

October 30

Stokes' theorem and
orientations

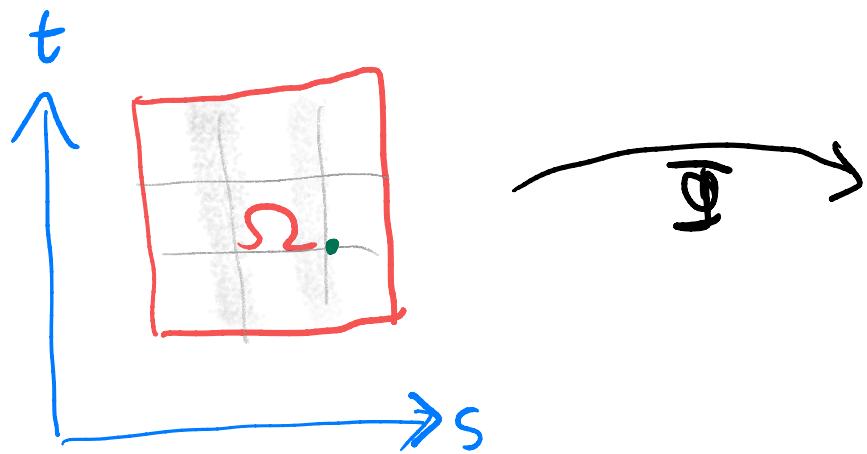
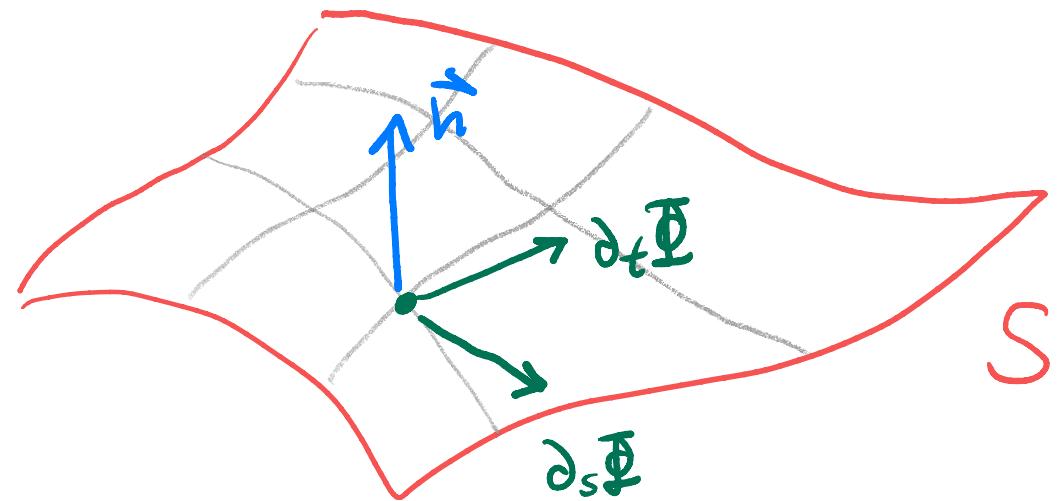
The divergence theorem generalizes from 2D domains to 3D volumes in a straight-forward manner

Green's theorem generalizes from 2D domains to 3D surfaces, where we call it Stokes' theorem

Important concept: orientation of surfaces

Theory

Let $\Omega \subseteq \mathbb{R}^2$ be a domain and $\bar{\Phi} : \Omega \rightarrow \mathbb{R}^3$ be a regular parametrization of some surface S



