + t2)

3
2 − t4 dt

=

∫ 1

0

1

5
∂t

((
1 + t2

) 5
2

)
− ∂t

(
1

5
t5
)

dt

=
1

5

[(
1 + t2

) 5
2

]t=1

t=0
− 1

5

[
t5
]t=1

t=0
=

1

5

(√
2
5 − 1− 1

)
.

In summary,∫∫
S
f dσ =

√
2 · 1

3
· 1
5

(√
2
5 − 1− 1

)
=

√
2

15
·
(√

2
5 − 2

)
=

2

15
·
(
4−

√
2
)
.

Exercise 6 The parameterization

Φ : [0, 2π)× (0, 1) → R3, (θ, z) 7→ ((1 + z) cos(θ), (1 + z) sin(θ), z)

describes a surface S. Find the surface area of S.

Solution 6 We compute the derivatives of Φ:

∂θΦ(θ, z) :=

−(1 + z) sin(θ)
(1 + z) cos(θ)

0

 ∂zΦ(θ, z) :=

cos(θ)
sin(θ)

1

 .

The cross product ∂θΦ(θ, z)× ∂zΦ(θ, z) equals−(1 + z) sin(θ)
(1 + z) cos(θ)

0

×

cos(θ)
sin(θ)

1

 =

(1 + z) cos(θ)
(1 + z) sin(θ)
−(1 + z)


The norm of cross product is

∥∂θΦ(θ, z)× ∂zΦ(θ, z)∥ = ∥ ((1 + z) cos(θ), (1 + z) sin(θ),−(1 + z)) ∥

=

√
(1 + z)2 cos2(θ) + (1 + z)2 sin2(θ) + (1 + z)2

=
√
2(1 + z)2
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=
√
2 · (1 + z).

We can now compute the surface area:∫∫
S
1dσ =

∫ 1

0

∫ 2π

0
1 ·

√
2(1 + z)dθdz

= 2π ·
√
2 ·

[
z +

1

2
z2
]z=1

z=0

= 2π ·
√
2 · 3

2

= 3
√
2 · π.

Exercise 7 Let f(x1, x2, x3) = x1x2 + x23 and consider the surface

S :=
{
(x1, x2, x3) ∈ R3

∣∣ 0 < x3 < 1, x21 + x22 = x23
}

Find a parameterization of S and compute the surface integral
∫∫

S f dσ.

Solution 7 We define the following parameterisation for the surface S:

Φ : [0, 2π)× (0, 1) 7→ S : (θ, z) 7→ (z cos θ, z sin θ, z)

with

∥∂θΦ× ∂zΦ∥ =

∥∥∥∥∥∥
−z sin θ

z cos θ
0

×

cos θ
sin θ
1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
z cos θ
z sin θ
−z

∥∥∥∥∥∥ =
√
2z

Now the surface integral is given by:∫∫
S
f dS =

∫ 2π

0

∫ 1

0

(
z2 cos θ sin θ + z2

)√
2z dz dθ

=

∫ 2π

0

∫ 1

0

√
2z3 dz dθ +

∫ 2π

0
cos θ sin θ dθ

∫ 1

0

√
2z3 dz

= 2π

[√
2

4
z4

]1

0

+

∫ 2π

0

1

2
sin 2θ dθ2π

[√
2

4
z4

]1

0

= π
2
√
2

4
+

[
−1

4
cos 2θ

]2π
0

π
2
√
2

4

= π
2
√
2

4
+

(
−1

4
−−1

4

)
π
2
√
2

4
= π

√
2

2
.
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