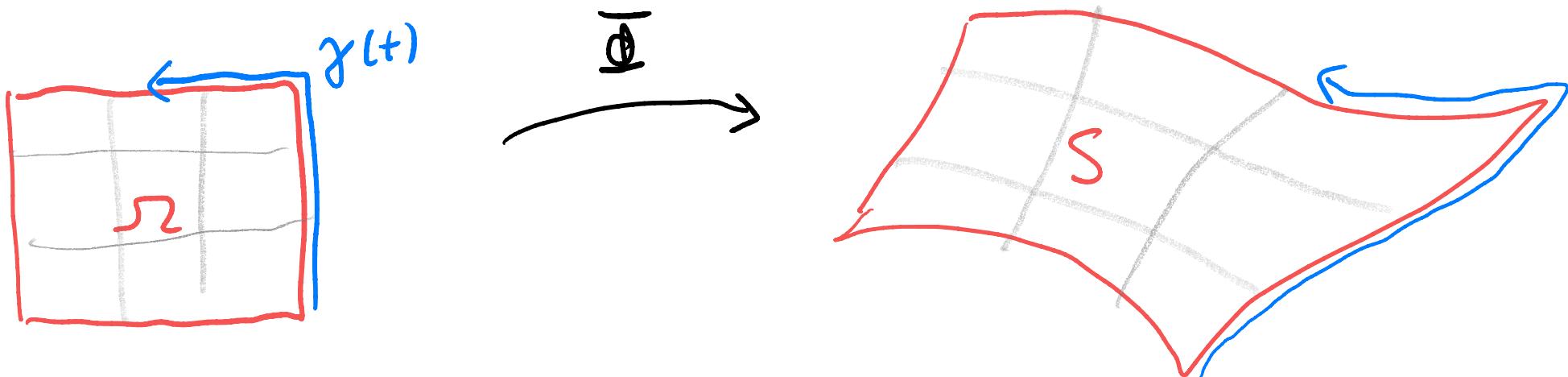
The parametrization determines a unit normal direction

$$\vec{n} = \partial_s \bar{\Phi} \times \partial_t \bar{\Phi} / \| \partial_s \bar{\Phi} \times \partial_t \bar{\Phi} \|$$

The surface boundary ∂S is a curve C

Assume that $\bar{\Phi}$ maps $\partial\Omega$ onto ∂S bijectively

Let $\gamma: [a,b] \rightarrow \mathbb{R}^2$ be a (piecewise) regular parametrization of the boundary $\partial\Omega$ in ccw orientation



We obtain the parametrization of ∂S :

$$\bar{\Phi} \circ \gamma : [a,b] \rightarrow \mathbb{R}^3$$

Stokes theorem

Let the geometric setting be as above

Let $\vec{F} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is a differentiable vector field

$$\iint_S \operatorname{curl} \vec{F} \, dG = \oint_C \vec{F} \, dl$$

where S and C have orientation given by the parameterization $\vec{\varphi}$.

$$\iint_S \operatorname{curl} \vec{F} \cdot \vec{n} \, dG = \oint_C \vec{F} \cdot \vec{\tau} \, dl$$

surface unit normal
induced by parametrization

unit tangent vector
in direction induced by parametrization

- The sign of the surface integral depends on which unit normal we use, which in turn depends on the parametrization
- The sign of the boundary integral depends on the choice of direction for C , which in turn depends on the parametrization
- For a fixed parametrization $\tilde{\Phi}$, the signs match so that Stokes' theorem holds

For practical computations:

Recap

$$\iint_S \operatorname{curl} \mathbf{F} \cdot \vec{n} \, dG = \iint_{\Sigma} \operatorname{curl} \vec{F}(\bar{\Phi}(s,t)) \cdot \vec{n}(\bar{\Phi}(s,t)) \left\| \partial_s \bar{\Phi} \times \partial_t \bar{\Phi} \right\| dsdt$$
$$= \iint_{\Sigma} \operatorname{curl} \vec{F}(\bar{\Phi}(s,t)) \cdot (\partial_s \bar{\Phi} \times \partial_t \bar{\Phi}) \, dsdt$$

$\oint_C \mathbf{F} \cdot \vec{dl} = \oint_C \vec{F} \cdot \vec{\tau} \, dl = \int_a^b \vec{F}(\bar{\Phi} \circ \gamma) \cdot (\bar{\Phi} \circ \gamma)' \, dt$

Example 1

The triangle surface S is

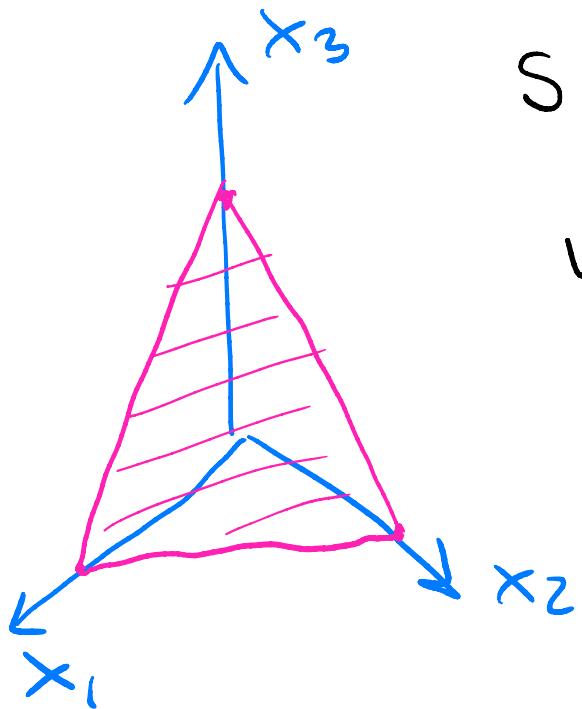
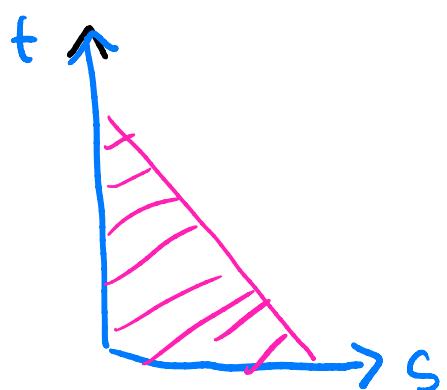
$$S = \{ \vec{x} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1, x_1, x_2, x_3 \geq 0 \}$$

What is a parametrization of S ?

$$\mathcal{R} = \{ (s, t) \in \mathbb{R}^2 \mid s, t \geq 0, s + t < 1 \}$$

$$\Phi: \mathcal{R} \rightarrow \mathbb{R}^3$$

$$(s, t) \mapsto (s, t, 1 - s - t)$$



Visually, we map s and t to x_1 and x_2 , respectively, and map the origin to $(0, 0, 1)$

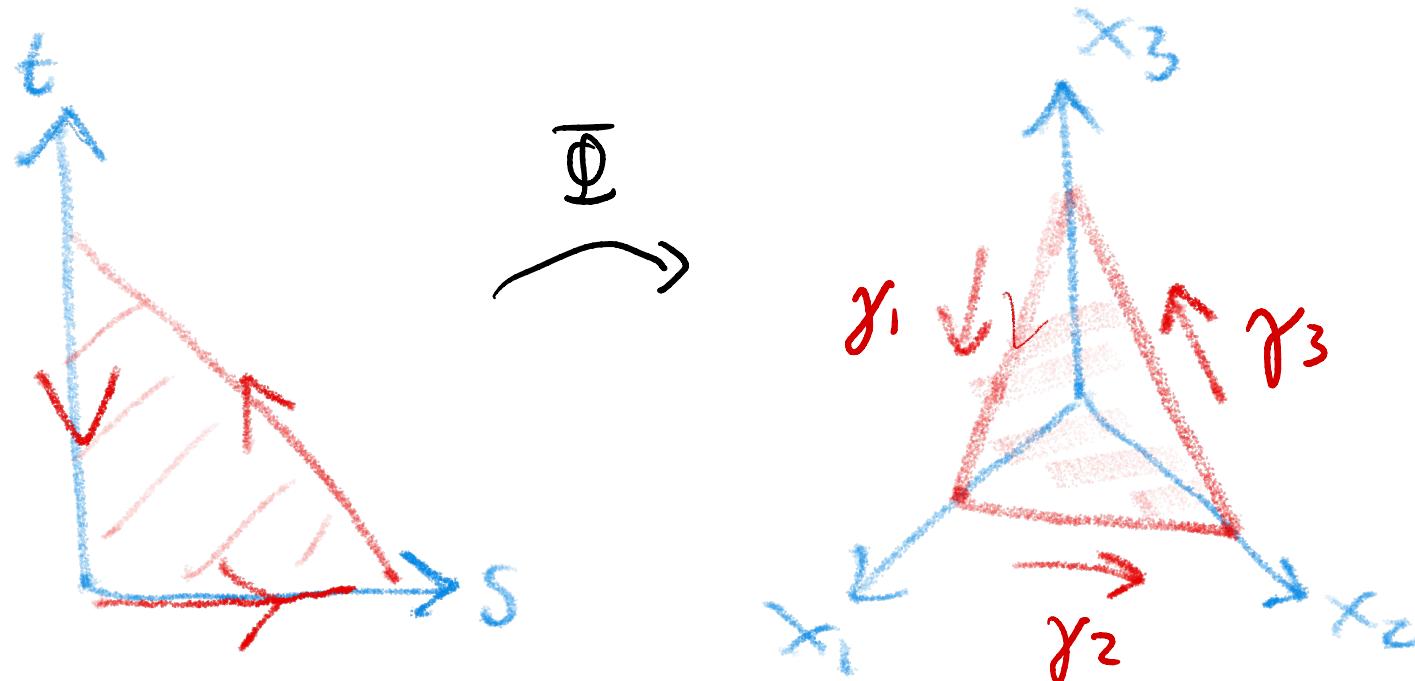
$$\partial_s \bar{\Phi} = (1, 0, -1)$$

$$\partial_s \bar{\Phi} \times \partial_t \bar{\Phi} = (1, 1, 1)$$

$$\partial_t \bar{\Phi} = (0, 1, -1)$$

$$\text{Hence, } \vec{n} = \frac{\partial_s \bar{\Phi} \times \partial_t \bar{\Phi}}{\|\partial_s \bar{\Phi} \times \partial_t \bar{\Phi}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right)$$

We parameterize the boundary curve of ∂S in 3 pieces



The ccw parametrization
of ∂S gives a
parametrization of ∂S

$$\gamma_1 : [0,1] \rightarrow \mathbb{R}^3, \quad r \mapsto (r, 0, 1-r)$$

$$\gamma_2 : [0,1] \rightarrow \mathbb{R}^3, \quad r \mapsto (1-r, r, 0)$$

$$\gamma_3 : [0,1] \rightarrow \mathbb{R}^3, \quad r \mapsto (0, 1-r, r)$$

This is enough to compute the curve integrals along $C = \partial S$

Let's consider the vector field

$$\vec{F}(x_1, x_2, x_3) = (x_1 + x_2^2, x_2 + x_3^2, x_3 + x_1^2)$$

We need the curl

$$\text{curl } F(x_1, x_2, x_3) = (-2x_3, -2x_1, -2x_2)$$

According to Stokes' theorem

$$\iint_S \operatorname{curl} \vec{F} \cdot \vec{n} dG = \oint_C \vec{F} \cdot \vec{J} dl$$

given by parametrization

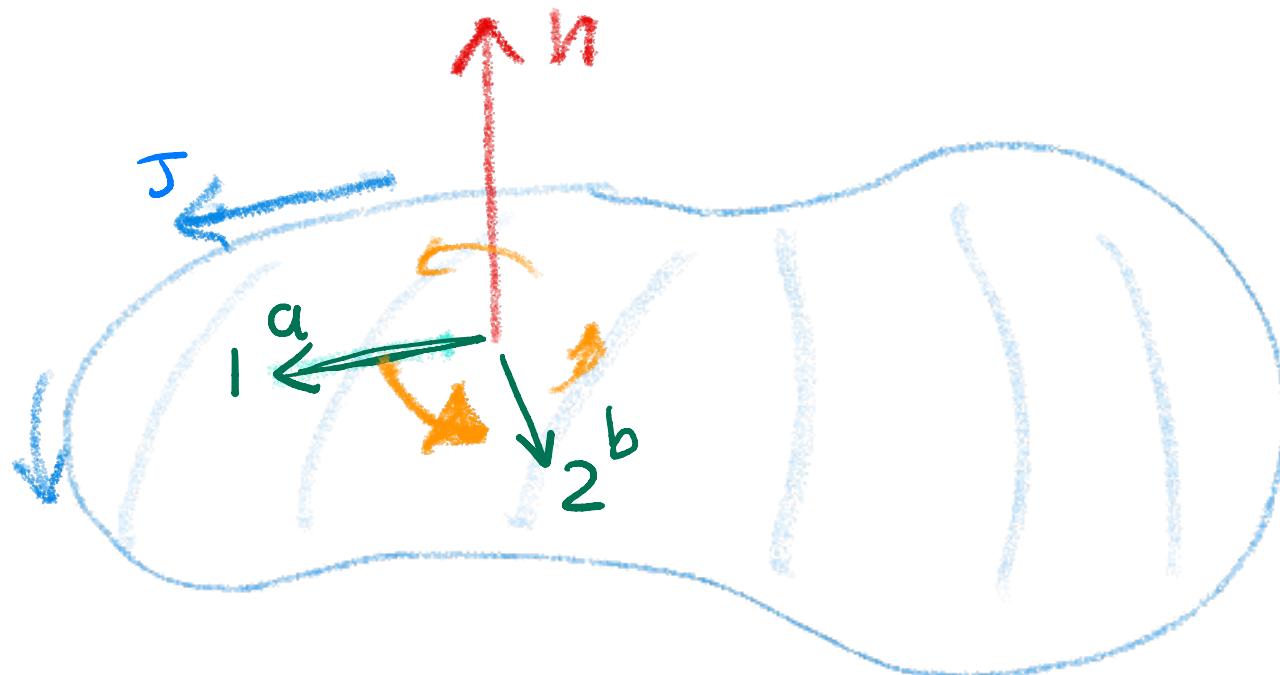
We find the curve integral using the surface integral:

$$\begin{aligned}\iint_S \operatorname{curl} \vec{F} \cdot \vec{n} dG &= \iint_{S_2} \operatorname{curl} \vec{F}(\vec{\varphi}(s, t)) \cdot \left(\partial_s \vec{\varphi}(s, t) \times \partial_t \vec{\varphi}(s, t) \right) ds dt \\ &= \int_0^1 \int_0^{1-s} -2 \cdot (1-s-t, s, t) \cdot (1, 1, 1) dt ds \\ &= -2 \int_0^1 \int_0^{1-s} 1-s-t + s+t ds dt = -2 \int_0^1 \int_0^{1-s} 1 ds dt \\ &= -1\end{aligned}$$

Exercise: compute $\oint_C \vec{F} \cdot \vec{J}$ directly

More theory

Can choose the orientation of the surface (that is, the choice of unit normal) and the orientation of the boundary (that is, the choice of direction/unit tangent) such that Stokes' theorem holds without using a parametrization?



n is in the direction of $a \times b$

If n and J match like this, then Stokes' theorem holds.

If not, then signs will mismatch

Suppose you walk on the surface with your head in the direction of \mathbf{n} . We walk along the boundary such our left arm is free. Then this gives the direction of the boundary.

Along the boundary we check for which vector \vec{b} we have $\vec{t} \times \vec{b} = \vec{n}$. If it points into the surface, then the orientation of S and ∂S match.

So we have several geometric criteria to figure out whether the orientations of S and ∂S match and Stokes' theorem applies

Moving on to the next example, suppose we have radial coordinates

